
Optimizing in graphs with expensive

computation of edge weights

F. Noé1, M. Oswald2, and G. Reinelt2

1 DFG Research Center “Matheon”, FU Berlin, Arnimallee 6, 14195 Berlin,
Germany, noe@math.fu-berlin.de,

2 University of Heidelberg, Institute for Computer Science, Im Neuenheimer
Feld 368, 69120 Heidelberg, Germany

1 Introduction

Much research has gone into the development of fast graph optimization
algorithms and many problems, such as shortest-path [1] or minimum-
cut [2], can now be routinely solved for large graphs. In many practical
applications, e.g. in bioinformatics or computational chemistry [3, 4],
the solution of graph optimization problems is very important, but
hampered by the fact that the graph is not completely known. Espe-
cially edge weights, which may represent, for example, reaction rates
in a reactive network, are often unknown or only known within some
error bounds. Usually, methods for determining these edge weights are
available, but the precise determination of a single edge weight may
require long computations or expensive experiments. The objective is
thus not to minimize the runtime of the graph optimization problem
with a given set of edge weights, but instead to minimize the number
of edge weights that need to be determined in order to be able to solve
the graph optimization problem.

To our knowledge, this problem has so far not been addressed in
operation research literature. In the present paper we present a simple
heuristic for solving the graph problem while trying to compute exact
weights only for few edges and to avoid determining the weights of other
edges which have no or little impact on the problem. The algorithms are
applied to shortest paths and minimum cuts in biomolecular reaction
networks and the results demonstrate that only few edge weights need
to be determined in order to solve these graph optimization problems.
This encourages further research in this area.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository: Freie Universität Berlin (FU), Math Department (fu_mi_publications)

https://core.ac.uk/display/267950467?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 F. Noé et al.

In the following, let G = (V,E, c) denote a graph with node set V ,
edge set E and a vector of edge weights c. The weight of an edge
e = uv is denoted by ce or cuv. In a general problem setting we have a
set I ⊆ 2E of feasible solutions and an objective function f : 2E → R.
The optimization problem consists of finding I∗ ∈ I such that f(I∗) =
min{f(I) | I ∈ I}. We denote by f∗(G) the optimum objective function
value and by OPT(G) an optimal edge set. In this paper we require that
the objective function f has the following edge-monotonous property : if
the weight ce of one edge e ∈ E is increased, then f remains the same
or increases. If ce is decreased, then f remains the same or decreases.
We start with no exact edge weights being given, but instead some
finite lower and upper bounds le and ue are available for every edge e.
Correspondingly we can define the two graphs Gl = (V,E, l) and Gu =
(V,E, u). Due to the monotonicity property, f∗(Gl) ≤ f∗(G) ≤ f∗(Gu).
Furthermore, we are given some means for refining bounds by replacing
le and ue of a given edge e by new bounds l′e and u′

e such that l′e ≥ le
and u′

e ≤ ue.

2 Algorithms

2.1 Basic Algorithm

From the given lower and upper bounds on the edge weights of
G = (V,E, c) we can construct the two graphs Gl = (V,E, l) and
Gu = (V,E, u). We assume that we have an algorithm to com-
pute OPT(Gl) and OPT(Gu) and a method for refining edge weight
bounds as described above. The following iterative algorithm deter-
mines OPT(G).

Algorithm 1 Compute OPT(G)

(1) Compute OPT(Gl) and OPT(Gu). Output f∗(Gu) and f∗(Gl).

(2) If f∗(Gu) − f∗(Gl) ≤ ∆, then return(OPT(Gl)).

(3) Select an undetermined edge h ∈ OPT(Gl) with maximum weight lh =
max{le | e ∈ OPT(Gl) and le < ue}. (We call such an edge a critical
edge). Refine h and goto (1).

Theorem 1. Assuming that at most nrefine edge refinements are nec-
essary to exactly determine its weight (le = ue), then, for ∆ = 0,
Algorithm 1 computes OPT(G) in finitely many steps.

Optimizing in graphs 3

Proof. Edges with determined weight are never selected as critical
edges in step (3). Therefore each edge can only be determined once.
The algorithm terminates in step (2) at the latest when all edges are
determined. (Although it is expected to terminate earlier.) Thus at
most |E| · nrefine edge refinements are required.
The correctness of the algorithm follows immediately from the fact that
f∗(Gl) ≤ f∗(G) ≤ f∗(Gu) always holds. Thus the theorem is proved.
�

For ∆ > 0 the algorithm is no longer exact, but will return an ap-
proximate solution I with f∗(I) ≤ f∗(G)+∆. In many practical cases,
such an approximate solution may be sufficient and save considerable
amounts of CPU time.

2.2 Parallelization

Algorithm 1 can be parallelized in a rather straightforward way. To es-
tablish a communication between the individual processes, a “database”
of bounds is required which every process has read and write access to.
The database contains the vectors L and U of the current lower and
upper edge weight bounds, and an edge is marked “busy” when a pro-
cess is about to change its weight. Every processor keeps own graphs
Gl and Gu and executes algorithm 2.

Algorithm 2 Parallel computation of OPT(G)

(1) Let F = ∅. (F is a set of edges with estimated weights.)

(2) Remove every member e from F that is not busy.

(3) Update le = Le and ue = Ue, for all edges e ∈ E.

(4) Compute OPT(Gl) and OPT(Gu).

(5) If all edge weights of OPT(Gl) are determined, i.e., le = ue, for all e ∈
OPT(Gl), then
(5.1) If F = ∅ return(OPT(Gl)), otherwise wait for some time interval τ .

(6) Select an undetermined edge h with maximum weight from OPT(Gl). If
no such edge exists, goto 2.

(7) Distinguish the following cases:
(7.1) If h is busy, then assign a hypothetical edge weight to h and set

F = F ∪ {h}.
(7.2) If h is not busy, then mark h as busy, refine h, set Uh := uh, Lh := lh,

and mark h as not busy.
Then goto 2

4 F. Noé et al.

Theorem 2. The parallel algorithm computes OPT(G) in finite time.

Proof. Assume that each edge weight refinement takes finite time.
When iterating the loop (2)–(7), one edge weight is refined in each
iteration and since each edge is determined only once in a given process,
this will terminate after at most |E| · nrefine cycles. Loop (2)–(6) is
iterated only if all e ∈ OPT(Gl) are determined. If F = ∅, then the
algorithm will terminate in the next iteration in step (5). If F 6= ∅,
then the process will wait in (5) and other processes are currently
in step (6), determining the edges e ∈ OPT(Gl) which are also in
F . As these other process will finish the determination in finite time
and afterwards update L and U , eventually F = ∅ and the process
terminates in the next iteration in (5). �

Only in the first part of step (7) possibly incorrect edge weights are
assigned and added to F . They are only removed from F in step (2)
if their true values have been determined. Thus, F = ∅ only if all
weight bounds L and U are correct, and only in this case the algorithm
returns. Thus algorithm 2 produces the same result as Algorithm 1 and
the theorem is proven. �

3 Applications to molecular transition networks

We describe an application of shortest paths in the computation of the
dynamics of biomolecules where it is very expensive to obtain exact
edge weights [3, 4], typically requiring minutes to hours of CPU time
for each edge weight. Biomolecules, such as proteins, undergo tran-
sitions between metastable “end-states” which correspond to different
atomic coordinates and have different biological functions. For example,
Ras p21 is a cell signaling protein which exists in an active state that
promotes cell growth and an inactive state that inhibits cell growth.
These states are “connected” via intermediate states which are typi-
cally short-lived and have no particular biological function.

In a transition network, a state is modeled as a vertex v ∈ V , and
a possible transition between a pair of states is modeled by an (undi-
rected) edge uv ∈ E.

3.1 Shortest paths

When the mean residence times are used as edge weights in a transi-
tion network, the shortest paths between two given vertices u and v

represent the most populated transition pathways for the molecule to
change between the two associated structures [4].

Optimizing in graphs 5

Using the algorithms presented in Section 2, we have computed
the best paths of four different transitions in biomolecules while de-
termining only a small number of edge weights: the pathways for the
αL ⇋ β, β ⇋ αR and αL ⇋ αR transitions in the Ala8 peptide and the
active⇋inactive transition in the Ras p21 molecular switch. Detailed
descriptions of these molecular systems can be found in [4, 3]. For com-
puting the shortest paths for a given set of edge weights, Dijkstra’s
algorithm was employed [1].

We first used trivial initial edge weight bounds (0 and ∞). For the
Ala8 and Ras p21 networks the number of edge weights required to be
computes are up to three orders of magnitude below |E|. Table 1 dis-
plays in the second column the number of edges of the networks and in
the third column the actual number of refinement steps of Algorithm 1.

|E| nec, normal nec, highest weight
Ala8, αL ⇋ β 772420 870 63
Ala8, β ⇋ αR 772420 865 450
Ala8, αL ⇋ αR 772420 1016 71
Ras p21, active⇋inactive 47404 2252 n/a

Table 1. Number of determined edge weights for shortest path computation

We have also used the algorithm in such a way as to provide an
approximate result for the shortest path, with ∆ being small enough
so that at least the highest edge weight along the shortest path was
unambiguously identified. The highest edge weight is biologically the
most interesting one, as it provides the molecular structure correspond-
ing to the bottleneck of the transition. The results shown in the fourth
column of Table 1 are very encouraging. The numbers of edge weights
required are three to four orders of magnitude less than |E|. With these
savings, the times required for the best-path calculations are reduced
from several CPU years to a few CPU days.

3.2 Minimum cuts

When the inverse mean residence times are used as edge weights in a
transition network, the minimum (s, t)-cut is of special relevance as it
yields the set of edges corresponding to the slowest, or rate-limiting,
part of the transition connecting vertices s and t, also known as tran-
sition state ensemble [3].

6 F. Noé et al.

We have computed the minimum cut for the Ras p21 transition net-
work using Algorithm 1. For the computation of a minimum (s, t)-cut
with given edge weights the algorithm of Nagamochi and Ibaraki was
employed. [2]. This minimum cut, which consists of 174 edges, required
the computation of 1092 out of a total of |E| = 47404 edges. When
choosing ∆ such that only the highest-weighted edge was computed,
nec = 805 edge computations were required, thus reducing the required
CPU time to about 5% compared to the trivial solution.

4 Conclusions

In the present paper we have investigated the problem that an opti-
mum solution OPT(G) needs to be computed for some edge weighted
graph G, where initially the weights are not available and can only be
obtained at high cost. This is different from the usual setting where
complete information is given and the fastest optimization algorithm
is sought for.

We have presented a serial and parallel version of a simple heuristic
approach and shown that it is very successful for analyzing molecular
dynamics using transition networks and that only a very small number
of the edge weights need to be known exactly. The approach has reduced
the computer time necessary to perform the graph optimization from
several CPU years to a few days, which facilitates calculations that
would otherwise be out of reach.

These results suggest that graph optimizations in the case where
edge weights are not (fully) known is a worthwhile field for further
research that may benefit many application areas.

Acknowledgements

F.N. kindly acknowledges funding from the DFG center Matheon and
Landesstiftung Baden-Württemberg

References

1. E. Dijkstra. A note on two problems in connexion with graphs. Num.
Math., 1:269–271, 1959.

2. H. Nagamochi and T. Ibaraki. Computing edge connectivity in multi-
graphs and capacitated graphs. SIAM Journal on Discrete Mathematics,
5:54–66, 1992.

Optimizing in graphs 7

3. F. Noé and D. Krachtus and J. C. Smith and S. Fischer. Transition net-
works for the comprehensive characterization of complex conformational
change in proteins. J. Chem. Theory and Comput., 2:840–857, 2006.

4. F. Noé, M. Oswald, G. Reinelt, S. Fischer, and J. C. Smith. Comput-
ing Best Transition Pathways in High-Dimensional Dynamical Systems:
Application to the αL ⇌ β ⇌ αR Transitions in Octaalanine. Multiscale
Model. Sim., 5:393–419, 2006.

