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Mixed quantum-classical models have attracted considerable interest due 
to the expectation that they correctly describe non-adiabatic processes of 
full quantum dynamics. One of these models, the so-called QCMD model 
represents most degrees of freedom of the molecular system by the means of 
classical mechanics but an important, small portion of the system is mod­
eled by a quantum wavefunction: the wavefunction is nonlinearly coupled to 
the classical motion via a singularly perturbed Schrödinger equation. In ex­
tension to the analysis given by F.A. Bornemann [Homogenization in Time 
of Singularly Perturbed Mechanical Systems, Lecture Notes in Mathematics 
no. 1687, 1998, Springer, Berlin], the article presents an asymptotic expan­
sion up to second order in the perturbation parameter. This result allows 
for the construction of new models and numerical integration schemes 
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Introduction 

Many chemical reactions are characterized by a crucial influence of quan­
tum processes in the molecular dynamics. Adversely, a complete quan­
tum dynamical simulation (QD) of realistic molecular systems is by far too 
complex to be applicable. Thus, various kinds of mixed quantum-classical 
models composed of quantum degrees of freedom in a classical modeled 
system have been worked out. A typical example of these models, the so -
called Quantum-Classical Molecular Dynamics (QCMD) model, consists of 
a singularly perturbed Schrödinger equation nonlinearly coupled to classical 
Newtonian equations, see §2. 

An important insight with respect to this model is that both, the QCMD 
model and the full QD evolution, in fact have the same adiabatic limit sys­
tem, the well-known time-dependent Born-Oppenheimer (BO) model, see 
§2. Since non-adiabatic processes account for many important situations, 
simulations based on the BO model lead to a wrong description of the inher 
ent dynamics. In contrast to the BO model, the quantum-classical QCMD 
model includes a population dynamics in the quantum subsystem. So, one 
could expect that QCMD correctly describes the dynamics. Unfortunately, 
the splitting of wavepackets in a complete quantum representation due to 
a non-adiabatic change in the populations cannot be resolved by one sin­
gle QCMD trajectory. Thus, specific surface hopping extensions of QCMD 
based on trajectory bundles have been proposed [11]. 

The construction of such new models as well as efficient numerical algo­
rithms requires a detailed knowledge of the QCMD dynamics in the case of 
non-adiabatic changes in the populations. In [5], the limit system as well 
as an asymptotic expansion up to first order in the perturbation parameter 
is given, see §4. But it turns out that the first order correction terms of 
the populations are just high-frequency oscillations around the initial pop­
ulations without any non-oscillatory drift. What matters even more is that 
in the case of only one initially occupied quantum state these first order 
correction terms vanish altogether. 

Now, this article presents in a theorem (§3) the second order correction 
terms of the asymptotic expansion of the populations under the condition 
that only one state is initially occupied. The later assumption corresponds 
well to surface hopping extensions of QCMD [11]. 

The proof of the theorem follows closely [5] in transforming the quantum 
subsystem into action-angle variables, see §4 and §5. Finally, the result 
is numerically illustrated in application to a QCMD version of the non-
adiabatic avoided crossing example (§6). 



The QCM model and its limit system 

The Quantum-Classical Molecular Dynamics (QCMD) model describes the 
dynamics of quantum degrees of freedom non-linearly coupled to classically 
modeled degrees of freedom. The quantum degrees of freedom are repre­
sented by a wavefunction ipe = ij)e(x,t) at time t and location x. It obeys 
Schrödinger's equation with a parameterized coupling potential V which de­
pends on the location qe = qe(t) of the classical degrees of freedom. This 
location qe (t) is the solution of a classical Hamiltonian equation of motion 
in which the t ime-dependent potential arises from the expectation value of 
V with regard to ipe. Thus, we obtain the following equations of motion of 
the QCMD model1 

iedt H(q)i \=o = ip* 

q\ = -gra,dq(ipeV(q)ipe) qe{0) = q, q£{0) = q 

where H = H(q) is the (/-parameterized Hamiltonian 

H{q) = -±AX + V(x,q) 

When considering a physical system containing a light "quantum" particle 
with associated mass m and a heavier "classical" particle with mass M, the 
smallness parameter e [10] corresponds to e = yJm/M. 

Throughout the present paper, we make use of the decomposition 

H(V) = ExEil) P(Q) (2) 

where Pk(q) is the orthogonal projection onto the eigenspace associated with 
eigenvalue E^q) of H(q). Wi th respect to a quantum state i , the number 

= {ip^Px^t) is the population of the energy level E\ 
In recent years, the approximation properties of the QCMD model (1 

with respect to a complete quantum dynamical description were thoroughly 
analyzed [3]. Additionally, the adiabatic limit equation of (1) governing 
l i m ^ o ^ e was determined [4, 5]. This limit equation can be motivated by 
referring to the quantum adiabatic theorem which originates from work of 
B O R N and F O C K [2, 9]: The classical position q influences the Hamiltonian 

very slowly compared to the time scale of oscillations of ipe, in fact, "infinitely 
slowly" in the limit e —> 0. Thus, in analogy to the quantum adiabatic 
theorem, the populations of the energy levels should remain invariant during 
the evolution: 

lim {t) = ]im{if>eP(q)il>e) = = {•P(q)A) 

1 Subsequently, it will be of advantage to explicitly denote the dependence of its solution 
(q,Qipe) on the parameter e 



The constant i?£ is the initial population of level Ex and thus computable 
from the initial data. According to [4, 5 , the limit solution qBO = l i m e 9 
is given by: 

BO = - g r a d ^ A ^ B o ) gBO(0) = q, qBO(0) = q (3) 

whenever the following assumption on the eigenspaces and eigenenergies of 
H(q) is satisfied: 

A S S U M P T I O N A The spectral decomposition (2) of H depends smoothly on 
q and the transversality condition ^{E{qBO — Erj{qBO)) / 0, A / r\. 

We refer to equation (3) as to the time-dependent Born-Oppenheimer (BO) 
model of adiabatic motion. Notice that Assumption A does not exclude 
energy level crossings ( ie . , positions qc at which E(qc) = Ev(qc) for some 

The analysis leading to this result was done twofold: An elaborate ap­
proach [4, 5] uses a density matrix formulation of QCMD and the tech­
nique of weak convergence. Under the assumption A stated above, this 
allows to proof a strong convergence of the classical coordinates q qBO 

and qe> qBO as well as a weak* convergence of the wavefunction ipe 0. 
A different approach (Appendix C in [5]) utilizes some stronger condi 

tions — that is, an exclusion of energy level crossings. This way yields 
not only a strong convergence of the populations d£ and the corresponding 
phases but also higher order correction terms of the asymptotic expansion 
in e which cannot be obtained on the first way. Thus, we will follow the 
later in our construction of higher order terms. 

Theorem on second order transitions 

In the following, we restrict ourselves to finite-dimensional Hilbert spaces, 
making H a Hermitian matrix. The reader may think of a finite dimensional 
subspace of the original state space. This subspace may, e.g., correspond to 
a suitable discretization in space. 

A S S U M P T I O N B We assume all eigenspaces of H(qe) and H(qBO) to be sim­
ple and the corresponding orthonormal eigenfunctions e real valued 

H(q)e(q) (q)e{q) (e{q),e(q)) = 5 

where 8 denotes the Kronecker delta. 

R E M A R K 1 Assumption B can always be satisfied for finite dimensional 
Hamiltonians H. Complex valued eigenfunctions would additionally require 
the calculation of Berry phases along the solution. 



Instead of A s u m p t i o n A we exclude cases with symmetric resonances of 
order four: 

A S S U M P T I O N NO symmetric resonances of order four along qe and qBO 

M E{q) Em(q) Em{q) 

for A ^ 77, A ^ , A / ? and 

REMARK 2 This condition includes the exemption of energy level crossings 
( ie . , resonances of order two) 

An expansion of the quantum wavefunction i in the (adiabatic) eigenfunc-
tions e(q) yields 

A 

with initial values 

A 

where we have used the previously defined populations 1?̂  and some cor 
responding phases p^. We will limit the analysis to cases where just one 
eigenstate — here and in the following labeled [ — is initially occupied, i e , 

A S S U M P T I O N D ( 0 ) = = 5 

Under these conditions, we might proof the following theorem on the second 
order correction term of the populations. 

T H E O R E M 1 Let assumptions B, C and D apply and consider an initially 
unoccupied state r / [x. For t < tmax the population of state n is up to the 
second order in e: 

W \AEZ(t)J \AEZ(0)J 

2j BZ(t) Z(0) > ^ f s W ^ (5) 
" 2 AEZ(t)EZ(0)COS ] W d s 

+ ö{e3) 

BZ(t) =Y{e^{qBo(t)) (qBO(t))) • <g0{t) 

EZ(t) = Ev(qBO(t)) - E(qBO{t)) 

and 



The proof of Theorem 1 is presented in the subsequent two sections. At first, 
action-angle variables are introduced allowing for an asymptotic expansion 
of the QCMD equations of motion ( ) . Next, we calculate the second order 
perturbation of the population. 

symptotic expansion of QCM equations 

In this section, we will closely follow F . A. BORNMANN (Appendix C of [5]) 
in the introduction of an action-angle formalism for the quantum part of 
the QCMD equations.2 Therefore, we split the quantum wavefunction into 
a scaled real - and imaginary part: 

1 z i( 
A / 

Introducing new locations (q€, ze)
T and momenta (q ()T yields a canonical 

system with Hamiltonian function * 

n ( q , q Q = h*? hH{q ± e - H ( q ) (6) 

Using the well-known technique of action-angle variables [1] in the fast 
degrees of freedom —that is, the quantum variables we obtain actions 
and the corresponding angles ^ via: 

^ ^ c o s i {q 

with initial values i?^ (0) = $* and p (0) = </?*. The action variable 1?̂  is, in 
fact, the population of energy level E\ as already defined in § 2. A Hamilto­
nian system in the action-angle variables is obtained by applying a canonical 
transformation [1] (qe,qe,ze, ££) —> (ge ,pe , f?e, < ê) to the original system with 
Hamiltonian function (6). This symplectic transformation which has to 
act on the whole phase space (q, q z Q)— might be constructed employing 
the generating function [1] 

(q,P, ) = p — , e(qe)) tan( 

via Ce dS/dzej d£ dS/dipe and qe dS/dqe. Obviously, the trans 
formation to action-angle variables influences the classical variables as well 
We obtain a modified momentum 

= g £ ^ s i n l e " )) d(q (7) 
\, 

The r e e r may study [ ] f r a more c m p r e s i v e a d detailed presentatio 



with ^ (q) (e\(q) (q)) and a transformed Hamiltonian function 

Ü = H { q P e ) 

£ sin(e_ )) <(& 

^ E / ^ s i n ( )) <(&) 

The canonical equations 

T T TT ^ v 

finally lead to the equations of motions in the action-angle variables 

(q) Y J ^ M ) ) d ( q ) + ö (g) 

# 

/ cosle" )) d(q) 

/ ^ M ) ) d i ( q ) d ^ ( q 

M ä ) 4 M ) < f a ) 

^ s i n l e " )) d(q ( 9 ) 

(^ ) 

0) 
e E M )) ^ (g) + 0 

A, 

Excluding symmetric energy level crossings of order four (assumption C) 
and making use of near-identity averaging transformations [8], one does not 
only obtain the above stated strong convergence of the QCMD model versus 



the Born-Oppenheimer model but also the first order correction terms [5 

/W^ ^ ^ ^ K ^ f 

0 ( e 2 

Qe = 9 B O + 0 

^ / ^ s i n ^ ^ ) ) ( ? ) + o 

where BO denotes the Born-Oppenheimer phase, i e . , the solution to 

B O ( * ) = ^ ( 9 B O ( < ) ) B O ( 0 ) = 

Obviously, the highly oscillatory first order correction terms vanish in the 
case of only one initially occupied state (assumption D). 

Proof of Theorem 

Instead of applying again near-identity averaging transformations, we try 

to simplify the argumentation by focusing just on the population dynamics. 

Considering the results of §4, let us introduce ( second order correction 

terms 8 , 6 and 8q 

BO 0 ( e 

*(0) + C ( 

BO 8g 0 ( 

ö( 

11 

The reader might have noticed that we already have applied condition D 
initially, only state ß is occupied. Immediately, we conclude that 

+ 0 e 2 ) forA = //, 

/fr+ö{ for A ^ 

e2) forA = r? = //, 

/J + ö( for A = ß and r} / 

^ß^+ö for A + ß and r} = 

for A / ß and r 

2) 

which helps us a lot in the subsequent analysis. 



At first, let us have a closer look onto 6p and 8q{ before we determine 
8d. Under condition B, C and D we obtain in a straightforward calculation 
based on inserting (7), (11) and (12) into (8) the second order correction  

to the phase of the initially occupied state 

B o S m ( e - ^ ^ ) ) A ^ + ° ( e ) 
3) 

Next, we compute via ( 0 ) an 0( -approximation of pe analogously to 
the previous calculation of 

(t) =qi0(t) ds (qBO 

ds ^ ^Sg 

V ds Jl sm^ ^ £0)) 
\ 

A/ 
BO 

+ 0{ 

This allows us to calculate from (9) the following integral equation for öq 

WW = ds {qBo 

ds{qBO5q 

V ds &JOi sin^ BO ^ ) ) 

I  

Y s i n ^ " lQ ^ ) ) (e(qBo) (qBO)) 
S 

4) 

Now, we come back to the population dynamics, that is, we analyze 



LEMMA 2 Consider an initially unocupied state r/, i.e. r\ / ß, and let 
assumptions , C and D apply, then obeys the integral equation 

(t) =~ Z exp ( %0 ^ 

Y BO exp ie- ^ BO fi^ 

^ e x p ( i e ^ ^ ) ) 

Y ^ ( 9 B O ( « ) ) - (qBO(s))5q(s)ds 

2S exp (ie & & ) ) 

V & sin^" ^ ^))J^ds 

+ 0 
5) 

ROOF Let us consider an expansion of the wavefunction ipe in the 
eigenfunctions of H(q 

A 5 > ( g ) 6) 
A 

For the resulting ordinary differential equation for 

ie E 1 J ( q ) i e ( e n ( < l ^ ^ ) ) ( i 

we make the following ansatz (with 

(t) W e x p i e E^q^ds 7) 

We obtain a differential equation for 

( i ) = Y e x p ^ (s))ds^(t) 8) 

w i t h f = - ^ M f c ) , ^ ? * ) ) ^ and ^ ( s ) := E A ( 9 e ( S ) ) - ^ (g e ( a ) ) . 
Notice that I? vanishes due to the antisymmetric character of (eT)(q) (q)). 



Equation ( 8 ) is identical to the integral equation 

m = ( O ) 

9) 

simple comparison of ( 6 ) , ( 7 ) with (4) returns 

W ^ e x p H e " ^ ) exp ie" {q{s))dX 

Applying again (11) and ( 2 ) yields 

( i ) ie i e ( q B O ) 6 q d s + 0 { f o \ = 

The contribution of ( 3 ) eases the case A = [x even further 

(t) ieY ^ ^ ( ^ ^ ) ) / ^ 

The completion of the proof is obtained by inserting these results into ( 9 ) 

Obviously, we have to compute the zeroth order of the solution of the 
integral equation (15) to prove Theorem 1. Unfortunately, (15) depends on 
6q€, itself as well a solution of integral equation (14). Thus we have to deal 
with two coupled integral equations. A simple transformation shows that 
this system is identical to an inhomogeneous, nonlinear Volterra integral 
equation of second kind. Existence and uniqueness of its solution for finite 
times t < t m a x can be proven [6] via the smoothness of its kernel and via a 
Lipschitz condition. A Picard-iteration of the system of integral equations 
yields an )approximat ion of its solution for the initially unoccupied state 

Immediately, we obtain now the result of Theorem 



umerical example 

n the subsequent, let us consder the particularly s m p l e test case where the 
quantum subsystem can be described as a two state system and the classical 
subsystem is one-dimensional. This example is the quantum-classical ana­
logue of a purely quantum dynamical avoided crossing example [11]. Thus, 
g G K and the Schödinger equation has the form: 

ie H(q)ip, i />eC 

with = H(q) denoting a 2 x 2 Hermitian matrix: 

Herein, we choose the potentials to be V\(q) = q and V2(q) = 1/q- The 
interpretation is the following: V\ describes a harmonic bond, V2 a repulsive 
potential, and c a weak coupling between these two (electronic) configura­
tions. We choose e = 0.01 which is a suitable scaling for electrons. Further­
more, we set c = 0.1. We are interested in the following initial conditions: 
Let ip(t = 0) be the eigenvector to E\ of H(q0), q0 = 0.4 and po = 0.5. 

For the choices made, Fig. 1 (a) shows the potentials as well as the en­
ergy eigenvalues E {q) and E (q) < E{q) of H(q). Notice that 

0.4 0.6 0.8 1 1.2 1.4 -0.4 0.6 0.8 1 1.2 1.4 

F i g u r e : (a) Potentials V\ and V2 (solid lines) and energy levels E\ and E2 (dashed 

lines) versus q (b) Phase space trajectories of Born-Oppenheimer simulation solid line 

and of the classical subsystem of the QCMD calculation dashed line) 

there is some "transition zone" around q = 1 where the gap between the two 
energy levels is minimal and the coupling matrix entry significantly large. 
In this "transition zone" (at around t ft! 0.4), the difference in the dynam­
ics between Born-Oppenheimer and QCMD motion becomes apparent (see 
Fig. 1 (b ) ) . 



For this avoided crossing example, we have computed the QCMD as well 
as the Born-Oppenheimer dynamics. Based on the BO motion, we have 
calculated the second order correction terms (5) of the population of the 
initially unoccupied state i?^. A comparison between this analytically ob­
tained excitation dynamics and the QCMD population ^ of the simulation 
is given in Fig. 2 (a) and (b) for different time spans. 

Obviously, the approximation is just valid in a region, where the QCMD 
motion is close to the corresponding BO motion. Thus, the second order 

3 

2 

1 

"0 0.1 0.2 0.3 "0 0.2 0.4 0.6 

F i g u r e 2: Population of initially unoccupied state $1 versus time t for different time 

spans. Population $j; computed in a QCMD simulation (solid lines and via the second 

order approximation presented in Theorem 1 (dashed dotted lines 

approximation based on the expansion around the Born-Oppenheimer so­
lution fails in the transition zone. Nonetheless, the initial excitation of the 
second level is correctly represented. This might help as an indicator of a 
beginning excitation of a previously unoccupied energy level as, for example, 
in a QCMD surface hopping algorithm [11] 
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