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to full guantum dynamics
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This paper presents a mathematical derivation of a model for quantum-classical molecular dynamics
(QCMD) as apartial classical limit of the full Schrdinger equation. This limit is achieved in two

steps: separation of the full wave function and short wave asymptotics for its “classical’Buxint.

steps can be rigorously justified under g@mesmallness assumptions. This throws some light on

the time-dependent self-consistent-field method and on mixed quantum-semiclassical models, which
also depend on the separation step. On the other hand, the theory leads to a characterization of the
critical situations in which the QCMD model is in danger of largely deviating from the solution of

full Schradinger equation. These critical situations are exemplified in an illustrative numerical
simulation: the collinear collision of a classical particle with a harmonic quantum oscillator.

© 1996 American Institute of Physid$$0021-960806)00727-1

I. INTRODUCTION are mixing: some remain on the quantum level for all parts
Biomolecular systems are characterized by a large num@nd are well-known asime-dependent self-consistent-field

ber of degrees of freedom. It meets universal acceptance thaf DSCP methods(cf. Refs. 12 and 15 in our context; a lot

a prediction of biomolecular processes from first principlesC! references in nuclear physics use the notiontiofe-

should ideally be based on a fully quantum dynamical dedependent Hartree approximation or time-dependent mean-
scription of all of these degrees of freedom. Unfortunately,1€ld approximation other methods combine semiclassical
for large systems the simulation of such a quantum model j§10dels for most of the parts with a quantum description for
impossible even on the biggest and fastest computers, notfe particularly interesting part, usually callegiantum-
and probably for the next decades. Therefore, typical simuseémiclassicalQSCMD) models(see Ref. 11 and the refer-
lations of biomolecular systems are based on classical m&nces cited thereinHowever, we are particularly interested
lecular dynamic§MD) assuming that the system of interest in quantum-classical molecular dynami@QCMD) models,
obeys a classical Hamiltonian equation of motion. In thiswhich use Hamiltonian equations for space and momentum
case, quantum theory is only used in order to construct thef the “classical” atomgfor biomolecular systems see Refs.
atom-to-atom interaction potentials in the context of Born—2, 5, and 6; more references may be found in studies for van
Oppenheimer approximation. der Waals molecules, e.g., Refs. 13 and. 20

In many situations, classical MD allows a sufficiently Unfortunately enough, essentialljwo basic QCMD
accurate description of complex realistic molecular systemsnodels are proposed in the literatfiéor biomolecular sys-
But it simply cannot be valid if the nature of the processtems, whichdiffer in a crucial point and result in essentially
under consideration is “deeply quantum mechanically,” different numerical problemsMoreover, it is claimed that
e.g., optical excitation processes, or transfer of key protonQSCMD models are a better approximation of the full quan-
in the active sites of an enzyme. In those cases a quantutam behavior, but they require significantly larger computa-
dynamical description is unavoidable. However, since a fultional effort. We propose that a model selection should be
guantum description of, e.g., a complete enzyme is still noyuided by a rigorous analysis of approximation properties
feasible, one is interested inmaixed quantum-classicap-  with respect to the solution of the full Schiimger equation
proach to MD which allows to describe most atoms by thein a context in which a classical description of most of the
means of classical mechanics but an important, small portioatoms is required and allowed. Hence, we are looking for the
of the underlying system by the means of quantum mechan‘partial classical limit” of the full quantum dynamics. It
ics. should be noted, that semiclassical approximations are usu-

In the literature various models are proposed: Most ofally applied to theentire quantum system, either using
them fit into the scheme shown and explained in Fig. 1. InGaussians(as Refs. 21 and 22, or the mathematical
mixed approaches, the full quantum system is first separategyestigatiod”) or the WKB methodas many textbooks like
via the tensor product ansatz into several parts with &efs. 10 and 23 or mathematical investigations like Refs. 1
coupled quantum description. Then, the evolutioneath  gng 25. As pointed out in Ref. 15, the separation angatmd
part can be modeled on different levels: quantally, semiclasyit it TDSCP occurs as an intermediate step in a derivation
sically, or (purely) classically. All the proposed models can ¢ QCMD and QSCMD from the full Schidinger equation.
clearly be classified via the different description levels theyThus, we simultaneously ask for the validity of separation in
this “partial limit.” As far as the authors know there is no
dElectronic mail: schuette@zib-berlin.de rigorous analysis of any time-dependent “partial classical
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one should note that all the following considerations can be
extended to arbitrary many particles or degrees of freedom.

full quantum

separation

‘? quantuim;

II. QCMD MODELS

Mavs‘;(I,E,B[M] g;gg;}fg][w] In this section, we give an intuitive formulation of the
basic QCMD models, preparing for Secs. lll and 1V, in

semi-classical (a &i%/%) [semi-classical (Gaussian) | which we show how they fit into the framework of full quan-
tum models.
Hamilton-Jacobi expectation values Let the two particles have space coordinatesk® and
theory space/momentum dq .
classical particle geR" and massem and M respectively. Moreover, let the
trajectory bundles interaction potential between them We=V(x,q). The basic

assumption of QCMD is that the masses differ significantly:
m<M, and that, therefore, the heavier particle can be mod-
FIG. 1. Different approaches to quantysemj classical models. In mixed eled classically while the lighter one remains a “quantum
approaches the full quantum system is first separated via the tensor PrOdLﬁbrticle.” That is, the quantum particle is described by a

ansatz into part§ with coupled quantum description. Then, the evolution of : _ : e ) _
each par§ can be modeled on different levels: quantally, semiclassically, orV_\/a‘Ve functiony=4(x,t) which obeys Schringer's equa

(purely) classically. For the entire system or for each single part, the deritlon

vation of the different models from the original quantum description level 72

can be realized, as indicated, on two different ways. On each way both steps ., * | _ *

can be justified strictly mathematically in the context of appropriate asymp- hy 2m Ayt V(X"U“) ¥, (1)

totic expansions. The simultaneous justification of the separation step re- #=q(t)

mains the crucial point. with a parametrized potential which depends on the location

q(t) of the “classical” particle, thus being time dependent.
The locationq=q(t) is the solution of a classical Hamil-

limit” which, in turn, explains the conceptual differences in tonian equation of motion

the QCMD models proposed. Mg=p,
The herein presented approach tries to bridge this gap. . v 2
Its mathematical results allow tdecidewhich of the two p=—VqU,

above mentioned models for QCMD can be derived from dn which the time-dependent potentifl is given as the
full quantum model by specifying the sense and order obriginal oneV weighted with the probability of finding the
approximation. On the other hand, the results lead to a chaguantum particle:

acterization of the situations in which the models are in dan-

ger of largely deviating from the solution of full Schiioger U(q,¢,t)=(,V(-,q) )= f V(x,q)|g(x,0)|2dx.  (3)
equation.

The mathematical argumentation follows the red threadrhus, the forces in Eq(2) are the so-called Hellman—
of an approach proposed by Gerber and collaboratois Feynman forces. Together, Egd) and (2) are the basic
Refs. 15, or 18 It starts with a separation ansatz for the full equations of motion of QCMD. But one question is still un-
Schralinger equation, leading to the TDSCF equations.addressed in thimtuitive approach: What kind off depen-
Then, it is shown via short wave asymptotics or WBK ap-dence underlies the potentidl in order to compute the par-
proximation that these TDSCF equations imply a certairtial derivativeV,U? There are two answers discussed in the
QCMD model under some smallness assumptions whicliterature:
specify what is meant by “partial classical limit.” The es- (1) The arguments(q,») of U are independentun-
sential point now is that these mathematical results foknowns, and therefore, we get
QCMD also lead ta rigorous justification of the separation
ansatzin this hmit, P VoU=(s.VV(-.Q)9). @

The text is organized in five steps: First, we introduceThis can be evaluated directly and Ed) together with Eq.

the two basic QCMD models of the literature and explain(2) constitutes a closed system of equations. This choice is
their crucial difference. In a second, motivating step it isused, e.g., in Ref. 13 or in Refs. 5 and 6, where, in addition,
shown that the less complicated of both models may directlghe Schrdinger equation is replaced by the Liouville—von
be derived from the full quantum approach. Third, in Sec.Neumann equation.
IV, this motivation is mathematically justified. This implies a (2) In Ref. 4, QCMD is seen as an extension of the
characterization of the possibly problematic scenarios foBorn—Oppenheimer approximation to our time-dependent
QCMD models, which is exemplified in Sec. V. The fifth, situation: the heavier particle may be fixed for a short instant
and last step, leads us to the discussions of our results aifity,ty+ At] in which the quantum particle behaves accord-
their implications for QSCMD models. ing to its Schrdinger Eq.(1). This meansu=q(t,) is con-

For simplicity of notation we herein restrict the discus- sidered asparameterin Eq. (1) and the wave function
sion to the case of only two interacting particles. However,y=y{u,t) as in [ty,ty+ At] explicity depending on this pa-
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1076 Bornemann, Nettesheim, and Schitte: Quantum-classical molecular dynamics

rameter. After this, the classical positigrhas to be updated by switching into the Heisenberg pictutef. Ref. 19.

via Eq.(2). The dependence af on u has to be taken into The system(7) gets the form of the classical equation of
account yielding the derivative motion (2) if we construct a relation

(VgV)=VU({a),t).

VDV )=, ® This can be done if we give an explicit formulation of our
which, in turn, leads to the necessity of evaluatMgy in assumption that the heavier particle “behaves classically”:
addition. An algorithmic realization of this approach is pre- ¥ is a product of the wave functiong for the quantum
sented in Ref. 4, resulting in a simulation method whichparticle and¢ for the classical one, whose probability distri-
causes much more computational effort in real life applicabution is “classical,” i.e., with very small uncertainty in
tions than the simple choice E¢4). For test simulations space. In other words, we separateV(x,q,t)
using this model see Refs. 2 and 3. =¥(x,1)- ¢(q,t) and assume thap is an approximates

We will show in this paper that théirst model is natu-  function, e.g.,
rally related to the full Schdinger equation for both par-
ticles:

St — ex |la—(a)/?
L e B U (e(yzm 2 T 4e(t)?
A= —ﬁAx—mAq‘l‘V(X,Q) v, (6) 5
in which the two-particle wave functiod(t)="¥(x,q,t) Xex;{i 7 Q) C)

lives in the state spacez=L2%R?%). We will accomplish _ o .
such a relation via two different approaches: A motivationWith €(t)<e<1. Inserting this into Eq(8) we get via Taylor
via the Ehrenfest theorertSec. lll) and a rigorous math- €Xpansion:
ematical justificationSec. V).
(VaV)=(4h,VqV(- (a)) )+ (%) (10
and, thus, in the limit—0:
11l. MOTIVATION OF QCMD FROM FULL QUANTUM
MODEL (VW) =(#,V V(- (a)) ), (12)

Let the expectation value of an time-independent observi-e., we end up with Eq(2) and choice Eq(4). There is no
able A:L2R*)—L%*R?%) with respect to state need for considering the terf, .
V(- t)eL4R?") be denoted It should be noted, that this argument does depend
on the Gaussian form ab—we may use any approximate
(MO =(V(),A¥ (1)) function as defined in the Appendix—but on the smallness of
_ its variance or location uncertaing(t)?<1. Since “small”
=f W(x,q,H)A¥(x,q,t)dx dg is a relative notion, we will relate to a typical lengthL,
which is characteristic for the molecular system under inves-
We are interested in the time dependency of the locatioigation, e.g., the width of a potential well or its radius of
expectation{q) and in the expectation valug®) of the  cyrvature.
conjugated momentum operatBr= —iAV, for the solution

W="(t) of Eq. (6). The Ehrenfest theorethyields IV. MATHEMATICAL DERIVATION OF QCMD
In this section, we present a methodology to derive the
E (@)=M"XP) QCMD model from the full Schidinger Eq.(6) as an ap-
dt ' proximation in arigorous sense, i.e., including the asymp-

q (7)  totic size of theerror terms To be specific, we introduce the
— (Py=—(VV) following two smallness parameters:
dt '

. (1) €, the variance of the probability density for the particle
with of massM at time zero(cf. the previous sectign
(2) Vym/M, measuring the effect oh<M.

The smallness of these two parameters will specify the
meaning of “classical” behavior of the particle with mass
mM. The approximation procedure now works in two steps:

(V)= [ (VovoxanIwix.a.0/x dg ®

which can only be evaluated ¥ is known. Remember that
(g) and(P) correspond to space coordinate and momentu
of our “classical” particle. Still, Eq.(7) is a pure quantum (1) Separation This yields to an”(e/L) perturbation of the

theoretical equation. But Eq48) shows that, already on this wave function.
level, the gradient isinside the expectation value, thus (2) Short wave asymptoticThis yields an additional error
uniquely leading us to model E¢4) without need for cor- term for the QCMD model of orderc[(e/L)?

rection terms. Indeed, one arrives at exactly the same result +{m/M].
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The procedure works within the restriction that the time diamsupp(-,t) = (elL).
under consideration is smaller than a certain maximal value  This means thalig(- t)[>— - —q(t)] for e—0.
tmax- Thus, we end up with a rather precise setup for the  Assumption(A) implies that the wave packet is con-
validity of the QCMD model, namely, centrated along some particle patiit). This assumption
—— - will be simplified in Sec. IV B.
e/l andym/M sufficiently small and €tmax. Exploiting the properties of the approximasefunction
These restrictions will be discussed later on. ¢ via Taylor expansion, it can be shown that for
Remark. Traditionally, the short wave asymptotics is qesuppd(-,t)%
resented as afi(f) approximation, i.e., classical mechanics _
!Os understood as the ﬁrﬁ)ﬁtﬂo of quantum mechanics. Since Ve (a0 =Vx,q)+(e/L).
this limit can only be applied to the full system, the proce-By standard results from perturbation theory this gives us our
dure has to be changed fopatrtial limit. However, a simple main approximation result for the separation stéw the
scaling argument shows that the terfm/M can be used details of a proof see Ref)7
instead offi, cf. Refs. 7 and 18.

A. First approximation step: Separation Theorem 4.1

We start with the TDSCF equations, i.e., the following ~ Assumption (A) implies that the asymptotic error of
system of two coupled one-particle Sctimger equations: ~ separation is given by

V=W +(ell)

in the space.?(R?9).
52 (12 Since the systenil?) is the basis of the so-callgme-
. :<__ Ao+ (i V(- ) , 0)= _ dependent self-consistent field@DSCP calculations (cf.
¢ 2M (Va6 $(a.0=¢o(0) Ref. 19, we have thus given some justification of this ap-
This nonlinear system is uniquely solvable as can be proveRroach. It should be emphasized that this justification only

by Galerkin approximation and energy based compactned€duires thatone of the wave functions in Eq(12) is an
arguments. Following Ref. 22, E¢4.4) we construct the approximates function while the form of the other one is not
full space wave function restricted. We should also note, that Theorem 4.1 remains

even valid, if the probability density¢|> supportsseveral
e é particle traces with a variance ef. This will be a possible
' advantage of the TDSCF approach over the QCMD model,
(13)  which constitutes a further approximation step relying on
just one particle trace.

2

. h
iﬁlﬂ:( ~ om At (VX ~)¢>) ¥, (X,00=ho(x),

i t
\P®=exp(;b— L((l/f@ $)(s). V(@ ¢)(s))ds

which is the solution of the followingnodified full Schre
dinger equation
B. Second approximation step: Short-wave

iﬁi\]:r - _ﬁ_zA_ﬁ_zA FVo(x,q,t) | W asymptotics
dt ~ © 2m~* 2mM T4 e @ A
Now, we will give a further simplification of the sepa-
W oli—0= to® o, rated systen{12) for large masset>m. As a by-product

we will be able to simplify assumptiod).

Using short wave asymptoti¢$>?® also called WKB
Ve (X,d,t)={(d,V(X,-) ) +{,V(-,q) ) method or semiclassical approximation in the literature, one
can prove the validity of the followingsymptotic expansion

with the modified potential

(¥, V¥q).
Note that up to phase factors this modified full Sclinger d(q,t)=a(qg,t)exp i S(Lt)) +/;,,( \/E> (14)
equation is completely equivalent to the TDSCF sysfeeae h M

Eg. (12)]. Now, we investigate whether the wave function See Ref. 7 for details like the dependence of théerm on
W, constitutes an approximation of the solutiof the full  the ratio of the masses.

Schralinger Eq.(6) with the special initial data The phase functio® and the real amplituda obey the
Ul o=o® dos i€, U(X,0,0)= ho(X) - do(Q). ;glrloswmg equations: A nonlinear Hamilton—Jacobi equation

To this end, we make the following assumption: P

I . . . 1
(A) The probability densityl¢|*> is an approximate & = (V.S 2+ (4 V(- =0 15
functionas defined in the Appendix, i.e., gt 2M (VoS {9V 9

| b(a.D)12= xe[d—q(t).1]. and a continuity equation fa?,
Further we assume that fort,,, this approximates inrdiv 02 VeS| g 16
function has uniformly small support: at 9 M '

J. Chem. Phys., Vol. 105, No. 3, 15 July 1996
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Now, Eq.(15) for the phaseS is a classical Hamilton—
Jacobi equation for thactionof a particle with respect to the
time-dependent potentiéd,V(-,q) ¢). The Hamilton—Jacobi
theory of classical mechanicstates that the solution of the
canonical equations

q=M"'p, q(0)=qy,

p=—(BYNC.QW. PO)=YS0,
satisfies throughout the relation

pP()=VqIa(t),t]. (18)

This allows us to construc¥(-,t) from afixedinitial phase
S(-,0) as long as the particle flow map' which maps the
initial position g, to the solutionq(t) of the Hamiltonian
system(17) at timet, i.e.,

d'ge=q(t),

is one-to-one. At times, where at least twdifferentparticle
paths meet, the phase functi@gets multivalued and the
asymptotic expansion (14) ceases to be validthose times
there will be pointsq;=®'q,, for which the flow is even
locally not one-to-one, i.e.,

dethd>‘q|q:qo=0. (19

Such a poing;s is called afocal pointat timet and all focal
points at a given time are calledcaustic However, there is
a timet,,, such that fot<t,,, there are no focal points at
all.

The continuity Equatiori16) for the probability density
a%=|¢|? describes the transport of the initial probability den-
sity a?(q,0) along the flow ®' of the velocity field
q=VqS/M. A well-known consequence of this transport is
the following local conservation property of the probability
density:

ft az(q,t)dq=f a%(q,0)dq,
otw w

for all domainsWCRY, cf. Ref. 9. This implies in particular
that an initially concentrated wave-packet

a%(9,0)= x(q— o)~ 8(qd—dp) (20)

remains in the limite—0 concentrated at the classical trajec-
tory q(t)=®'q, i.e.,

a%(q,t)—d[q—q(t)].

Thus assumptiofA) is satisfied fort<t,,,, if it is satisfied
initially for t=0 in the context of short-wave asymptotics
m/M —0. We collect our new assumption:

(B) The initial preparationp, is given as

for e<L

¢o(Q):ao(Q)eXF{;i_ po~q),

where the probability densitgiz=|¢|° is anapproximates
functionas defined in the Appendix, i.e.,

ao(®)%=x(d—do),
where y has compact support.

J. Chem. Phys., Vol. 105
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We are now able to state in which sense the QCMD
model
) #2
ihhoc= —%Ax"'V(X'Q) Yoc,  Yodi=0= o,

Mag=p, q(0)=0do,

p=—(¥oc.VqV¥ac), P(0)=po
serves as an approximation of the syster).

(21)

Theorem 4.2

Assumption(B) implies that the QCMD systerf21) sat-
isfies

Yoc=+ CL(elL) 2+ miM]
in the space.?(RY) and

q(t)=(¢,a)+ L(e/L)*+Vm/M]

for all t<t,,.. Moreover, assumptiofA) of Theorem 4.1 is
fulfilled for theset in the limit m/M —0.

For a proof see again Ref. 7. It is again based on an
exploitation of the properties of the approximatdunction
a® via Taylor expansion and on arguments of perturbation
theory.

The advantage of the WKB derivation of the QCMD
model (21) is the statement of assumptions under which it
can be regarded as a good approximation. Conversely, if
these assumptions are not fulfilled the QCMD model is in
danger of largely deviating from the full gquantum model. We
stress this important point by collecting the central assump-
tions in the converse as potential dangers:

(1) If the massM of the classical particle becomes small,
the approximation may be bad.

(2) If the varianceé? is not small enough, thus allowing
a certain initial uncertainty in space, we must face the effect
that the “width” of the probability densitya? increases with
time due to the divergence of the velocity flow field. This is
related to the fact that, in nonharmonic potentials, the Schro
dinger equation tends to disintegrate wave-packets because
of dispersion.

(3) If the Hamilton—Jacobi equation forms caustics, i.e.,
if t>t,. the asymptotic expansiofid) is not valid even
for very large massel!. Caustics may appear in the neigh-
borhood of quantum mechanical diffraction of the heavier
particle.

All these points indicate that a long term validity of the
QCMD model cannot be expected. In Sec. V these potential
dangers will be exemplified.

Remarklf the solution of the Hamilton—Jacobi equation
gets multivalued after passing a focal point, the particlMof
somewhat splits into several paths. Using this multivalued
solution one can extend the WKB method in a way that up to
errors of@(ym/M) the wave functionp is concentrated on
these particle paths. As indicated at the end of Sec. IV A this
yields a justification of the TDSCF method even in this case
for large M/m. Since the WKB method cannot be extended

, No. 3, 15 July 1996
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as an asymptotic expansion {fm/M in the vicinity of focal 1 )
points, the validity of the TDSCF method at a focal point ~ Eqc(t) =(#qc,H(D) o) + M Ip(V)]

remains to be doubtful. _
as the natural total energy for the QCMD systé&2tt). This

energy is easily seen to becanservedjuantity. Now, com-
paring the energy expressig@2) at timet>0 and at time
t=0, we obtain by conservation & (V) and ofEq that the
The total energy of the full quantum systegi) in the  self energyAE remains nearly constant in time,

state is given Zby 2 AE(t)=AEq+ (el + m/M).

E(V)=— ﬁ— (VAP — — (\F,Aqqf>+<\p,vqf>_ In consequence the quantum mechanical energy decomposes
2m 2M up to small terms into the enerdy,c of the QCMD model

Inserting the two approximation stefseparation and WKB and theinitial self energy of the “classical” particle,
fimit), we get E(W)=Eqc+ AEo+(elL+mM).
E(W)=E(¥,)+(elLl)

C. Conservation of energy and canonical structure

Any numerical simulation of the QCMD model should re-

2 produce the conservation &c.
:<l/ch,H(t)l/ch>_W@Ss,Aqd’s) For the construction of such numerical methods, it is
extremely helpful to note that the QCMD systd@i) con-
+(elL+VmIM), stitutes a canonical system with respect to the enéigy,

i.e., that the evolution of Eq21) is symplectic To this end

with the time-dependent Hamilton operator we decompose the Hamilton operator

h? .
H=— o A&t VIam], H=Hg+iH,
) ) ] into the selfadjoint and skewadjoint part and the wave func-
and the semiclassical wave function tion
iS(q,t))
D) =a(q,t)ex . 1 .
$s(q,t)=a(q,t) l{ 7 wQC:—Zh (Ay+ipy) (249

Remember, thaa?(-,t) is an approximateé-function at po- . . ) )
sition q(t) and that the relation (18 gives us into a scaled real and imaginary part. Now, introducing the

V,S(q(t),t) = p(t). This allows to derivésee Ref. 7 for de- 9€neralized positior@=(q,,,q)" and generalized momen-
q ’ tum P=(p,,p)" the energy reads as
tails) Py.P ay

1 Eqc=EodQ.P)
E(¥)=(¢oc H(D o) + 57 (D] 1
=57 ((ay Hsay) +{py . Hspy)

+AE() +O(elL+mIM), 22)
where the term i 2
AB(D=5y (Vqa(-,1),Vqa(-,b) A simple formal calculation shows, that the corresponding

) canonical equations
represents the zero-point energy or self energy of the “clas-
J J

sical” particle with massM. This self energyAE(t) de- Q= 2 E p
serves special attention: Its dependence on the varignufe op Q¢

the wave packet is like?(e ). If we choose, for instance, at
the initial time t=0 a Gaussian wave-packef, with the
amplitude

— E EQC

are just another form of writing the QCMD systgi2il).
Remark.The scaled decompositiof24) is commonly

used in the literature to give the Schinger equation a ca-

1 lg— |2 nonical Hamiltonian structure. A more intrinsic way of this

ap(q)= W exy{ - 4—62) argument in the setting of infinite Hamiltonian systems can

be found in Refs. 8 and 24.
we obtain an initial self energy of

dh? V. DISCUSSION AND EXAMPLES

M2 (23

We shall now illustrate the potential dangers of the
Since AE is part of the quantum mechanical description of QCMD method as discussed at the end of Sec. IV B. Since
the “classical” particle with masdM, it is reasonable to the first two of the mentioned problems, i.e., madstoo
view the function small and the disintegration of the wave packet for larger

AE,=AE(0)=
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5.5

M
®
|

Equilibrium
position

FIG. 2. Scheme of the collinear test system.

times, meet common understanding, we herein concentrate

on the third problem, the formation chustics 5 . A . . . .
This point can nicely be illustrated by the numerical 0 100 200 300 400 500 600

simulation of a simple collinear collision of a “classical” tinfs

particle with a harmonic quantum oscillat¢ef. Fig. 2), a

model problem which has been treated extensively in th&'G. 3._R(_esults of QD and QCMD calcula_ltions. T_he position e)gpectation

literature without explanation of the differences between thég;s(ﬁggd"g;zrzfézﬁviﬁss'ﬁqgén'c'e and its classical QCMD-trajectary

QCMD and the full guantum approadhf. Refs. 3 and b

Using the notation of Sec. IV, the Hamiltonian of the system

in question is given by QCMD calculations. The results show, that the QCMD gives
72 72 m a very good approximation of the full quantum dynamics,
H=-— T A— 7 Aq+5 o*x*+U(lx—q|) however, with a small but clearly visible difference at the

m

time t=350 fs of the reflection of the classical particle. Total

energy is well conserved in both cases by our numerical

schemegFig. 4), which reflects the analytical conservation

with massesV =40 u andm=1 u. For the interaction poten- Of energy as discussed in Sec. IV C. This should be con-

tial U we have taken the forrfcf. Refs. 3 and b trasted with some observations in Ref. 3, whemeoasym-
plectic numerical scheme was used.

U(r)=A exp(—br) Remark.Obviously, theenergy exchang®etween the
with A=1.654x10° kcal/mol andb=2.438 A1 The fre- quantum and the classical part is of main importance for the
quencyy of the undisturbed oscillator corresponds to a wavedynamical process. Hence, an accurate reproduction of the
number of 1000 cm' or to an energy ofiy=2.86 kcal/mol. ~ energies in the system is an urgent requirement for all dis-
The initial wave packetW¥, is constructed as follows: Ccretization schemes. However, there are no efficient schemes
Vo=@, is a tensor product of the ground staggof the  which conserve the energyxactly For all practical reasons
undisturbed oscillator and a Gaussian distribution for the
“classical” particle:

1 exp(— lq_<q>0|2)ex i (';:o q) 5'4070“,,,.,..,,' ——— ' T eervenntord

bo() = (eV2m) 12
Egp

with initial location{q),=5 A, momentum(P), directed to- in keal
; ) S e . mol
wards the oscillator’s location irg=0 corresponding to an
initial kinetic energy of 3.9 kcal/mol, and location uncer- 5.4068 ; . : s . .
tainty €=0.075 A. 0 100 200 300 400 500 600
We have performed full quanturfQD), QCMD, and 5.3529
TDSCF calculations using the well-known Fourier-
collocation technique as the space discretization and suitable £
second ordesymplectidime-discretizations based on opera- iy @
tor splittingZ® We have applied uniform time steps-0.01 fs e
over a total time interval/fs<[0,100Q and a spatial compu-

=V(x,q)

tation domainx/Ae[—1,0.5 and g/Ae[1,12] with 256 53520, 100 200 300 400 500 600
X1024 meshpoints. Fortunately, for the QCMD calculations tinfs

only the 256 poink grid is necessary—leading to a tremen-

dous decrease in computational effort. FIG. 4. Conservation of energy in the QD simulati@dop) and the QCMD

: : " simulation (bottom). The difference between both values is caused by the
Figure 3 shows .the expectation Val(ltﬁ for the pgsmon. zero-point energy\ E,=7%2/8M e2=0.0548 kcal/mol of the “classical” par-
of the classical pamde CompUted via the full QD SIr’m'”‘"‘t'onticle as discussed in Sec. IV C. In both cases the maximal energy deviation

and the corresponding classical trajectary q(t) of the s below 0.001%; compare the remark below.
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FIG. 5. Crossing of different pathg in the focal point(circle). The solid
line represents the QCMD-trajectory, the dashed lines the neighboring
trajectoriesg_, andq, started from a slightly different initial position. No-
tation as explained in the text.

FIG. 6. Evolution of variancedq (dashe@land Ax (solid) of the full QD
wave packet. Note the disintegration of the wave packeq mlirection in
which no attractive potential is present. It is increasing as long as the par-
ticle is moving “free” and decreasing during the collision.

The statistical varianceAq and Ax represent the vari-
ance € occurring in our approximation results. We know
from the previous section that the separation step itself intro-
range even fotong time simulationscf. Ref. 27. In contrast duces an approximation errof(e). Therefore, we are inter-
to this, ad hoc schemes typically causeemergy driftwhich  ested in the error caused by separation in the test system. To
increases in time—thus being not appropriate for our probthat end, we compare the full quantum simulation with the
lem. corresponding TDSCF calculations connected to the system

The difference between QD and QCMD in the neighbor-(12). Figure 7 presents the two corresponding position ex-
hood of the turning point are explained by identifying this pectations and a comparison with QCMD. Note, thath
point as afocal point This is illustrated by Fig. 5, which TDSCF and QCMD, show deviations from the full quantum
shows that two nearby starting particle paths-q,(t), | = solution in the region of the focal point. This, indeed, illus-
—1,1, cross the particle pati(t) at this critical point. They, trates that they are both subject to the same underlying ap-
are solutions of proximation error caused by separation. Moreover, it exem-

M, =p, plifies that the proposed analytical approdplstification of

' separation via the validity of the step TDSERCMD) fits
pi=—(.VoV(-.an¥),

with initial states

it is sufficient to use so calledymplecticdiscretizations,
which conserve the energy withinvery accuratedeviation

5
a(0)=(a)o+16q and p(0)=(P)o,

with 6g=0.01 A. ¢ is fixedto be the solution of the QCMD 45

calculation. Thus, small perturbation of the initial data result 2550, % i

in no difference of the position value at the critical point. s ‘\\ ,"

Exactly this is the meaning of the conditi¢h9), which de- (@)op, VN /]

fines a focal point. (¢)sor 250 N\ N /
Our simple test system can also be used in order to il- in Ass /!

lustrate the disintegration of the wave-packet because of dis- * J

persion. This effect will always be significant if the total 3 245 N

simulation timeT is large enoughias in our case witff =1

ps), being less important for smaller time sca(@s<100 fs. o5

Figure 6 shows the evolution of the statistical variances o 200 400 &0 25w 350 200

tin fs

Aq=(¥,0*W) —(¥,q¥)*=(q®) — (),

and Ax=(x?)—(x)? of position measurement for the full FIG.7. Results of QD and TDSCF calculations. The picture on the left-hand

guantum system with stat®. It is well-known that these
magnitudes are the correct measures for the position unc

side shows the corresponding position expectati@)gp (solid line) and
e@>scp (dashed lingvs time. The region of the turning poifibox) is mag-
nified on the right-hand side. Here, the additional dotted line represents the

tainty in a quantum system, i.e., for the disintegration of itS¢qresponding QCMD-trajectory. Note, that this picture doawmt change,

wave packet.

if we refine the stepsizes used.
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the real situation: The approximation quality of TDSCF andessarily for “pointwise” quantities, which may be important.
thus of separation decreases near the problematic point of tHeghe Fourier spectrum o¥, e.g., is well approximated in a
QCMD approach. L2-average sense, but the amplitudes of single frequencies
may be completely wrong.

Summarizing we shortly list some conclusions which are
of particular importance for a comparison of the various

We have considered mixed quantum-classicalescrip- ~models:
tion of large (bio) molecular systems, which allows to de- (i) The given error analysis of the separation step, on
scribe most atoms by the means of classical mechanics buthich all the mentioned models like TDSCF, QSCMD, and
an important, small portion of the underlying system by theQCMD are based, requires the smallness of the uncertainty
means of quantum mechanics. This differs conceptually fronfor at least one particle for all times. This can be concluded
all approaches which are interested in a description of th&om the smallness of thieitial uncertainty, if we are able to
systementirelyon a quantal, semiclassical, or classical level.take the classical limit for this particle, i.e.,ni/M is small.

The starting point of our investigation has been to anaThus our justification of TDSCF and QSCMD covers exactly
lyze how such a QCMD model could be derived from thethe situation, for which QCMD is applicable.
full Schradinger equation and in which sense of approxima- (i) The QCMD approximatiorfails at focal points. It
tion. That is, we were finally interested in a “partial classical eventually can again be a useful approximation after passing
limit” which has been established via the smallness of twoa focal point, but the complex phase of the wave function
parameters: variancé of the wave packet representing the will jump at each of these transitions by a shift #f2 (see
“classical” particle andym/M corresponding to its mass. Ref. 29. This effect may explain some corresponding ex-
Our approximation result is twofold: perimental observationgf. Ref. 13, Sec. )l
(iii) The QCMD approximation can not eveetectfocal

L points or caustics. Focal points may be detected by a numeri-
(R2) EII_?]Z Iilggscil::gt?rzj%é?o?yn fc::r?;lﬂg“_fibm EQ7) cal solufcion of the Hamilton—Jacobi E@.5) for the phases,
approximates the position expectation of the clas-S-9- UsiNg particle trajectory bundlée. R.ef. 15.
sical part up to the errof[(e/L)2+ ym/M]. (iv) Our results do not aIIPw to ,(’jemde the problem of
whether QSCMD leads to a “better” representation of the
Thus, the total approximation error of QCMD is of order ipfluence of the potential curvature, as is expected in Ref. 22.
“(elL+m/M). These results are valid under threendi-  However, we note that the QSCMD should also fail in de-

VI. CONCLUDING REMARKS

(R1) Tensor product separation of the full wave func-

tions tecting caustics and should get problems in this case, e.g., if
(C1) the massM is large enough, the wave packet splits into several subpackets.
(C2) the initial varianceez(to) is small enough, Conclusively, a better understanding of the separation
(C3) no caustics are present, step seems to be the bottleneck for a better approximation

which on the other hand, if violated, are connected to Scet_heory and a more precise distinction between the various

narios of potential deficiencies of the QCMD as exemplifiedm'xe.d quantun_{sem)classmal models. quest|gat|ons con-
in Sec. V. cerning correction terms for the separation ansatz have al-

Concerning resultR2) the following should be noted: ready been presented in the literat(eeg., Ref. 14 but—as

We have chosen semiclassical limits according to the WK ar as the authors know—a corresponding mathematical jus-

method as represented by the left methodical branch of Fig!ﬁcatlon is still missing.

1. We could as well apply semiclassical limits via Gaussian
wave packets as represented by the right methodical brandCKNOWLEDGMENTS
of Fig. 1. We would then arrive at the following alternative It is a pleasure to thank P. Bala and B. Lesyng for inten-
result(cf. Ref. 17: sive discussions on the subject and for providing background
(R2') The semiclassical approximation of the classicalinformation on their work™* We thank B. Schmidt for
particle by Gaussian wave packets is accurate upointing out Ref. 15 and S. Reich for insisting on the canoni-
to ~[(m/M)Y4]. cal structure of QCMD and for Ref. 24.

This avoids thes dependence in this part of the approxima-
tion but leads to a slower asymptotic error raterifM. But ~ APPENDIX

nevertheless, with regard to the total error as an approxima- . — . .
9 P We herein give a definition of the notion “approximate

tion of the full Schrainger equation, the dependencéR1) 5 function”: Let ye C*(R% be a smooth function, which is

is again introduced by the underlying separation ansatz; re- . . . e
sulting in the estimate”[e/L +(m/M)¥] of the total ap- normalized according to the following three conditions:

proximation error, which is worse in comparison to our ap- . _

proach. (M) RdX(X)dX_l’
It should be emphasized, that we discuss the approxima-

; ; ; 2

tion of the full wave function¥ m the L norm. Thus, the (ii) f xx(x)dx=0,

results also hold for all expectation valuesbfout not nec- Rd
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