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Hybrid Monte Carlo with adaptive temperature choice:
efficient conformational analysis of RNA
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Abstract

A hybrid Monte Carlo method with adaptive temperature choice is presented, which exactly generates the distribution of
a mixed-canonical ensemble composed of two canonical ensembles at low and high temperature. The analysis of resulting
Markov chains with the reweighting technique shows an efficient sampling of the canonical distribution at low temperature,
whereas the high temperature component facilitates conformational transitions, which allows shorter simulation times. 1999
Published by Elsevier Science B.V. All rights reserved.

1. Introduction

Efficient sampling of phase space for complex bi-
ological systems requires crossing of energy barriers,
which are large compared to the thermal energy. Dif-
ferent theoretical approaches exists in this context [1,
2]. The energy barriers separate clusters in configu-
ration space [3], biochemically known as conforma-
tions with respect to similarities in structure and func-
tion. RNA molecules are highly flexible and appear
in different conformations depending on environmen-
tal conditions. Some conformations exhibit biochemi-
cal functions as catalytic activity, specific recognition
and inhibition of other molecules. The triribonucleo-
tide adenylyl(3′–5′)cytidylyl(3′–5′)cytidin [r(ACC)],
a small RNA segment, serves as the model system of
this study. Its global structure can be roughly described
by eight parameters per nucleotide (Fig. 1).

1 E-mail: cordes@zib.de.

Fig. 1. The triribonucleotide adenylyl(3′–5′)cytidylyl(3′–5′)cytidin
[r(ACC)]. Small greek letters refer to the set of torsion angles,
which is necessary for a rough reconstruction of the nucleotide’s
configuration.

2. Method

Given a separable HamiltonianH and a potentialV ,
which is parameterized in this study according to the
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Fig. 2. ATHMC for r(ACC) in the mixed-canonical ensemble. The simulation was performed forT − = 295 K, T + = 400 K and
c=−1121 kJ/mol. The temperatureT , and for the cytidylyl group the torsion angleγ are displayed at every tenth step.

semi-empirical force field GROMOS96 [4], adaptive
temperature hybrid Monte Carlo (ATHMC) samples
an ensemble of configurations described by a mixed-
canonical distributionµ(x)= µ∗(x)/Zµ with 2

µ∗(x)= 1
2

(
exp

[−β−(V (x)− c)]
+ exp

[−β+(V (x)− c)]), (1)

calibration parameterc and normalizing constantZµ,
according to the following scheme:
(1) Draw momentap from a normal distribution at

inverse temperatureβ(x), which is known from
the previous step.

(2) Propose new coordinatesx ′ and momentap′
by integrating the system with a reversible and
volume preserving discretized flow, e.g., choosing
the Verlet integrator.

(3) Compute new inverse temperature due to

β(x)=− lnµ∗(x)
V (x)− c .

(4) Accept new coordinatesx ′ with a probability

2 β = 1/(kBT ), kB = Boltzmann’s constant.

Pacc=min

(
1,
µ∗(x ′)exp[−β(x ′) T (p′)]
µ∗(x)exp[−β(x)T (p)]
×
(
β(x ′)
β(x)

)s/2)
, (2)

otherwise stay in old coordinatesx; s denotes the
number of degrees of freedom.

Temperature choice and acceptance probability ex-
ploits the special structure of the mixed-canonical en-
semble. Because detailed balance is satisfied for any
arbitrary temperature, we search for a temperature
functionβ = β(x), which depends on the actual poten-
tial energy in such a way, that the Boltzmann factor at
β(x) is equal toµ∗(x). Whenever the potential energy
increases in the vicinity ofc, kinetic energy is pumped
into the system according to the choice of higher tem-
perature for the generation of momenta. Additionally,
proposals with higher energy are accepted more eas-
ily in µ and the system can move towards higher en-
ergy regions, where conformational changes happen
more often. Because thermodynamical averages of the
canonical distribution have to be calculated by the
reweighting method, the low temperature part is im-
portant for the statistical reliability. For optimal tem-
perature fluctuation in terms of transitions and sam-
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Fig. 3. ATHMC for r(ACC) in the mixed-canonical ensemble.
Probability distribution of energy (- - -) before and (—) after
reweighting.

pling, c should be chosen slightly above the averaged
potential energy.

3. Results

The dependence between temperature choice and
conformational transitions in ATHMC is shown in
Fig. 2, where we have focused on a section of a
longer run (for details see [5]). Theγ torsion angle
at the beginning is around 120◦. The heating of the
system due to the choice of momenta according to
higher temperature induces the necessary transition of
γ around step 4500. A conventional HMC run was
unable to induce a transition to another state [5].

The fact, that ATHMC samples at different tempera-
tures with sufficient rates, is furthermore illustrated by
the probability distribution of energy before and af-
ter reweighting (Fig. 3). Without reweighting we ob-

serve a maximum around the averaged potential en-
ergy, but another distribution peak for higher ener-
gies, exactly enforced by the choice of higher tem-
peratures and the non-negligible acceptance at higher
energies. Fig. 3 makes the strategy of generalized en-
sembles very clear, that is to overcome energy barri-
ers by sampling over an extended energy range, which
finds its extreme realization in the multi-canonical ap-
proach [2]. ATHMC also stretches the energy distribu-
tion, but it is conceptually still connected to the canon-
ical distribution of interest.

4. Conclusion

The adaptive temperature choice coupled with a
generalized, mixed-canonical ensemble was discussed
to be responsible for efficient sampling properties.
Like all other strategies based on generalized ensem-
bles the proposed algorithm cannot relinquish pre-
and postprocessing procedures. But preprocessing in
ATHMC needs only one parameter,c, which corre-
sponds to the averaged potential energy of the system.
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