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Abstract

Markov jump processes can be used to model the effective dynamics of observables in applications

ranging from molecular dynamics to finance. In this paper we present a novel method which allows

the inverse modeling of Markov jump processes based on incomplete observations in time: We

consider the case of a given time series of the discretely observed jump process. We show how to

compute efficiently the maximum likelihood estimator of its infinitesimal generator and demonstrate

in detail that the method allows to handle observations non-equidistant in time. The new method

is based on the work of Bladt and Sørensen (J. R. Statist. Soc. B, 39, 2005) but scales much more

favorably than it with the length of the time series and the dimension/size of the state space of

the jump process. We illustrate its performance on a toy problem as well as on data arising from

simulations of biochemical kinetics of a genetic toggle switch.
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I. INTRODUCTION

In many application areas it is of interest to derive a reduced model of the effective

dynamics of observables by a finite dimensional Markov process. In this paper we study

the inverse problem of fitting Markov jump processes to discrete time series in situations

where the time lags between consecutive observations are not necessarily equidistant. Such

a situation arises naturally in a number of application, e.g. in finance or (bio-)chemical

kinetics. In the case of equidistant time lags, several approaches can be found in the lit-

erature, e.g. [1–5]. In [6], we summarize, compare and discuss these approaches in detail.

Furthermore, we therein present an enhanced version of the approach presented in [1, 5]:

the enhanced maximum likelihood estimation method (enhanced MLE-method, see [6–8]

for different variants) which drastically increase the efficiency of the method. However, the

discussion in [6] is limited to time series with equidistant steps in time. In this paper, we

discuss the generalization of the enhanced MLE-method for observations non-equidistant in

time.

The likelihood approach is designed for the analysis of time series generated by first

order Markov processes. But many physical processes exhibit long-term memory effects

and, hence, it is not clear in advance if the time series under consideration is Markovian

[9–13]. One option to handle the non-Markovian case within the likelihood framework is to

consider a new process Z(t) = (X(t), X(t + τ), ..., X(t + (m− 1)τ)), τ > 0 where the order

m > 1 respresenting the memory depth mτ of the original process X(t) is known or has to

be estimated from the time series. Then the new process is first order Markovian and the

associated time series can be investigated with the MLE-method. However, this option is

restricted to the case of equidistant observation times. There are some recent developments

indicating that this restriction can be overcome, but their application is limited to time

series with extremely short observation time lags [14].

The paper is organized as follows. After introducing some notation in section II, we revisit

the likelihood approach in section IIA. The main result of this paper – the derivation of the

enhanced MLE-method for observations non-equidistant in time and the resulting algorithm

– is presented in section III. Finally, in section IV we illustrate the performance of the new

method in application to a small toy example and to data arising from simulations of the

biochemical kinetics of a genetic toggle switch. The paper ends with concluding remarks in
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section V.

II. CONCEPTUAL FRAMEWORK AND NOTATION

Let us first consider a simple introductory example. Imagine an organism with two states:

healthy (state 1) and sick (state 2), i.e., we have d = 2 states. Healthy individuals may stay

healthy or get sick; sick ones may stay sick or get healthy. The rate of getting sick if healthy

is α, say, while the rate of getting healthy if sick is β. In a Markov model this system is

characterized by a 2× 2 rate matrix

L =


 −α α

β −β


 ,

where the entry Lij is the transition rate from state i into state j, and where the sum

of the transition rates in each row is 0. If we wait for a period t starting in 0, then the

transition probabilities pij(t) from state i to state j during this period are given by the

entries of the transition matrix P (t) = exp(tL). Asymptotically, that is for t → ∞, the

process converges to a stationary distribution π (corresponding to the left eigenvector of

L associated to eigenvalue 0) with a proportion π2 = α/(α + β) sick and π1 = β/(α + β)

healthy.

In order to formalize this, let {X(t), t ≥ 0} be a continuous-time homogeneous Markov

jump process on a finite state space S ∼= {1, . . . , d}. The transition matrix of {X(t), t ≥ 0}
is the time-dependent matrix

P (t) =
(
pij(t)

)
i,j
∈ Rd×d, pij(t) = P(X(t) = j | X(0) = i)

containing the transition probabilities pij(t). If the limit

L = lim
t→0

P (t)− Id

t

exists, then the transition matrix can be expressed as the matrix exponential

P (t) = exp(tL)

and L is called the infinitesimal generator or rate matrix of the Markov process {X(t), t ≥ 0}.
A matrix L ∈ Rd×d generates a continuous-time Markov process if and only if all off-diagonal
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entries are nonnegative and the sum over each row equals zero, and the set of all generators

will be denoted by

G =

{
L = (lij)i,j ∈ Rd×d : lij ≥ 0 for all i 6= j, lii = −

∑

j 6=i

lij

}
. (II.1)

A stationary probability distribution π = (π1, . . . , πd)
T of a Markov process X(t) satisfies

the global balance equation ([15], Sect. 8.3.2)

0 = πT L = LT π, (II.2)

or written in expanded form,

−πilii =
∑

k 6=i

πklki, i = 1, . . . , d.

In the following, we denote an incomplete observation of a Markov jump process X(t) by

Y = {y0 = X(t0), . . . , yN = X(tN)}, t0 < t1 < . . . < tN

and the observation time lags by τk = tk+1 − tk.

Remark 1. Continuous-time Markov jump processes are quite prevalently used in physics,

chemistry, or biology. Examples are spin system or lattice gas dynamics, Master equations in

systems biology (like the system discussed in Sec. IVB) or polymerization modelling [16–18],

or birth-death models on networks, e.g., in bioinformatics [19, 20].

A. Likelihood approach revisited

In the likelihood approach, introduced in [1] and re-invented by Bladt and Sørensen in

[5], a generator L̃ for a given time series is determined such that L̃ maximizes the discrete

likelihood function (II.5) for the time series. For the convenience of the reader, we recall

the likelihood function associated with the case of a complete and incomplete observation

in time of a Markov jump process, respectively.

Suppose that the Markov jump process X(t) has been observed continuously in a certain

time interval [0, T ]. Let the random variable Ri(T ) be the time the process spent in state i

before time T ,

Ri(T ) =

∫ T

0

χ{i}(X(s))ds,
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where the characteristic function χ{i}(X(s)) is equal to one if X(s) = i and zero otherwise.

Moreover, denote by Nij(T ) the number of transitions from state i to state j in the time

interval [0, T ]. The continuous time likelihood function Lc of an observed trajectory {Xt :

0 ≤ t ≤ T} is given by [5]

Lc(L) =
d∏

i=1

∏

j 6=i

l
Nij(T )
ij exp(−lijRi(T )) (II.3)

and the maximum likelihood estimator (MLE) L̃ = (l̃ij), i, j ∈ S, i.e. the generator which

maximizes the likelihood function (II.3), takes the form

l̃ij =





Nij(T )

Ri(T )
, i 6= j

−∑
k 6=i l̃ik, i = j.

(II.4)

In the case where the process has only been observed at discrete time points 0 = t0 <

t1 < . . . < tN = T the process between two consecutive observations is hidden and, hence,

the observables Ri(T ) and Nij(T ) are unknown. The discrete likelihood function Ld of a

time series Y = {y0 = X(t0), . . . , yN = X(tN)} is given in terms of the transition matrix

P (t) = exp(tL)

Ld(L) =
N−1∏

k=0

pyk,yk+1
(τk) =

r∏
s=1

∏
i,j∈S

[pij(τs)]
cij(τs) , (II.5)

where τs ∈ {τ1, . . . , τr} is an observed time lag and the entry cij(τs) in the frequency matrices

C(τs) = (cij(τs)), i, j ∈ S, defined according to

cij(τs) =
N−1∑
n=1

χ{i}(X(tn))χ{j}(X(tn+1))χ{τs}(∆tn)

provides the number of consecutively observed transitions in Y from state i to state j in

time τs. Unfortunately, no analytical maximizer of the discrete likelihood function (II.5)

with respect to the generator is available.

Nevertheless, the discrete likelihood Ld can iteratively be maximized by means of an

Expectation-Maximization algorithm (EM-algorithm). The idea is to assume that the hidden

(not observed) process behind the incomplete observations in Y is given by a initial guess,

say L̃0. Then averaging over all possible realization of L̃0 conditional on the observation

Y allows to compute the conditional expected values of Ri(T ) and the Nij(T ). This step is
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called expectation step (E-Step). Formally, the E-Step consists of the computation of the

conditional log-likelihood function

G : L 7→ EL̃0
[logLc(L)|Y ] , (II.6)

where L ∈ G. Notice that for algebraical simplicity and without loss of generality the log-

likelihood function, logLc, is considered. The crucial observation is now that the maximizer

(M-step)

L̃1 = arg max
L∈G

G(L; L̃0)

of the conditional log-likelihood function G(L; L̃0) satisfies [21]

Ld(L̃1) ≥ Ld(L̃0).

Hence, taking the maximizer as a new guess of the hidden process, the iteration of the two

described steps allows to approximate a (local) maximum of the discrete likelihood function

Ld.

For our particular likelihood function (II.3) the conditional log-likelihood function G in

the E-Step reduces to

G(L; L̃0) =
d∑

i=1

∑

j 6=i

[
log (lij)EL̃0

[Nij(T )|Y ]− lijEL̃0
[Ri(T )|Y ]

]
(II.7)

and the maximizer L̃ = (l̃ij), i, j ∈ S of (II.7) takes the form (cf. (II.4))

l̃ij =





EL̃0
[Nij(T )|Y ]

EL̃0
[Ri(T )|Y ]

, i 6= j

−∑
k 6=i l̃ik, otherwise.

(II.8)

The non-trivial task which remains is to evaluate the conditional expectations EL̃0
[Nij(T )|Y ]

and EL̃0
[Ri(T )|Y ], respectively. Exploiting the Markov property and the homogeneity of

the Markov jump process the conditional expectations in (II.7) can be expressed as sums [5]

EL̃0
[Ri(T )|Y ] =

r∑
s=1

d∑

k,l=1

ckl(τs)EL̃0
[Ri(τs)|X(τs) = l, X(0) = k] ,

EL̃0
[Nij(T )|Y ] =

r∑
s=1

d∑

k,l=1

ckl(τs)EL̃0
[Nij(τs)|X(τs) = l, X(0) = k] .

(II.9)
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Thus, the computation of EL̃0
[Nij(T )|Y ] and EL̃0

[Ri(T )|Y ] is reduced to the computation

of EL̃0
[Ri(τs)|X(τs) = l, X(0) = k] and EL̃0

[Nij(τs)|X(τs) = l, X(0) = k] which is explained

in the next section.

The idea is to approximate the hidden (not observed) information between the incomplete

observations in Y by the expected (averaged) information conditional on the data and on a

given guess of the hidden process.

III. ENHANCED COMPUTATION OF THE MAXIMUM LIKELIHOOD ESTI-

MATOR

In [8], it has been realized that the conditional expectations EL [Nij(t)|X(t) = l, X(0) = k]

and EL [Ri(t)|X(t) = l, X(0) = k] can analytically be expressed in terms of the generator

transition matrix P (t) = exp(tL). The following identities are proved

EL [Ri(t)|X(t) = l, X(0) = k] =
1

pkl(t)

∫ t

0

pki(s)pil(t− s)ds,

EL [Nij(t)|X(t) = l, X(0) = k] =
lij

pkl(t)

∫ t

0

pki(s)pjl(t− s)ds.

(III.1)

The key observation now is that an eigendecomposition of the generator L leads to closed

form expressions of the integrals in (III.1). To be more precise, consider the eigendecompo-

sition of a generator L, that is

L = UDλU
−1, (III.2)

where the columns of the matrix U consist of all eigenvectors to the corresponding eigenvalues

of L in the diagonal matrix Dλ = diag(λ1, . . . , λd). Consequently, the expression of the

transition matrix P (t) simplifies to

P (t) = exp(tL) = U exp(tDλ)U
−1

and we finally end up with a closed form expression of the integrals in (III.1), that is

∫ t

0

pab(s)pcd(t− s)ds =
d∑

p=1

uapu
−1
pb

d∑
q=1

ucqu
−1
qd Ψpq(t), (III.3)

where the symmetric matrix Ψ(t) = (Ψpq(t))p,q∈S is defined as

Ψpq(t) =





tetλp if λp = λq

etλp−etλq

λp−λq
if λp 6= λq.

(III.4)
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Combining all issues, we finally end up with the enhanced MLE-method for non-equidistant

time lags as stated in Algorithm 1.

Algorithm 1 Enhanced MLE-method for non-equidistant time lags
Input: Time series Y = {y0 = X(t0), . . . , yN = X(tN )}, the set of observed time lags {τ1, . . . , τr},

the tolerance TOL, initial guess of generator L̃0.

Output: MLE L̃.

(1) Compute eigendecomposition (III.2) of L̃k.

(2) E-step: FOR ALL τs ∈ {τ1, . . . , τr} DO

i) Compute the auxiliary matrix Ψ(τs) (III.4).

ii) Compute for i, j, l, k = 1, . . . , d the conditional expectations

EL̃k
[Ri(τs)|X(τs) = l, X(0) = k],

EL̃k
[Nij(τs)|X(τs) = l, X(0) = k] , i 6= j via (III.3),(III.1).

END FOR

iii) Compute EL̃k
[Ri(T )|Y ] and EL̃k

[Nij(T )|Y ] via (II.9).

(3) M-Step: Setup the next guess L̃k+1 of the generator by

l̃ij =





EL̃k
[Nij(T )|Y ] /EL̃k

[Ri(T )|Y ], i 6= j

−∑
k 6=i l̃ik, otherwise.

(4) Go to Step (1) unless ‖L̃k+1 − L̃k‖ < TOL.

The computational cost of a single iteration step in Algorithm 1 is O(r ·d5) where r is the

number of the different observed time lags and d is the dimension of the finite state space

S. We want to emphasize that the algorithm in principal works even in the case of pairwise

different time lags, i.e. r = N − 1 where N is the number of observations, but in practise

this would lead to unacceptable computational costs.

IV. NUMERICAL EXAMPLES

In this section we demonstrate the performance of the enhanced MLE-method for non-

equidistant observation times on a test example and for a process arising in the ap-

proximation of a genetic toggle switch. In both examples, we re-identify a generator L

of a Markov jump process from an associated artificially generated incomplete observa-

tion. To be more precise, we drew from a generator L a continuous time realization
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{X(t), 0 ≤ t ≤ T} for a prescribed T > 0 and extracted out of it an incomplete obser-

vation Y = {y0 = X(t0), . . . , yN = X(tN)} with respect to a prescribed set of time lags

{τ1, . . . , τr}, r > 1, as follows: Suppose tk < T is the observation time last considered then

the next observation time tk+1 is given by tk+1 = tk + τ where τ is uniformly drawn from

the set of time lags {τ1, . . . , τr}. We terminate that procedure if tk+1 > T .

A. Test example

In the first example we demonstrate the performance of the enhanced MLE-method on

a small toy example. To this end we consider a five-state Markov jump process given by its

generator

L =




−6 2 2 1 1

1 −4 0 1 2

1 0 −4 2 1

2 1 0 −3 0

1 1 1 1 −4




∈ G. (IV.1)

For the reconstruction of L, we extracted from a realization of total time T = 3.7 · 106 a

time series of N = 107 observations with respect to the set of time lags {τ1 = 0.01, τ2 =

0.1, τ3 = 1}. In (IV.2) we state the estimated generator resulting from Algorithm 1 with the

prescribed tolerance TOL = 10−6. One clearly can see that L̃ approximates the original one

very well.

L̃ =




−5.9803 2.0054 1.9863 0.9911 0.9975

1.0002 −4.0018 0.0010 0.9938 2.0068

0.9921 0.0001 −3.9768 1.9938 0.9909

1.9909 0.9951 0.0004 −2.9871 0.0006

0.9982 1.0051 0.9993 1.0050 −4.0075




∈ G. (IV.2)

Next, we address the question of how the length of the respective time series and the

number of different time lags do affect the outcome of the estimation procedure. To make

things comparable, we generated three different time series of length N = 108 with respect

to the time lags sets {0.01}, {0.01, 0.1} and {0.01, 0.1, 1}, all subsampled from the same
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FIG. 1: Error of the estimated generator L̃ with respect to the original generator (IV.1), measured

in the 2-norm ‖L̃−L‖, as a function of the length N of the respective time series. Results for the

three different sets of time lags {0.01}, {0.01, 0.1} and {0.01, 0.1, 1} and the tolerance TOL = 10−6.

underlying continues time realization, respectively, and estimated for each time series a gen-

erator on the basis of the first N = 103, N = 104 . . . , N = 108 observed states, respectively.

Furthermore, we used for all estimations the same initial guess L̃0. In Figure 1 we illustrate

the dependence of the approximation error ‖L̃− L‖ (measured in the 2-norm) with respect

to the length N of the respective time series and the number of different time lags. The

graphs reveal that the error ‖L̃−L‖ decays exponentially with the length of the underlying

time series approximately as N
1
2 . The second observation is that the estimations based on

multiple observation time lags give better results than the estimation on a single time lag.

The authors are not aware of how to explain this observation.

B. Application to a genetic toggle switch model

In this example we apply the enhanced MLE-method to a birth-death process which arises

as a stochastic model of a genetic toggle switch consisting of two genes that repress each

others’ expression [22]. Expression of the two different genes produces two different types of

proteins; let us name them PA and PB. If we denote the number of molecules of type PA by

x and of type PB by y, then the authors in [22] proposed the following birth-death process

on the discrete state space S = (Z× Z) ∩ ([0, d1]× [0, d2]), d1, d2 > 0, given by its generator
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acting on a function f : S 7→ R

(Lf)(x, y) =c1(x + 1, y)(f(x + 1, y)− f(x, y)) +
x

τ1

(f(x− 1, y)− f(x, y))

+ c2(x, y + 1)(f(x, y + 1)− f(x, y)) +
y

τ2

(f(x, y − 1)− f(x, y)),
(IV.3)

where

c1(x + 1, y) =





a1

1+(y/K2)n , if x ∈ [0, d1)

0, if x = d1,

c2(x, y + 1) =





a2

1+(x/K1)m , if y ∈ [0, d2)

0, if y = d2

for describing the evolution of the numbers x and y of the respective proteins in the genetic

toggle switch. For the biological interpretation of the involved parameters see [22]. Moreover,

notice that the particular choice of the coefficients c1 and c2 on the right and upper boundary

can be seen as reflecting boundary conditions.

A single realization of the jump process generated by L models the evolution of the

numbers of proteins with respect to a specific initial value (x0, y0). The resulting evolution

of the associated probability density function (PDF) in time is governed by the Master-

equation: Let p0 ∈ R|S| be the initial PDF, then the PDF evolves in time according to

∂p(t)

∂t
= LT p(t), p(0) = p0, t > 0, (IV.4)

where LT denotes the transpose of the generator given in (IV.3). Its steady state π =

(πi), i ∈ S of (IV.4) is called stationary distribution.

It is well-known that in the limit of large protein numbers the dynamics of the jump

process or, more precisely, of the associated Master equation is given by a deterministic

model of the biochemical kinetics in terms of the associated concentrations. The authors

in [22] also consider this deterministic model in order to get a rough understanding of the

switch dynamics. The model consists of two coupled ordinary differential equations,

ẋ =
a1

1 + (y/K2)n
− x

τ1

,

ẏ =
a2

1 + (x/K1)m
− y

τ2

,
(IV.5)

where the parameters are the same as in the stochastic model (IV.3). For the numerical

experiments to be presented , we used the parameters a1 = 156, a2 = 30, n = 3,m =
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1, K1 = K2 = 1, τ1 = 1/7 and τ2 = 1/3. For this particular choice the deterministic

dynamics (IV.5) has two stable stationary points approximately at (x, y) = (20, 0) and

(x, y) = (0, 8) and one unstable point approximately at (x, y) = (6, 1). This insight in the

deterministic approximation helps to understand the following analysis of the jump process:

For the sake of illustration, the left panel of Figure 2 shows (− log πi), i ∈ S instead of

the stationary distribution π = (πi), i ∈ S of the jump process itself. All states with almost

vanishing stationary distribution are depicted by the white region. Moreover, in order to

emphasize the states of interest, we chose a log-log representation. The color scheme is

chosen such that the darker the color of a region the higher is the probability of finding the

process there. One can clearly see that the process spends most of its time near the two

stable stationary points approximately at (x, y) = (20, 0) and (x, y) = (0, 8).

In order to motivate the relevance of the following numerical experiment, suppose you

measure the numbers of proteins of types PA and PB discretely in time; without knowing the

generator, you are interested in fitting a Markov jump process. Assuming that the hidden

process is Markovian, one can apply the enhanced MLE-method.

Before we describe our numerical example in detail, notice that the structure of a transi-

tion matrix P , i.e. the occupation of the entries in P , does not allow to infer on the structure

of the underlying generator. For example, the generator of a dense transition matrix does

not have to be dense too. This means that there is some freedom in the choice of the struc-

ture of the estimated generator L̃. In this example, we follow two options. One option – we

call it option A – is to use the structure of the observed transition matrix as a blueprint for

the structure of L̃. In option B we exploited knowledge about the hidden process. We know

that the number of a gene’s molecule can only increase or decrease by one in a single reaction

while the number of the other one remains constant. Hence, it is natural to estimate the

entries l̃ij if the states i and j (the numbers) have been observed and are adjacent in the

sense of a single reaction.

For our numerical experiment, we generated a sufficiently long realization of the birth-

death-process on the state space Z2 ∩ ([0, 30]× [0, 30]) and extracted out of it a time series

of length N = 108 with respect to the set of time lags {τ1 = 0.0001, τ2 = 0.001,τ = 0.01}.
As one can see in Figure 2, the relative occupation of the states (right panel) is consistent

with the exact stationary distribution (left panel).

The generated time series visits 225 states of 900 possible states, hence we had to estimate
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FIG. 2: Left: Log-log contour plot of (− log πi), i ∈ S, where π = (πi), i ∈ S is the stationary

distribution of the process in (IV.3) computed via πT L = 0 (cf. (II.2)). Right: Log-log contour

plot of (− log π̂i), i ∈ S resulting from the observed distribution π̂ of states in the time series.

Result for N = 108.

a generator L̃ ∈ G on the state space S ∼= {1, . . . , 225}. In the following L̃A denotes the

estimated generator resulting from the estimation option A and L̃B via option B. For both

estimation options we used the tolerance TOL = 10−2. Figure 3 shows (− log πi), i ∈
S resulting from the stationary distribution associated with L̃A (left panel) and with L̃B

(right panel). From the viewpoint of stationarity, one can see that both estimated generators

are good approximations of the original one (compare left panel of Figure 2). In order to

make things more precise, we compare in the following the estimated generators with the

original generators of (IV.3) restricted on the set of observed states. Formally, we consider

the restricted generator L̄ ∈ G, S ∼= {1, . . . , 225} defined according to

l̄ij =





lij, if i 6= j were visited by the time series,

−∑
k l̄ik, if i = j was visited by the time series.

(IV.6)

Now we compare the spectral properties of the estimated generators with those of the re-

stricted generator from (IV.6) in more detail. In the left panel of Figure 4 we depict the

real parts of the 30 largest eigenvalues of L̃A and L̃B with those of the restricted genera-

tor L̄, respectively. Although the enhanced MLE-method is not designed to approximate

spectral properties, notice that the real parts of considered eigenvalues of L̄ are well recon-

structed by both estimation options. Another important quantity in time series analysis is

the auto-correlation function (ACF) of a process which reflects the speed of memory loss of
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FIG. 3: Log-log contour plot of (− log π̃i), i ∈ S associated with the estimated generators L̃A

(left panel) and L̃B (right panel) where π̃ is the stationary distribution of the estimated generators

computed via π̃T L̃ = 0, respectively.

the process. For a Markov jump process, it is easy to see that the ACF reduces to [4]

E(Xt+τXt) =
d∑

k=1

eτλk

∑
i,j∈S

i · j · πiUikU
−1
kj , (IV.7)

where L = Udiag(λ1, . . . , λd)U
−1 is the eigendecomposition of the generator L of the Markov

jump process and π = (πi), i ∈ S its stationary distribution. The graphs of the normalized

ACFs associated with L̃A and L̃B together with the ACF of the restricted generator L̄ are

given in Figure 5. As one can see, the ACFs associated with L̃A and L̃B are consistent

with the ACF of the restricted process which shows that besides the eigenvalues even the

eigenvectors of the restricted generator L̄ are well reproduced by both estimated generators,

respectively. The almost identical reproduction of the ACF of L̄ by L̃B shows that the

incorporation of theoretical knowledge of the hidden process leads to sightly better results.

V. SUMMARY AND DISCUSSION

A generalization of the enhanced MLE-method for the estimation of a generator based on

a time series with non-equidistant observation time lags has been presented. Its performance

has been validated numerically for a test case and an application to biochemical kinetics

data has been given. In particular, the latter example has shown that the enhanced MLE-
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FIG. 4: The real parts of the first 30 largest eigenvalues of the estimated generators compared to

the eigenvalues of the restricted generator L̄ (IV.6). Left: Real parts of eigenvalues of L̃A. Right:

Real parts of eigenvalues of L̃B.
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FIG. 5: The graphs of the ACFs associated with L̃A (left panel) and L̃B (right panel) compared

to the ACF of the restricted generator L̄, respectively.

method is applicable to processes in larger state spaces. As illustrated in Section IVB, the

new method can be devised to respect specific sparsity patterns of the generators to be

estimated; furthermore it can also be specified for the estimation of generators of reversible

Markov jump processes (in analogy to the approach presented in [6]).

Several remarks have to be made regarding possible pitfalls of the presented approach.

First, the enhanced MLE-methods relies on the decomposability of the generator that appear

in the course of the iteration. There is no reason to expect that each single one has a complex

diagonalization; however in none of our quite extensive numerical experiments the situation
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of a non-decomposable generator appeared. If this would happen one would be able to fall

back on the original ”not-enhanced” algorithm (just for this step of the iteration). Second,

the eigendecomposition for non-symmetrical matrices could be a numerical problem (it may

even be ill-conditioned, see [23], for example). However, an appropriate numerical solver

should indicate this by a warning message. This case also never appeared in our numerical

experiments. Third, since the enhanced MLE-methods is an EM-algorithm, it can only be

assured that it converges to a local maximum of the discrete likelihood function; global

convergence is not guaranteed. The dependence of the result on the initial guess has not

been addressed here and will be subject of further investigations. Fourth, the scaling of

the computational effort with the dimension/size of the state space makes application to

very large state spaces infeasible. One can circumvent this problem whenever one knows in

advanced that the generator to be estimated has a certain sparsity pattern. If this is not

the case the present authors are not aware of any cure to this ”curse of dimension”.
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16



processes. J. Comp. Phys., 227(1):353–375, 2007.

[7] I. Holmes and G. M. Rubin. An expectation maximization algorithm for training hidden

substitution models. J. Mol. Biol., 317(5):753–764, 2002.

[8] A. Hobolth and J. L.Jensen. Statistical inference in evolutionary models of DNA sequences

via the EM algorithm. Statistical Applications in Genetics and Molecular Biology, 4(1), 2005.

[9] S. A. Adelman and J. D. Doll. Generalized Langevin equation approach for atom/solid surface

scattering: General formulation for classical scattering of harmonic solids. J. Chem. Phys.,

64:2375–2388, 1976.

[10] J. B. Witkoskie, J. Wu, and J. Cao. Basis set study of classical rotor lattice dynamics. J.

Chem. Phys., 120:5695–5708, 2004.

[11] J. Peinke, A. Kittel, S. Barth, and M. Oberlack. Langevin models of turbulence. In

B. Dubrulle, J-P. Lavale, and S. Nazarenko, editors, Progress in Turbulence, pages 77–86.

Springer Berlin Heidelberg, 2005.

[12] T. Yamaguchi, T. Matsuoka, and S. Koda. Molecular dynamics simulation study of the

transient response of solvation structure during the translational diffusion of solute. J. Chem.

Phys., 122:014512.1–014512.10, 2005.

[13] O. Lange and H. Grubmüller. Collective Langevine dynamics of conformational motions in

proteins. J. Chem. Phys, 124:2149, 2006.

[14] R. M. Yulmetyev et al. Non-Markov statistical effects of X-ray emission intensity of the

microquasar Grs 1915+105. Nonlin. Phenom. Compl. Systems, 9(4):313–330, 2006.
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