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Abstract. It was revealed that the QCMD model is of canonical Hamiltonian form
with symplectic structure, which implies the conservation of energy. An efficient
and reliable integrator for transfering these properties to the discrete solution is
the symplectic and explicit PICKABACK algorithm. The only drawback of this kind
of integrator is the small stepsize in time induced by the splitting techniques used to
discretize the quantum evolution operator. Recent investigations concerning Krylov
iteration techniques result in alternative approaches which overcome this difficulty
for a wide range of problems. By using iterative methods in the evaluation of the
quantum time propagator, these techniques allow for the stepsize to adapt to the
classical motion and the coupling between the classical and the quantum mechanical
subsystem. This yields a drastic reduction of the numerical effort. The pros and cons
of both approaches as well as the suitable applications are discussed in the last part.

1 Introduction

Various kinds of mized quantum-classical models have been introduced in the
literature. We will concentrate on the so-called quantum-classical molecular
dynamics (QCMD) model, which consists of a Schrédinger equation coupled
to classical Newtonian equations (cf. Sec. 2).

In this paper, we focus on numerical techniques for integrating the QCMD
equations of motion. The aim of the paper is to systematize the discussion
concerning numerical integrators for QCMD by:

— giving a derivation of the different techniques based on a common con-
struction principle,

— classifying the application problems in order to link together the proper-
ties of the integrators and the structure of the problem under considera-
tion.

For this purpose, a short overview will be given concerning some theoretical
properties of the QCMD model (Sec. 2). This will allow for a suitable classi-
fication of the application problems. In the course of the following discussion,
we will introduce two different classes of integration techniques:

In Sec. 3, some recent developments of “structure conserving” integrators
will be reviewed. Such symplectic or symmetric integrators are build to pre-
serve certain geometric properties of the exact QCMD solution like energy
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conservation or reversibility. They are preferable for applications to long-term
simulations, but turn out to have some crucial disadvantages when short-term
simulations up to a given precision are wanted.

Hence, as the second class of techniques, we discuss adaptive methods
for accurate short-term integration (Sec. 4). For this class, it is the major
requirement that the discretization allows for the stepsize to adapt to the
classical motion and the coupling between the classical and the quantum
mechanical subsystem. This means, that we are interested in discretization
schemes which avoid stepsize restrictions due to the fast oscillations in the
quantum part. We can meet this requirement by applying techniques recently
developed for evaluating matrix exponentials iteratively [12]. This approach
yields an adaptive Verlet-based exponential integrator for QCMD.

Finally, in Sec. 5, the theoretical results are illustrated by applying two
adaptive schemes to the collinear photo dissociation of ArHCI.

2 The QCMD Model

There are various approaches to the problem of coupling quantum degrees of
freedom to classical degrees of freedom. The QCMD model is given by the
following equations of motion:

2
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The quantum degrees of freedom are described by a wave function ¢ =
¥ (z,t). It obeys Schrodinger’s equation with a parameterized coupling poten-
tial V' which depends on the location g = ¢(t) of the classical particles. This
location ¢(#) is the solution of a classical Hamiltonian equation of motion in
which the time—dependent potential arises from the expectation value of V
with regard to . For simplicity of notation, we herein restrict the discussion
to the case of only two interacting particles. Nevertheless, all the following
considerations can be extended to arbitrary many particles or degrees of free-
dom.

2.1 Conservation Properties of the QCMD Model

In a first discretization step, we apply a suitable spatial discretization to
Schrodinger’s equation, e.g., based on pseudospectral collocation [15] or fi-
nite element schemes. From now on, we consider ¢,T,V and H as denoting
the corresponding vector and matrix representations, respectively. The total
energy expectation value of the system
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to which we will simply refer as ”energy”, is a constant of motion [2]. An-
other conserved quantity is the norm of the wave function, due to the uni-
tary propagator in the quantum part. We are interested in constructing nu-
merical integrators which reproduce these conservation properties. To this
end, it is enormously helpful to observe that the QCMD equations are of
canonical Hamiltonian form with respect to H. In order to illustrate this
fact, we decompose the wave function into a scaled real and imaginary part
¥ = (g + ipy)/V2h and introduce generalized positions Q = (gy,q)” and
momenta P = (py,p)’. This allows for denoting the whole system (1) in
canonical Hamiltonian form:

.8 )

with the usual symplectic structure (cf. [16]).

2.2 Adiabatic Limit of QCMD

QCMD describes a coupling of the “fast” motions of a quantum particle
to the “slow” motions of a classical particle. In order to classify the types of
coupled motion we eventually have to deal with, we first analyze the case of an
extremely heavy classical particle, i.e., the limit M — oo or, better, m/M —
0. In this “adiabatic limit”, the classical motion is so slow in comparison
with the quantal motion that it cannot induce an excitation of the quantum
system. That means, that the populations 6y(t) = |(¥(t), Pr(q(t)))| of the
eigenstates @, (q) of the Hamiltonian H (¢) remain constant along the classical
path ¢ = ¢go. Hence, the limit populations 8 (t) = 65 (0) may be computed
from the initial conditions. The classical limit path is given by the time-
dependent Born—Oppenheimer model:

M gso = — Z ok(o)z (graquk)(QBO)a 220(0) = qo, Gso(0) = PO/M;
k

where the Ej(q) are the eigenenergies of H(q) (for details concerning the
adiabatic limit see [20] in this collection, or [3,1]). The associated asymptotic
expression for the wave function

it
50 = 2000 0 (5 [ Pulaso(9)ds) ulano(4) + g
nonadiabaticity

(4)
deserves our attention because it uncovers some essential features of QCMD
motion:

1. The quantal motion is highly oscillatory with frequencies given by the
eigenvalues of the Hamiltonian H.
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2. For m/M small enough, the populations of the eigenstates &}, are nearly
constant and the quantal motion is given in terms of the evolution of the
eigenstates and eigenenergies Ejy along ¢go-

3. For larger values of m/M, we have to expect nonadiabatic redistribution
of the populations induced by the classical motion.

2.3 Classification of Application Problems

It is the aim of this paper to take into account a wide range of systems to
which QCMD is applied. For a precise understanding of the situation, it is
necessary to recognize the differences between these applications, because
these differences demand for specific features of the numerical integrator.
In the following, we will describe a suitable classification of the application
problems.

1. For long term simulations, it turns out that the reproduction of the con-
servation properties is most important in order to ensure reliable results.
2. For short term simulations, accuracy requirements on the discrete solu-
tion make sense and we advocate error controlling adaptive integrators.
Moreover, we have to further subdivide our classification due to the ob-

servations in Sec. 2.2:
(a) Problems with (nearly) adiabatic motion.
(b) Problems with essentially nonadiabatic motion.

In most real life applications, the evaluation of the forces acting on the classi-
cal particles (i.e., the evaluation of the gradient of the interaction potential)
is by far the most expensive operation due to the large number of classical
degrees of freedom. Therefore we will concentrate on numerical techniques
which try to minimize the number of force evaluations.

3 Structure Conserving Integration Schemes

Since we have discovered the underlying Hamiltonian structure of the QCMD
model we are able to apply methods commonly used to construct suitable
numerical integrators for Hamiltonian systems. Therefore we transform the
QCMD equations (1) into the Liouville formalism. To this end, we introduce
a new state z in the phase space, z = (Qxr, Par)T, and define the nonlinear
Liouville operator Ly z; = {z;,H}, using the common Poisson brackets
{, }. This permits us to denote the QCMD equations (1) in the form 2 =
L4;z. The formal solution can now be written as

2(1) = eI 2(0). (5)

At this point we may apply well-known approximation techniques. For each
decomposition of H,i.e., H = Hi+Hz+-.., the corresponding Lie-generator
decomposes accordingly

Ly = LH1+L'H2+....
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Using splitting schemes of the exponential function allows for a generation of
numerical integrators. For example [23,21]:

eT(L'Hl—‘rL'HZ) — 6TLH1 eTL'M2 + O (7_2) (6)

eT(L'Hl—‘rL'HZ) — e%L'Hl eTL'HZ e%L'Hl + O (7_3) ) (7)

which can easily be extended to higher orders [24].
Note, that the choice of the Hj crucially influences the properties of the
resulting integrator.

3.1 Symplectic Integrators

A well-known property of symplectic integrators is the conservation of the
total energy within a very accurate deviation range even for long term simu-
lations. It can be shown that symplectic integrators in application to Hamil-
tonian systems solve a system corresponding to a modified Hamiltonian with
a small stepsize-dependent perturbation [8]. This leads to a “quasi conser-
vation” of some first integrals, so that, for example, the total energy of the
discrete solution oscillates around its initial value with a small amplitude
that decreases with the stepsize used (cf. Fig. 1). This “structural stability”
makes symplectic integrators superior for long term simulations.
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Fig. 1. Total energy (in kJ/mol) versus time (in fs) for different integrators for a
collinear collision of a classical particle with a harmonic quantum oscillator (for
details see [2]). Dashed line: Nonsymplectic scheme. Dotted: Symplectic integrator
of first order. Solid: PICKABACK (symplectic, second order).

A convenient and constructive approach to attain symplectic maps is given
by the composition of symplectic maps, which yields again a symplectic map.
For appropriate Hy,, the splittings (6) and (7) are exactly of this form: If the
‘Hy, are Hamiltonians with respect to the whole system, then the exp(7Ly, )
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define the phase flow generated by these Hj. Thus, the exp(7Ly, ) are sym-
plectic maps on the whole phase space and the compositions in (6) and (7)
are symplectic maps, too. Moreover, in order to allow for a direct numerical
realization, we have to find some #;, for which either exp(7Ly;, ) has an an-
alytic solution or a given symplectic integrator. We herein consider the first
case only:

Pickaback We decompose H into a kinetic and a potential term:

p2

H=Hi+Hs with 'Hl:m

+¢*Ty and Ha =¢*V(g) .

As shown in [16], the two corresponding flow maps, exp(7Ly;, ) and exp(7Ly,),
can be represented analytically. Using the second order Strang splitting (7),
we derive an integration scheme which is explicit, symplectic and symmetric.
This scheme was denoted PICKABACK emphasizing the interwoven structure
of the partial steps.

qi/2 = Qo+ S

T
¢1/2 = eXP<—1§TN)¢0
p1 = po— TV DgV(ar/2)¥1/2

Y1 = exp ( - Z%TN) exp ( - Z'TVN(CI1/2)) 12

Q1 = Ch/z*‘%%- (8)
A main advantage of PICKABACK is its reliability. But the reader might
notice, that the splitting of the quantum propagator exp(—ig H) restricts
the stepsize to the order of the inverse of the largest eigenvalue of H. Thus,
the overall time steps are connected to the shortest significant period of phase
oscillation in the quantum subsystem — demanding more evaluations of the
pure classical forces than required by the classical motion itself. In order to
circumvent the problem we switch to symmetric but no longer symplectic
methods.

3.2 Symmetric Integration Schemes

Beneath the conservation properties of QCMD its equations of motion possess
another important geometric structure by being time reversible. As shown in
[10], the application of symmetric integrators to reversible problems yields
the solution of a perturbed but again reversible problem. Hence, all the char-
acteristics which are connected to reversibility are structurally inherited if
the discretization scheme is symmetric.

The splitting technique, introduced above for the construction of symplec-
tic schemes, is also adequate for symmetric ones. Now, the only condition is
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that we have to split e”/* symmetrically. To this end, let us consider the
Liouville generator for the Hamiltonian H from above:

Ly = (VaH)'Vp = (VpH) Vg + (Vo ) Vi, = (Vp, H)' Vo,

~

decomposing as Ly = L5, + L§]", with L§, acting on the classical coordinates

and Lj" acting on the quantum subsystem only. This permits to produce

symmetric schemes via, for example, the second order Strang splitting:
eTln — eFLY oTLS FLY 4 (73)

Using the symmetric Verlet algorithm for integrating exp(rL$) yields the

following scheme (which formally is of second order):

¢1/2 = €exp ( - i;_hH(CIO)) %o

G2 = q+ 55
Leapfrog pL = po-— Tzﬁ;‘/z DqV(ql/Q)zﬁl/z
a1 = qp2+ T
b = exp(—igzH(@)) Yo (9)

The question remains how to evaluate exp(—iTH (qo)/(2%))1; while retaining
the symmetric structure. In Sec. 4.2 we will introduce some iterative tech-
niques for evaluating the matrix exponential but the approximative character
of these techniques will in principle destroy the symmetry.

Symmetric multiple time stepping An intriguingly simple idea for realizing
a symmetric approximation of the matrix exponential is presented in [19].
It copes with the different time scales of classical and quantum degrees of
freedom by splitting the quantum propagation in some small “substeps”.
The resulting scheme is a variant of (9) with its quantum steps replaced by

3
Yr2 = (e_"ﬁH(qo))n o = (e_"ﬁTe_iﬁV(’m)e_iﬁT)n o4O T—2
n

The splitting of the quantum propagator negatively effects the efficiency of
the scheme especially if m /M is small, i.e., if the quantum oscillation are much
faster than the classical motion and the number n of substeps is becoming
inefficiently large.

4 Adaptive Methods

4.1 Adaptive Stepsize Control

We have to pay a price for the advantages of symplectic and symmetric meth-
ods: The stepsize 7 has to be constant during the simulation, because, up to
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now, there is no appropriate strategy for efficiently controlling the stepsize
without destroying the “structural stability”. This means, that the overall
stepsize has to be reduced until it fulfills the accuracy requirements during
the whole integration period. In many real life applications of QCMD, the
dynamical behavior of the solution can change dramatically during the course
of the simulation (collisions, excitation processes). In principle, one would like
to make large time steps where “nothing important happens” and small ones
where it is necessary to resolve important processes, i.e., the stepsize should
be adapted to the accuracy wanted. In Numerical Analysis, such stepsize con-
trol strategies have extensively been discussed. In the following, we will give
a brief overview on the usual strategy (for details cf. [4,9]). The conceptual
framework requires the control of the approximation error in each time step
via choosing the stepsize with respect to a given accuracy requirement. That
is, the stepsize is controlled in a way which bounds the local approximation
error by a given tolerance TOL.

The local error in the step from time ¢ to t + 7, i.e., the error, which
is produced by calculating a discrete solution in this step instead of exactly
solving the QCMD equations, is given as follows:

er(t+71) = &) 2(t) — exp(rLy) 2(t),
where exp (7L ) 2(t) denotes the exact solution of the QCMD model and &
the discrete evolution of order p and with stepsize 7, for example the map
given by (9).

Unfortunately, this local error €, cannot be calculated, since we do not
know the exact solution to the QCMD equations. The clue to this problem is
given by the introduction of an approximation to €,. Let us consider another
discrete evolution ¢ with an order ¢ > p and define an error estimation €,
via:

&(t+T1) = 7 2(t) — B 2(t).

The control scheme tries to choose the stepsize 7 so that ||é;|| = TOL in
some adequate norm. In case of a tolerance exceeding error, i.e., for ||é-|| >
TOL, one reduces the stepsize according to

TOL
Tnew = P4 pAiTold- (10)
llé- |

with an additional safety factor p < 1. The same formula is used in order
to predict a proper stepsize for the next step. Problems can arise, when the
error approaches zero. We cope with them by restricting the allowed increase
of the stepsize.

For realizing (10), we need an adequate norm for measuring the error. It
obviously makes no sense to use an Euclidian norm of z indiscriminately of
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quantum and classical parts. We advocate the use of a scaled norm in the
classical subsystem and the usual 2-Norm for the quantum part:

q(t) — 4(t) ?

max(q(t), Smin)

)

’ ‘ p(t) — p(1)
max(p(t), Smin)

le-®)]] = \/Ilzb(t)—@ﬁ(t)llh‘

where 1,q and p denote the results of &; and 1&,(} and p that of &7. A
threshold value s,,;, > 0 avoids an exploding error for locations or momenta
close to zero.

The error estimate approximates the error of the propagation with the
less accurate method @7. Nonetheless, the next step is started with the more
precise result of o).

We are now concerned with the selection of two integration methods of
different order. A first idea — which we are not advocating — is to use the
PICKABACK integrator (8) as &7 together with a first order scheme based
on the Trotter formula (6) replacing @}. Recalling that the stepsize of these
methods are dominated by the splitting of exp(—iTH/h), we actually foresee
the effect of such an adaptive method. The scheme correctly resolves the
dynamical behavior but forces the stepsize to remain restricted to the order
of the inverse of the largest eigenvalue of the Hamiltonian. An illustrative
example of these drawbacks is given in Sec. 5.

4.2 A Verlet-based Adaptive Integrator

A more convincing approach leads to an adaptive method based on the sym-
metric second order scheme (9). As a first step, we have to introduce a first
order scheme substituting & of the previous section. In what follows, we use
the following pair of schemes:

(12 = exp (—izzH(qo)) vo
= + T Po
2nd order N/ ©T M
symmetric scheme ¢ p; = pg— szfﬂ D,V (g1/2)¢1)2
as 45; .
@ = qpt+5h

(Y1 = exp (—igzgH(a)) ¥1/2 (11)
For comparison: v, = exp(—iFH(q)) vo
1st order . Po
Euler scheme it = oty

as quT) P = p0—7¢f/2 qu(ﬁl)"ﬁl/z
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When considering the construction of ezactly symmetric schemes, we are
obstructed by the requirement to find exactly symmetric approximations to
exp(—iTH/(2h)). But it is known [10], that the usual stepsize control mecha-
nism destroys the reversibility of the discrete solution. Since we are applying
this mechanism, we now may use approximations to exp(—i7H/(2h)) which
are not precisely symmetric, i.e., we are free to take advantage of the superior
efficiency of iterative methods for evaluating the matrix exponential. In the
following, we will compare three different approaches.

Chebyshev approximation The well known expansion of exp(—iTH/h)
into Chebyshev polynomials T}, [22] is one of the most frequently used inte-
gration technique in numerical quantum dynamics:

exp(—£ Hr)p(t) ~ Ypy ax(pr) Tu(—L H)p

with appropriately chosen coeflicients oy and an estimate p for the spectral
radius of the Hamiltonian H. This technique allows for large stepsizes if the
truncation index NN is chosen large enough. The N necessary for achieving
a specific accuary depends linearly on the stepsize 7 and the spectral radius
of H. We use an adaptive stopping criterion for the iteration based on the
decay of the coefficients oy, [14].

Krylov approximation of the matrix exponential The iterative ap-
proximation of the matrix exponential based on Krylov subspaces (via the
Lanczos method) has been studied in different contexts [12,18,7]. After the it-
erative construction of the Krylov basis {v1,...,v,}, the matrix exponential
is approximated by using the representation A of H(q) in this basis:

exp (—% (q))¢ ~ V exp (—% ) V*, with V =[vy,...,0,).

The evaluation of exp(—iTA/h) is cheap since A is tridiagonal.

In [13], an efficient residual error estimation scheme has been introduced
for controlling the quality of the approximation. This gives us a stopping
criterion for the iteration guaranteeing that the quality of the approximation
fits to the accuracy requirements of the stepsize control.

In most cases, this Lanczos—based technique proves to be superior to the
Chebyshev method introduced above. It is the method of choice for the appli-
cation problems of class 2b of Sec. 2. The Chebyshev method is superior only
in the case that nearly all eigenstates of the Hamiltonian are substantially
occupied.

However, using the Lanczos iteration for evaluating the matrix exponen-
tial produces two eventual drawbacks. Firstly, the iteration does not use any
of the information gathered in the last step. But if the eigenvectors undergo
only minor changes from step to step, some approximate eigenvectors of the
last step may be used as good initial choices for the next iteration. This idea
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can be realized by using Block-Lanczos iteration instead of the pure Lanczos
scheme. The second drawback is important if the motion under consideration
is nearly adiabatic and only a few, let us say m, eigenstates are occupied. By
approximating these eigenstates in a Krylov basis with typically d > m basis
vectors, the Lanczos scheme necessarily introduces (small) artificial popula-
tions of other than the m states occupied. From time step to time step, this
will lead to an artificial and unwanted blow-up of the dimension of the occu-
pied subspace.

Subspace-controlling iteration methods Out of this observation we also
studied some subspace-controlling algorithms. In these approaches, we do not
try to construct an (eventually large) basis set for transforming the Hamil-
tonian into a form appropriate for an efficient evaluation of the matrix expo-
nential. Instead of this, we directly approximate a (small) basis set for the
relevant (small) subspace. Only then, the matrix exponential is computed
using this basis. In the course of the iteration, appropriate error estimates
control whether the subspace dimension has to be increased or may be re-
duced. Mainly two techniques were tested in order to evaluate the basis set:
a simultaneous minimization of the Rayleigh quotient in the subspace via
an appropriately preconditioned conjugate gradient iteration [6] and a multi
grid approach to the eigenvalue problem as introduced in [5]. Both techniques
prove to be superior to the Lanczos approach for nearly adiabatic problems
with very few eigenstates occupied (class 2a). But they quickly get inefficient
if a nonadiabatic excitation of previously unimportant states is essential.

5 An Illustrative Example

In this section, the theoretical results are checked and illustrated by numerical
simulations. Therefore we consider a well-known test problem which is of
class 2b in our classification from page 4: a photo dissociation process of a
collinear ArHCI molecule (see Fig. 2). The photo dissociation is modeled via
a transition of the bounding Hydrogen-Chlorine ground state into a repulsive
excited state. The Hydrogen starts oscillating between Argon and Chlorine
transferring more and more kinetic energy to the Argon atom.

Using Jacobi coordinates and reduced masses, the Hydrogen-Chlorine in-
teraction is modeled quantum mechanically whereas the Ar—-HCI interaction
classically. The potentials used, initial data and additional computational
parameters are listed in detail in [16].

Obviously, one test example is not enough to illuminate all the effects
pointed out previously. Thus, we have to concentrate herein on some main
ideas. An extensively example-based comparison is in preparation [17].

The stepsize controlling adaptive QCMD integrators presented in the
previous section differ only with respect to the approximation of the quan-
tum propagation. We herein compare three of these integrators, all of them
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Fig. 2. Collinear ArHCl-system with the Jacobi-coordinates used.

equipped with the stepsize control mechanism (10): two integrators based on
the pair of discretization schemes from page 9, with on one hand a Chebyshev
approximation and on the other hand a Krylov approximation of the matrix
exponential, and — just to show the stepsize restriction due to the splitting
of the quantum propagator — a stepsize controlled Pickaback scheme.

To begin with, we compare the stepsizes used in the simulations (Fig. 3).
As pointed out before, it seems to be unreasonable to equip the Pickaback
scheme with a stepsize control, because, as we indeed observe in Fig. 3, the
stepsize never increases above a given level. This level depends solely on the
eigenvalues of the quantum Hamiltonian. When analyzing the other inte-
grators, we observe that the stepsize control just adapts to the dynamical
behavior of the classical subsystem. The internal (quantal) dynamics of the
Hydrogen-Chlorine subsystem does not lead to stepsize reductions.
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Fig. 3. Stepsize 7 used in the simulation of the collinear photo dissociation of
ArHCI: the adaptive Verlet-based exponential integrator using the Lanczos iter-
ation (dash-dotted line) for the quantum propagation, and a stepsize controlling
scheme based on PICKABACK (solid line). For a better understanding we have added
horizontal lines marking the collisions (same tolerance TOL). We observe that the
quantal H-CI collision does not lead to any significant stepsize restrictions.
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Large stepsizes result in a strong reduction of the number of force field
evaluations per unit time (see left hand side of Fig. 4). This represents the
major advantage of the adaptive schemes in comparison to structure conserv-
ing methods. On the right hand side of Fig. 4 we see the number of FFTs
(i-e., matrix-vector multiplication) per unit time. As expected, we observe
that the Chebyshev iteration requires about double as much FFTs than the
Krylov techniques. This is due to the fact that only about half of the eigen-
states of the Hamiltonian are essentially occupied during the process. This
effect occurs even more drastically in cases with less states occupied.
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Fig. 4. Photo dissociation of ArHCIL Left hand side: the number of force field
evaluations per unit time. Right hand side: the number of Fast-Fourier-transforms
per unit time. Dotted line: adaptive Verlet with the Chebyshev approximation
for the quantum propagation. Dash-dotted line: with the Lanczos iteration. Solid
line: stepsize controlling scheme based on PICKABACK. If the FFTs are the most
expensive operations, PICKABACK-like schemes are competitive, and the Lanczos
iteration is significantly cheaper than the Chebyshev approximation.

Everything seems to be in favor of the stepsize controlling schemes, but the
reader might notice, that there are —up to now— some drawbacks. When
computing the autocorrelation function, e.g., the complex valued function
1 (0)*2)(t), used for instance in the calculation of absorption spectra, we find
a substantial phase shift in the discrete solution. This results from the fact
that the error control mechanism is not adapted to detect phase errors be-
cause both schemes from page 9 depend on pointwise updates of the Hamil-
tonian only. It should be possible to overcome this problem by applying al-
ternative Verlet-based schemes using averaged updates and forces. Promising
candidates for these schemes were recently introduced by HOCHBRUCK and
LUBICH (see [11] in this collection). Extensive numerical experiments using
such schemes in the adaptive context introduced herein will be presented in
a forthcoming paper [17].



14 Peter Nettesheim and Christof Schiitte
6 Conclusions

We discussed numerical integration techniques for different classes of appli-
cations of QCMD. We mainly distinguished between long and short term
simulations. Short term simulations are characterized by the fact that spe-
cific (global) accuracy requirements for the numerical solution make sense.
For long term simulations one is more interested in certain stability and con-
servation properties of the solution, despite the fact that its global accuracy
might be spoiled by the amplification of numerical error. Consequently, the
advocated numerical techniques should be divided into two categories:

Long term simulations require “structurally stable” integrators. Symplec-
tic and symmetric methods nearly perfectly reproduce structural properties
of the QCMD equations, as, for example, the conservation of the total en-
ergy. We introduced an explicit symplectic method for the QCMD model —
the PICKABACK scheme— and a symmetric method based on multiple time
stepping.

For short-term simulations we advocate the use of stepsize controlling in-
tegrators which gain efficiency by adapting the stepsize to the dynamics of
the system. We presented an adaptive Verlet-based exponential integrator
for QCMD with iterative evaluation of the quantum propagation. It permits
us to use stepsizes which are not restricted by the fast phase oscillations in
the quantum part. For the iterative realization of the quantum propagation
steps, we analyzed three different approaches: the Chebyshev approximation,
the Lanczos iteration and a subspace controlling method. For the applica-
tion problems with a (nearly) adiabatic behavior (class 2a from page 4), the
subspace controlling method appeared to be best suited, because it does not
artificially blow up the excited subspace. For all other cases of short-term
simulation (class 2b), we advocate the Lanczos iteration scheme owing to its
efficient adaption of the basis set to the dynamical behavior.
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