
Quantum-classical molecular dynamics as an approximation
to full quantum dynamics

Folkmar A. Bornemann, Peter Nettesheim, and Christof Schüttea)
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This paper presents a mathematical derivation of a model for quantum-classical molecular dynamics
~QCMD! as apartial classical limit of the full Schro¨dinger equation. This limit is achieved in two
steps: separation of the full wave function and short wave asymptotics for its ‘‘classical’’ part.Both
steps can be rigorously justified under thesamesmallness assumptions. This throws some light on
the time-dependent self-consistent-field method and on mixed quantum-semiclassical models, which
also depend on the separation step. On the other hand, the theory leads to a characterization of the
critical situations in which the QCMD model is in danger of largely deviating from the solution of
full Schrödinger equation. These critical situations are exemplified in an illustrative numerical
simulation: the collinear collision of a classical particle with a harmonic quantum oscillator.
© 1996 American Institute of Physics.@S0021-9606~96!00727-1#

I. INTRODUCTION

Biomolecular systems are characterized by a large num-
ber of degrees of freedom. It meets universal acceptance that
a prediction of biomolecular processes from first principles
should ideally be based on a fully quantum dynamical de-
scription of all of these degrees of freedom. Unfortunately,
for large systems the simulation of such a quantum model is
impossible even on the biggest and fastest computers, now
and probably for the next decades. Therefore, typical simu-
lations of biomolecular systems are based on classical mo-
lecular dynamics~MD! assuming that the system of interest
obeys a classical Hamiltonian equation of motion. In this
case, quantum theory is only used in order to construct the
atom-to-atom interaction potentials in the context of Born–
Oppenheimer approximation.

In many situations, classical MD allows a sufficiently
accurate description of complex realistic molecular systems.
But it simply cannot be valid if the nature of the process
under consideration is ‘‘deeply quantum mechanically,’’
e.g., optical excitation processes, or transfer of key protons
in the active sites of an enzyme. In those cases a quantum
dynamical description is unavoidable. However, since a full
quantum description of, e.g., a complete enzyme is still not
feasible, one is interested in amixed quantum-classicalap-
proach to MD which allows to describe most atoms by the
means of classical mechanics but an important, small portion
of the underlying system by the means of quantum mechan-
ics.

In the literature various models are proposed: Most of
them fit into the scheme shown and explained in Fig. 1. In
mixed approaches, the full quantum system is first separated
via the tensor product ansatz into several parts with a
coupled quantum description. Then, the evolution ofeach
part can be modeled on different levels: quantally, semiclas-
sically, or ~purely! classically. All the proposed models can
clearly be classified via the different description levels they

are mixing: some remain on the quantum level for all parts
and are well-known astime-dependent self-consistent-field
~TDSCF! methods~cf. Refs. 12 and 15 in our context; a lot
of references in nuclear physics use the notion oftime-
dependent Hartree approximation or time-dependent mean-
field approximation!; other methods combine semiclassical
models for most of the parts with a quantum description for
the particularly interesting part, usually calledquantum-
semiclassical~QSCMD! models~see Ref. 11 and the refer-
ences cited therein!. However, we are particularly interested
in quantum-classical molecular dynamics~QCMD! models,
which use Hamiltonian equations for space and momentum
of the ‘‘classical’’ atoms~for biomolecular systems see Refs.
2, 5, and 6; more references may be found in studies for van
der Waals molecules, e.g., Refs. 13 and 20!.

Unfortunately enough, essentiallytwo basic QCMD
models are proposed in the literature4,5 for biomolecular sys-
tems, whichdiffer in a crucial point and result in essentially
different numerical problems. Moreover, it is claimed that
QSCMD models are a better approximation of the full quan-
tum behavior, but they require significantly larger computa-
tional effort. We propose that a model selection should be
guided by a rigorous analysis of approximation properties
with respect to the solution of the full Schro¨dinger equation
in a context in which a classical description of most of the
atoms is required and allowed. Hence, we are looking for the
‘‘partial classical limit’’ of the full quantum dynamics. It
should be noted, that semiclassical approximations are usu-
ally applied to theentire quantum system, either using
Gaussians ~as Refs. 21 and 22, or the mathematical
investigation17! or the WKB method~as many textbooks like
Refs. 10 and 23 or mathematical investigations like Refs. 1
and 25!. As pointed out in Ref. 15, the separation ansatz~and
with it TDSCF! occurs as an intermediate step in a derivation
of QCMD andQSCMD from the full Schro¨dinger equation.
Thus, we simultaneously ask for the validity of separation in
this ‘‘partial limit.’’ As far as the authors know there is no
rigorous analysis of any time-dependent ‘‘partial classicala!Electronic mail: schuette@zib-berlin.de
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limit’’ which, in turn, explains the conceptual differences in
the QCMD models proposed.

The herein presented approach tries to bridge this gap.
Its mathematical results allow todecidewhich of the two
above mentioned models for QCMD can be derived from a
full quantum model by specifying the sense and order of
approximation. On the other hand, the results lead to a char-
acterization of the situations in which the models are in dan-
ger of largely deviating from the solution of full Schro¨dinger
equation.

The mathematical argumentation follows the red thread
of an approach proposed by Gerber and collaborators~cf.
Refs. 15, or 16!: It starts with a separation ansatz for the full
Schrödinger equation, leading to the TDSCF equations.
Then, it is shown via short wave asymptotics or WBK ap-
proximation that these TDSCF equations imply a certain
QCMD model under some smallness assumptions which
specify what is meant by ‘‘partial classical limit.’’ The es-
sential point now is that these mathematical results for
QCMD also lead toa rigorous justification of the separation
ansatzin this limit.

The text is organized in five steps: First, we introduce
the two basic QCMD models of the literature and explain
their crucial difference. In a second, motivating step it is
shown that the less complicated of both models may directly
be derived from the full quantum approach. Third, in Sec.
IV, this motivation is mathematically justified. This implies a
characterization of the possibly problematic scenarios for
QCMD models, which is exemplified in Sec. V. The fifth,
and last step, leads us to the discussions of our results and
their implications for QSCMD models.

For simplicity of notation we herein restrict the discus-
sion to the case of only two interacting particles. However,

one should note that all the following considerations can be
extended to arbitrary many particles or degrees of freedom.

II. QCMD MODELS

In this section, we give an intuitive formulation of the
basic QCMD models, preparing for Secs. III and IV, in
which we show how they fit into the framework of full quan-
tum models.

Let the two particles have space coordinatesxPRd and
qPRd and massesm andM respectively. Moreover, let the
interaction potential between them beV5V(x,q). The basic
assumption of QCMD is that the masses differ significantly:
m!M , and that, therefore, the heavier particle can be mod-
eled classically while the lighter one remains a ‘‘quantum
particle.’’ That is, the quantum particle is described by a
wave functionc5c(x,t) which obeys Schro¨dinger’s equa-
tion

i\ċ5F2
\2

2m
Dx1V~x,m!GU

m5q~ t !

c, ~1!

with a parametrized potential which depends on the location
q(t) of the ‘‘classical’’ particle, thus being time dependent.
The locationq5q(t) is the solution of a classical Hamil-
tonian equation of motion

Mq̇5p,
~2!

ṗ52¹qU,

in which the time-dependent potentialU is given as the
original oneV weighted with the probability of finding the
quantum particle:

U~q,c,t !5^c,V~•,q!c&5E V~x,q!uc~x,t !u2dx. ~3!

Thus, the forces in Eq.~2! are the so-called Hellman–
Feynman forces. Together, Eqs.~1! and ~2! are the basic
equations of motion of QCMD. But one question is still un-
addressed in thisintuitive approach: What kind ofq depen-
dence underlies the potentialU in order to compute the par-
tial derivative¹qU? There are two answers discussed in the
literature:

~1! The arguments~q,c! of U are independentun-
knowns, and therefore, we get

¹qU5^c,¹qV~•,q!c&. ~4!

This can be evaluated directly and Eq.~1! together with Eq.
~2! constitutes a closed system of equations. This choice is
used, e.g., in Ref. 13 or in Refs. 5 and 6, where, in addition,
the Schro¨dinger equation is replaced by the Liouville–von
Neumann equation.

~2! In Ref. 4, QCMD is seen as an extension of the
Born–Oppenheimer approximation to our time-dependent
situation: the heavier particle may be fixed for a short instant
[ t0 ,t01Dt] in which the quantum particle behaves accord-
ing to its Schro¨dinger Eq.~1!. This means,m5q(t0) is con-
sidered asparameter in Eq. ~1! and the wave function
c5c~m,t! as in [t0 ,t01Dt] explicity depending on this pa-

FIG. 1. Different approaches to quantum-~semi! classical models. In mixed
approaches the full quantum system is first separated via the tensor product
ansatz into partsj with coupled quantum description. Then, the evolution of
each partj can be modeled on different levels: quantally, semiclassically, or
~purely! classically. For the entire system or for each single part, the deri-
vation of the different models from the original quantum description level
can be realized, as indicated, on two different ways. On each way both steps
can be justified strictly mathematically in the context of appropriate asymp-
totic expansions. The simultaneous justification of the separation step re-
mains the crucial point.
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rameter. After this, the classical positionq has to be updated
via Eq. ~2!. The dependence ofc on m has to be taken into
account yielding the derivative

¹qU5~^c,¹mV~•,m!c&1^¹mc,V~•,q!c&

1^c,V~•,q!¹mc&!um5q , ~5!

which, in turn, leads to the necessity of evaluating¹mc in
addition. An algorithmic realization of this approach is pre-
sented in Ref. 4, resulting in a simulation method which
causes much more computational effort in real life applica-
tions than the simple choice Eq.~4!. For test simulations
using this model see Refs. 2 and 3.

We will show in this paper that thefirst model is natu-
rally related to the full Schro¨dinger equation for both par-
ticles:

i\Ċ5S 2
\2

2m
Dx2

\2

2M
Dq1V~x,q! DC, ~6!

in which the two-particle wave functionC(t)5C(x,q,t)
lives in the state spaceH5L2~R2d!. We will accomplish
such a relation via two different approaches: A motivation
via the Ehrenfest theorem~Sec. III! and a rigorous math-
ematical justification~Sec. IV!.

III. MOTIVATION OF QCMD FROM FULL QUANTUM
MODEL

Let the expectation value of an time-independent observ-
able A:L2~R2d!→L2~R2d! with respect to state
C~•,t!PL2~R2d! be denoted

^A&~ t !5^C~ t !,AC~ t !&

5E C̄~x,q,t !AC~x,q,t !dx dq.

We are interested in the time dependency of the location
expectation^q& and in the expectation valueŝP& of the
conjugated momentum operatorP52 i\¹q for the solution
C5C(t) of Eq. ~6!. The Ehrenfest theorem28 yields

d

dt
^q&5M21^P&,

~7!
d

dt
^P&52^¹qV&,

with

^¹qV&5E ~¹qV~x,q!!uC~x,q,t !u2dx dq, ~8!

which can only be evaluated ifC is known. Remember that
^q& and^P& correspond to space coordinate and momentum
of our ‘‘classical’’ particle. Still, Eq.~7! is a pure quantum
theoretical equation. But Eq.~8! shows that, already on this
level, the gradient isinside the expectation value, thus
uniquely leading us to model Eq.~4! without need for cor-
rection terms. Indeed, one arrives at exactly the same result

by switching into the Heisenberg picture~cf. Ref. 19!.
The system~7! gets the form of the classical equation of

motion ~2! if we construct a relation

^¹qV&5¹qU~^q&,t !.

This can be done if we give an explicit formulation of our
assumption that the heavier particle ‘‘behaves classically’’:
C is a product of the wave functionsc for the quantum
particle andf for the classical one, whose probability distri-
bution is ‘‘classical,’’ i.e., with very small uncertainty in
space. In other words, we separateC(x,q,t)
5c(x,t)•f(q,t) and assume thatf is an approximated
function, e.g.,

f~q,t !5
1

~e~ t !A2p!d/2
expS 2

uq2^q&u2

4e~ t !2 D
3expS i ^P&

\
qD ~9!

with e(t)<e!1. Inserting this into Eq.~8! we get via Taylor
expansion:

^¹qV&5^c,¹qV~•,^q&!c&1O ~e2! ~10!

and, thus, in the limite→0:

^¹qV&5^c,¹qV~•,^q&!c&, ~11!

i.e., we end up with Eq.~2! and choice Eq.~4!. There is no
need for considering the term¹mc.

It should be noted, that this argument doesnot depend
on the Gaussian form off—we may use any approximated
function as defined in the Appendix—but on the smallness of
its variance or location uncertaintye(t)2!1. Since ‘‘small’’
is a relative notion, we will relatee to a typical lengthL,
which is characteristic for the molecular system under inves-
tigation, e.g., the width of a potential well or its radius of
curvature.

IV. MATHEMATICAL DERIVATION OF QCMD

In this section, we present a methodology to derive the
QCMD model from the full Schro¨dinger Eq.~6! as an ap-
proximation in arigorous sense, i.e., including the asymp-
totic size of theerror terms. To be specific, we introduce the
following two smallness parameters:

~1! e2, the variance of the probability density for the particle
of massM at time zero~cf. the previous section!,

~2! Am/M , measuring the effect ofm!M .

The smallness of these two parameters will specify the
meaning of ‘‘classical’’ behavior of the particle with mass
M . The approximation procedure now works in two steps:

~1! Separation. This yields to anO ~e/L! perturbation of the
wave function.

~2! Short wave asymptotics. This yields an additional error
term for the QCMD model of orderO @(e/L)2

1Am/M #.
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The procedure works within the restriction that the timet
under consideration is smaller than a certain maximal value
tmax. Thus, we end up with a rather precise setup for the
validity of the QCMD model, namely,

e/L andAm/M sufficiently small and t,tmax.

These restrictions will be discussed later on.
Remark.Traditionally, the short wave asymptotics is

presented as anO ~\! approximation, i.e., classical mechanics
is understood as the limit\→0 of quantum mechanics. Since
this limit can only be applied to the full system, the proce-
dure has to be changed for apartial limit. However, a simple
scaling argument shows that the termAm/M can be used
instead of\, cf. Refs. 7 and 18.

A. First approximation step: Separation

We start with the TDSCF equations, i.e., the following
system of two coupled one-particle Schro¨dinger equations:

i\ċ5S 2
\2

2m
Dx1^f,V~x,• !f& Dc, c~x,0!5c0~x!,

~12!

i\ḟ5S 2
\2

2M
Dq1^c,V~•,q!c& Df, f~q,0!5f0~q!.

This nonlinear system is uniquely solvable as can be proven
by Galerkin approximation and energy based compactness
arguments. Following Ref. 22, Eq.~4.4!7 we construct the
full space wave function

C ^ 5expS i\ E
0

t

^~c ^ f!~s!,V~c ^ f!~s!&dsD •c ^ f,

~13!

which is the solution of the followingmodified full Schro¨-
dinger equation:

i\
d

dt
C ^ 5S 2

\2

2m
Dx2

\2

2M
Dq1V^~x,q,t ! DC ^ ,

C ^ u t505c0^ f0 ,

with the modified potential

V^~x,q,t !5^f,V~x,• !f&1^c,V~•,q!c&

2^C ^ ,VC ^&.

Note that up to phase factors this modified full Schro¨dinger
equation is completely equivalent to the TDSCF system@see
Eq. ~12!#. Now, we investigate whether the wave function
C^ constitutes an approximation of the solutionC of the full
Schrödinger Eq.~6! with the special initial data

Cu t505c0^ f0 , i.e., C~x,q,0!5c0~x!•f0~q!.

To this end, we make the following assumption:
~A! The probability densityufu2 is an approximated

functionas defined in the Appendix, i.e.,

uf~q,t !u25xe~ t !@q2q~ t !,t#.

Further we assume that fort,tmax this approximated
function has uniformly small support:

diamsuppf~•,t !5O ~e/L !.

This means thatuf~•,t!u2→d@•2q(t)# for e→0.
Assumption~A! implies that the wave packetf is con-

centrated along some particle pathq(t). This assumption
will be simplified in Sec. IV B.

Exploiting the properties of the approximated function
f via Taylor expansion, it can be shown that for
qPsuppf~•,t!2:

V^~x,q,t !5V~x,q!1O ~e/L !.

By standard results from perturbation theory this gives us our
main approximation result for the separation step~for the
details of a proof see Ref. 7!:

Theorem 4.1

Assumption ~A! implies that the asymptotic error of
separation is given by

C ^ 5C1O ~e/L !

in the spaceL2~R2d!.
Since the system~12! is the basis of the so-calledtime-

dependent self-consistent field~TDSCF! calculations ~cf.
Ref. 15!, we have thus given some justification of this ap-
proach. It should be emphasized that this justification only
requires thatone of the wave functions in Eq.~12! is an
approximated function while the form of the other one is not
restricted. We should also note, that Theorem 4.1 remains
even valid, if the probability densityufu2 supportsseveral
particle traces with a variance ofe2. This will be a possible
advantage of the TDSCF approach over the QCMD model,
which constitutes a further approximation step relying on
just oneparticle trace.

B. Second approximation step: Short-wave
asymptotics

Now, we will give a further simplification of the sepa-
rated system~12! for large massesM@m. As a by-product
we will be able to simplify assumption~A!.

Using short wave asymptotics,1,23,25 also called WKB
method or semiclassical approximation in the literature, one
can prove the validity of the followingasymptotic expansion:

f~q,t !5a~q,t !expS i S~q,t !

\ D 1O SAm

M D . ~14!

See Ref. 7 for details like the dependence of theO term on
the ratio of the masses.

The phase functionS and the real amplitudea obey the
following equations: A nonlinear Hamilton–Jacobi equation
for S,

]S

]t
1

1

2M
~¹qS!21^c,V~•,q!c&50 ~15!

and a continuity equation fora2,

]a2

]t
1divqS a2 ¹qS

M D50. ~16!
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Now, Eq. ~15! for the phaseS is a classical Hamilton–
Jacobi equation for theactionof a particle with respect to the
time-dependent potential^c,V(•,q)c&. The Hamilton–Jacobi
theory of classical mechanics1 states that the solution of the
canonical equations

q̇5M21p, q~0!5q0 ,
~17!

ṗ52^c,¹qV~•,q!c&, p~0!5¹qS~q0,0!,

satisfies throughout the relation

p~ t !5¹qS@q~ t !,t#. ~18!

This allows us to constructS(•,t) from a fixed initial phase
S~•,0! as long as the particle flow mapFt which maps the
initial position q0 to the solutionq(t) of the Hamiltonian
system~17! at time t, i.e.,

F tq05q~ t !,

is one-to-one. At timest, where at least twodifferentparticle
paths meet, the phase functionS gets multivalued and the
asymptotic expansion (14) ceases to be valid. At those times
there will be pointsqf5F tq0 , for which the flow is even
locally not one-to-one, i.e.,

detDqF
tquq5q0

50. ~19!

Such a pointqf is called afocal pointat time t and all focal
points at a given time are called acaustic. However, there is
a time tmax such that fort,tmax there are no focal points at
all.

The continuity Equation~16! for the probability density
a25ufu2 describes the transport of the initial probability den-
sity a2(q,0) along the flow Ft of the velocity field
q̇5¹qS/M . A well-known consequence of this transport is
the following local conservation property of the probability
density:

E
F tW

a2~q,t !dq5E
W
a2~q,0!dq,

for all domainsW,Rd, cf. Ref. 9. This implies in particular
that an initially concentrated wave-packet

a2~q,0!5xe~q2q0!'d~q2q0! for e!L ~20!

remains in the limite→0 concentrated at the classical trajec-
tory q(t)5F tq0 , i.e.,

a2~q,t !→d@q2q~ t !#.

Thus assumption~A! is satisfied fort,tmax if it is satisfied
initially for t50 in the context of short-wave asymptotics
m/M→0. We collect our new assumption:

~B! The initial preparationf0 is given as

f0~q!5a0~q!expS i\ p0•qD ,
where the probability densitya0

25uf0u
2 is anapproximated

functionas defined in the Appendix, i.e.,

a0~q!25xe~q2q0!,

wherex has compact support.

We are now able to state in which sense the QCMD
model

i\ċQC5S 2
\2

2m
Dx1V~x,q! DcQC, cQCu t505c0 ,

Mq̇5p, q~0!5q0 ,

ṗ52^cQC,¹qVcQC&, p~0!5p0 ~21!

serves as an approximation of the system~12!.

Theorem 4.2

Assumption~B! implies that the QCMD system~21! sat-
isfies

cQC5c1O @~e/L !21Am/M #

in the spaceL2~Rd! and

q~ t !5^f,qf&1O @~e/L !21Am/M #

for all t,tmax. Moreover, assumption~A! of Theorem 4.1 is
fulfilled for theset in the limit m/M→0.

For a proof see again Ref. 7. It is again based on an
exploitation of the properties of the approximated function
a2 via Taylor expansion and on arguments of perturbation
theory.

The advantage of the WKB derivation of the QCMD
model ~21! is the statement of assumptions under which it
can be regarded as a good approximation. Conversely, if
these assumptions are not fulfilled the QCMD model is in
danger of largely deviating from the full quantum model. We
stress this important point by collecting the central assump-
tions in the converse as potential dangers:

~1! If the massM of the classical particle becomes small,
the approximation may be bad.

~2! If the variancee2 is not small enough, thus allowing
a certain initial uncertainty in space, we must face the effect
that the ‘‘width’’ of the probability densitya2 increases with
time due to the divergence of the velocity flow field. This is
related to the fact that, in nonharmonic potentials, the Schro¨-
dinger equation tends to disintegrate wave-packets because
of dispersion.

~3! If the Hamilton–Jacobi equation forms caustics, i.e.,
if t.tmax, the asymptotic expansion~14! is not valid even
for very large massesM . Caustics may appear in the neigh-
borhood of quantum mechanical diffraction of the heavier
particle.

All these points indicate that a long term validity of the
QCMD model cannot be expected. In Sec. V these potential
dangers will be exemplified.

Remark.If the solution of the Hamilton–Jacobi equation
gets multivalued after passing a focal point, the particle ofM
somewhat splits into several paths. Using this multivalued
solution one can extend the WKB method in a way that up to
errors ofO (Am/M ) the wave functionf is concentrated on
these particle paths. As indicated at the end of Sec. IV A this
yields a justification of the TDSCF method even in this case
for largeM /m. Since the WKB method cannot be extended
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as an asymptotic expansion inAm/M in the vicinity of focal
points, the validity of the TDSCF method at a focal point
remains to be doubtful.

C. Conservation of energy and canonical structure

The total energy of the full quantum system~6! in the
stateC is given by

E~C!52
\2

2m
^C,DxC&2

\2

2M
^C,DqC&1^C,VC&.

Inserting the two approximation steps~separation and WKB
limit !, we get

E~C!5E~C ^ !1O ~e/L !

5^cQC,H~ t !cQC&2
\2

2M
^fS ,DqfS&

1O ~e/L1Am/M !,

with the time-dependent Hamilton operator

H52
\2

2m
Dx1V@•,q~ t !#,

and the semiclassical wave function

fS~q,t !5a~q,t !expS iS~q,t !

\ D .
Remember, thata2(•,t) is an approximated-function at po-
sition q(t) and that the relation ~18! gives us
¹qS(q(t),t)5p(t). This allows to derive~see Ref. 7 for de-
tails!

E~C!5^cQC,H~ t !cQC&1
1

2M
up~ t !u2

1DE~ t !1O ~e/L1Am/M !, ~22!

where the term

DE~ t !5
\2

2M
^¹qa~•,t !,¹qa~•,t !&

represents the zero-point energy or self energy of the ‘‘clas-
sical’’ particle with massM . This self energyDE(t) de-
serves special attention: Its dependence on the variancee2 of
the wave packet is likeO ~e22!. If we choose, for instance, at
the initial time t50 a Gaussian wave-packetf0 with the
amplitude

a0~q!5
1

~eA2p!d/2
expS 2

uq2q0u2

4e2 D ,
we obtain an initial self energy of

DE05DE~0!5
d\2

8Me2
. ~23!

SinceDE is part of the quantum mechanical description of
the ‘‘classical’’ particle with massM , it is reasonable to
view the function

EQC~ t !5^cQC,H~ t !cQC&1
1

2M
up~ t !u2

as the natural total energy for the QCMD system~21!. This
energy is easily seen to be aconservedquantity. Now, com-
paring the energy expression~22! at time t.0 and at time
t50, we obtain by conservation ofE~C! and ofEQC that the
self energyDE remains nearly constant in time,

DE~ t !5DE01O ~e/L1Am/M !.

In consequence the quantum mechanical energy decomposes
up to small terms into the energyEQC of the QCMD model
and theinitial self energy of the ‘‘classical’’ particle,

E~C!5EQC1DE01O ~e/L1Am/M !.

Any numerical simulation of the QCMD model should re-
produce the conservation ofEQC.

For the construction of such numerical methods, it is
extremely helpful to note that the QCMD system~21! con-
stitutes a canonical system with respect to the energyEQC,
i.e., that the evolution of Eq.~21! is symplectic. To this end
we decompose the Hamilton operator

H5Hs1 iH a

into the selfadjoint and skewadjoint part and the wave func-
tion

cQC5
1

A2\
~qc1 ipc! ~24!

into a scaled real and imaginary part. Now, introducing the
generalized positionQ5(qc ,q)

T and generalized momen-
tum P5(pc ,p)

T the energy reads as

EQC5EQC~Q,P!

5
1

2\
~^qc ,Hsqc&1^pc ,Hspc&

12^pc ,Haqc&!1
1

2M
upu2.

A simple formal calculation shows, that the corresponding
canonical equations

Q̇5
]

]P
EQC, Ṗ52

]

]Q
EQC

are just another form of writing the QCMD system~21!.
Remark.The scaled decomposition~24! is commonly

used in the literature to give the Schro¨dinger equation a ca-
nonical Hamiltonian structure. A more intrinsic way of this
argument in the setting of infinite Hamiltonian systems can
be found in Refs. 8 and 24.

V. DISCUSSION AND EXAMPLES

We shall now illustrate the potential dangers of the
QCMD method as discussed at the end of Sec. IV B. Since
the first two of the mentioned problems, i.e., massM too
small and the disintegration of the wave packet for larger
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times, meet common understanding, we herein concentrate
on the third problem, the formation ofcaustics.

This point can nicely be illustrated by the numerical
simulation of a simple collinear collision of a ‘‘classical’’
particle with a harmonic quantum oscillator~cf. Fig. 2!, a
model problem which has been treated extensively in the
literature without explanation of the differences between the
QCMD and the full quantum approach~cf. Refs. 3 and 5!.
Using the notation of Sec. IV, the Hamiltonian of the system
in question is given by

with massesM540 u andm51 u. For the interaction poten-
tial U we have taken the form~cf. Refs. 3 and 5!

U~r !5A exp~2br !

with A51.6543103 kcal/mol andb52.438 Å21. The fre-
quencyc of the undisturbed oscillator corresponds to a wave
number of 1000 cm21 or to an energy of\c52.86 kcal/mol.
The initial wave packetC0 is constructed as follows:
C05c0^f0 is a tensor product of the ground statec0 of the
undisturbed oscillator and a Gaussian distribution for the
‘‘classical’’ particle:

f0~q!5
1

~eA2p!1/2
expS 2

uq2^q&0u2

4e2 DexpS i ^P&0
\

qD
with initial location ^q&055 Å, momentum̂ P&0 directed to-
wards the oscillator’s location inx050 corresponding to an
initial kinetic energy of 3.9 kcal/mol, and location uncer-
tainty e50.075 Å.

We have performed full quantum~QD!, QCMD, and
TDSCF calculations using the well-known Fourier-
collocation technique as the space discretization and suitable
second ordersymplectictime-discretizations based on opera-
tor splitting.26We have applied uniform time stepst50.01 fs
over a total time intervalt/fsP@0,1000# and a spatial compu-
tation domain x/ÅP@21,0.5# and q/ÅP@1,12# with 256
31024 meshpoints. Fortunately, for the QCMD calculations
only the 256 pointx grid is necessary—leading to a tremen-
dous decrease in computational effort.

Figure 3 shows the expectation value^q& for the position
of the classical particle computed via the full QD simulation
and the corresponding classical trajectoryq5q(t) of the

QCMD calculations. The results show, that the QCMD gives
a very good approximation of the full quantum dynamics,
however, with a small but clearly visible difference at the
time t5350 fs of the reflection of the classical particle. Total
energy is well conserved in both cases by our numerical
schemes~Fig. 4!, which reflects the analytical conservation
of energy as discussed in Sec. IV C. This should be con-
trasted with some observations in Ref. 3, where anonsym-
plecticnumerical scheme was used.

Remark.Obviously, theenergy exchangebetween the
quantum and the classical part is of main importance for the
dynamical process. Hence, an accurate reproduction of the
energies in the system is an urgent requirement for all dis-
cretization schemes. However, there are no efficient schemes
which conserve the energyexactly. For all practical reasons

FIG. 2. Scheme of the collinear test system.

FIG. 3. Results of QD and QCMD calculations. The position expectation
^q& ~solid line! of the classical particle and its classical QCMD-trajectoryq
~dashed line! are shown vs time.

FIG. 4. Conservation of energy in the QD simulation~top! and the QCMD
simulation ~bottom!. The difference between both values is caused by the
zero-point energyDE05\2/8Me250.0548 kcal/mol of the ‘‘classical’’ par-
ticle as discussed in Sec. IV C. In both cases the maximal energy deviation
is below 0.001%; compare the remark below.
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it is sufficient to use so calledsymplecticdiscretizations,
which conserve the energy within avery accuratedeviation
range even forlong time simulations, cf. Ref. 27. In contrast
to this, ad hoc schemes typically cause anenergy driftwhich
increases in time—thus being not appropriate for our prob-
lem.

The difference between QD and QCMD in the neighbor-
hood of the turning point are explained by identifying this
point as afocal point. This is illustrated by Fig. 5, which
shows that two nearby starting particle pathsql5ql(t), l5
21,1, cross the particle pathq(t) at this critical point. Theql
are solutions of

Mq̇l5pl ,

ṗl52^c,¹qV~•,ql !c&,

with initial states

ql~0!5^q&01 ldq and pl~0!5^P&0 ,

with dq50.01 Å.c is fixed to be the solution of the QCMD
calculation. Thus, small perturbation of the initial data result
in no difference of the position value at the critical point.
Exactly this is the meaning of the condition~19!, which de-
fines a focal point.

Our simple test system can also be used in order to il-
lustrate the disintegration of the wave-packet because of dis-
persion. This effect will always be significant if the total
simulation timeT is large enough~as in our case withT51
ps!, being less important for smaller time scales~T,100 fs!.
Figure 6 shows the evolution of the statistical variances

Dq5~C,q2C!2^C,qC&25^q2&2^q&2,

and Dx5^x2&2^x&2 of position measurement for the full
quantum system with stateC. It is well-known that these
magnitudes are the correct measures for the position uncer-
tainty in a quantum system, i.e., for the disintegration of its
wave packet.

The statistical variancesDq andDx represent the vari-
ancee2 occurring in our approximation results. We know
from the previous section that the separation step itself intro-
duces an approximation errorO ~e!. Therefore, we are inter-
ested in the error caused by separation in the test system. To
that end, we compare the full quantum simulation with the
corresponding TDSCF calculations connected to the system
~12!. Figure 7 presents the two corresponding position ex-
pectations and a comparison with QCMD. Note, thatboth,
TDSCF and QCMD, show deviations from the full quantum
solution in the region of the focal point. This, indeed, illus-
trates that they are both subject to the same underlying ap-
proximation error caused by separation. Moreover, it exem-
plifies that the proposed analytical approach~justification of
separation via the validity of the step TDSCF→QCMD! fits

FIG. 5. Crossing of different pathsql in the focal point~circle!. The solid
line represents the QCMD-trajectoryq, the dashed lines the neighboring
trajectoriesq21 andq1 started from a slightly different initial position. No-
tation as explained in the text.

FIG. 6. Evolution of variancesDq ~dashed! andDx ~solid! of the full QD
wave packet. Note the disintegration of the wave packet inq direction in
which no attractive potential is present. It is increasing as long as the par-
ticle is moving ‘‘free’’ and decreasing during the collision.

FIG. 7. Results of QD and TDSCF calculations. The picture on the left-hand
side shows the corresponding position expectations^q&QD ~solid line! and
^q&SCF ~dashed line! vs time. The region of the turning point~box! is mag-
nified on the right-hand side. Here, the additional dotted line represents the
corresponding QCMD-trajectoryq. Note, that this picture doesnot change,
if we refine the stepsizes used.
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the real situation: The approximation quality of TDSCF and
thus of separation decreases near the problematic point of the
QCMD approach.

VI. CONCLUDING REMARKS

We have considered amixed quantum-classicaldescrip-
tion of large ~bio! molecular systems, which allows to de-
scribe most atoms by the means of classical mechanics but
an important, small portion of the underlying system by the
means of quantum mechanics. This differs conceptually from
all approaches which are interested in a description of the
systementirelyon a quantal, semiclassical, or classical level.

The starting point of our investigation has been to ana-
lyze how such a QCMD model could be derived from the
full Schrödinger equation and in which sense of approxima-
tion. That is, we were finally interested in a ‘‘partial classical
limit’’ which has been established via the smallness of two
parameters: variancee2 of the wave packet representing the
‘‘classical’’ particle andAm/M corresponding to its mass.
Our approximation result is twofold:

~R1! Tensor product separation of the full wave func-
tion is accurate up to an error ofO ~e/L!.

~R2! The classical trajectory computed from Eq.~17!
approximates the position expectation of the clas-
sical part up to the errorO @(e/L)21Am/M #.

Thus, the total approximation error of QCMD is of order
O (e/L1Am/M ). These results are valid under threecondi-
tions:

~C1! the massM is large enough,
~C2! the initial variancee2~t0! is small enough,
~C3! no caustics are present,

which on the other hand, if violated, are connected to sce-
narios of potential deficiencies of the QCMD as exemplified
in Sec. V.

Concerning result~R2! the following should be noted:
We have chosen semiclassical limits according to the WKB
method as represented by the left methodical branch of Fig.
1. We could as well apply semiclassical limits via Gaussian
wave packets as represented by the right methodical branch
of Fig. 1. We would then arrive at the following alternative
result ~cf. Ref. 17!:

~R28! The semiclassical approximation of the classical
particle by Gaussian wave packets is accurate up
to O @(m/M )1/4#.

This avoids thee dependence in this part of the approxima-
tion but leads to a slower asymptotic error rate inm/M . But
nevertheless, with regard to the total error as an approxima-
tion of the full Schro¨dinger equation, thee dependence~R1!
is again introduced by the underlying separation ansatz; re-
sulting in the estimateO [ e/L1(m/M )1/4] of the total ap-
proximation error, which is worse in comparison to our ap-
proach.

It should be emphasized, that we discuss the approxima-
tion of the full wave functionC in the L2 norm. Thus, the
results also hold for all expectation values ofC but not nec-

essarily for ‘‘pointwise’’ quantities, which may be important.
The Fourier spectrum ofC, e.g., is well approximated in a
L2-average sense, but the amplitudes of single frequencies
may be completely wrong.

Summarizing we shortly list some conclusions which are
of particular importance for a comparison of the various
models:

~i! The given error analysis of the separation step, on
which all the mentioned models like TDSCF, QSCMD, and
QCMD are based, requires the smallness of the uncertainty
for at least one particle for all times. This can be concluded
from the smallness of theinitial uncertainty, if we are able to
take the classical limit for this particle, i.e., ifm/M is small.
Thus our justification of TDSCF and QSCMD covers exactly
the situation, for which QCMD is applicable.

~ii ! The QCMD approximationfails at focal points. It
eventually can again be a useful approximation after passing
a focal point, but the complex phase of the wave function
will jump at each of these transitions by a shift ofp/2 ~see
Ref. 25!. This effect may explain some corresponding ex-
perimental observations~cf. Ref. 13, Sec. II!.

~iii ! The QCMD approximation can not evendetectfocal
points or caustics. Focal points may be detected by a numeri-
cal solution of the Hamilton–Jacobi Eq.~15! for the phaseS,
e.g., using particle trajectory bundles~cf. Ref. 15!.

~iv! Our results do not allow to decide the problem of
whether QSCMD leads to a ‘‘better’’ representation of the
influence of the potential curvature, as is expected in Ref. 22.
However, we note that the QSCMD should also fail in de-
tecting caustics and should get problems in this case, e.g., if
the wave packet splits into several subpackets.

Conclusively, a better understanding of the separation
step seems to be the bottleneck for a better approximation
theory and a more precise distinction between the various
mixed quantum-~semi!classical models. Investigations con-
cerning correction terms for the separation ansatz have al-
ready been presented in the literature~e.g., Ref. 14!, but—as
far as the authors know—a corresponding mathematical jus-
tification is still missing.
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APPENDIX

We herein give a definition of the notion ‘‘approximate
d function’’: Let xPC`~Rd! be a smooth function, which is
normalized according to the following three conditions:

~ i! E
Rd

x~x!dx51,

~ ii ! E
Rd
xx~x!dx50,
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~ iii ! E
Rd

~x^x!x~x!dx5I ,

whereIPRd3d denotes the identity matrix. The scaled fam-
ily

xe~x!5e2dxS x2x0
e D

is called an approximated function at positionx0, since

xe→d~•2x0!

for e→0 in the spaceD8 of distributions. A simple example
is given by the Gaussian distribution function

xe~x!5
1

~eA2p!d
expS 2

ux2x0u2

2e2 D ,
of meanvaluex0 and variancee2.
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