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We propose an algorithm for the fast and efficient simulation of polymers represented by chains of
hard spheres. The particles are linked by holonomic bond constraints. While the motion of the
polymers is free �i.e., no collisions occur� the equations of motion can be easily integrated using a
collocation-based partitioned Gauss–Runge–Kutta method. The method is reversible, symplectic,
and preserves energy. Moreover the numerical scheme allows the integration using much longer
time steps than any explicit integrator such as the popular Verlet method. If polymers collide the
point of impact can be determined to arbitrary precision by simple nested intervals. Once the
collision point is known the impulsive contribution can be computed analytically. We illustrate our
approach by means of a suitable numerical example. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3110603�

I. INTRODUCTION

The dynamics of polymers covers processes on vastly
different time scales1 making their numerical solution a te-
dious and time-consuming issue. To extend simulations to
more realistic times, fast and efficient algorithms are re-
quired. Computer simulation of polymers is often based on
one of the two approaches: The polymer is either thought of
as beads interacting by continuous confining potential or as a
hard body with no internal degrees of freedom.2,5 In this
article, we represent a polymer as a chain of hard spheres
linked by bond constraints with no additional restrictions on
its internal degrees of freedom.

In case of a group of single hard spheres the motion of
the free particles follows straight lines, and the solution of
both inertial motion and collisions can be carried out
analytically.4 Until recently, it has been thought3 that models
involving hard spheres were incompatible with rigid bonds
as the constraint force, except at the moment of a collision, is
smooth and so it is difficult to combine algorithms for im-
pulsive and continuous forces. In Ref. 6 it has been demon-
strated how to include constraints in hard dimers, and an
analytical solution for the free motion has been obtained. In
this paper we will call the motion of a polymer free, if no
collisions occur. If one tries to extend these polymer models
to more than two hard spheres, an analytical solution for the
free motion is no longer available, for the Lagrange multi-
pliers become time-dependent functions. Therefore other
strategies to simulate the free propagation of polymer chains
need to be developed.

In this work we employ a partitioned Runge–Kutta
scheme for the free propagation that is based on Gaussian
collocation. The implicit Runge–Kutta scheme allows for us-
ing stable time steps that are about 400 times longer than in

standard molecular dynamics �MD� simulation. The impul-
sive contributions due to the collisions lead to discontinuous
jumps in the momenta of the interacting bodies, which can
be computed analytically, provided the point of impact is
known, cf. Ref. 6. Hence the problem of polymer dynamics
can be split into as follows:

�1� propagation of the free polymer between two collisions
and determination of the point of impact to prescribed
accuracy, and

�2� solution of the collision problem between two particles
�i.e., spheres�.

It is interesting to note that similar problems are well
known in celestial mechanics.7,8 In contrast to MD the use of
highly accurate implicit integration schemes is rather com-
mon in celestial mechanics. Moreover celestial mechanics
problems require the numerical schemes to be symplectic as
there is strong evidence that symplecticness goes hand by
hand with good energy conservation properties and good
long-time stability. This explains the popularity of symplec-
tic implicit Runge–Kutta methods in this community.9,10

The outline of the article is as follows: Sec. II introduces
the equations of motion of the hard spheres polymer model
and explains how the equations are solved by the method of
Gauss collocation. Section III is dedicated to the solution of
the collision problem itself. Then, Sec. IV introduces the
nested intervals method for the collision detection and its
integration into the overall scheme. Finally, we illustrate the
full procedure in Sec. V and illustrate it with two numerical
examples.

II. FREE POLYMER MOTION

A. Hard spheres model: The freely linked chain

We are modeling a polymer as a chain of hard spheres
moving in three dimensions R3 and linked by bond con-
straints. For this purpose, we denote by ri�R3 , i=1, . . . ,N
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the position of the ith particle, where N is the total number of
particles. We suppose that all particles have the same mass
m. If we let a be the uniform distance between two consecu-
tive particles, the polymer configurations r= �r1 , . . . ,rN�T

�R3N are restricted to lie on the submanifold defined by

�k�r� = �rik
− r jk

�2 − a2 = 0, k = 1, . . . ,M , �1�

where M= ��ik , jk�� �1, . . . ,N�2 : ik� jk ,k=1, . . . ,M� is the
set of pairs of particle numbers that are subject to constraints.
The equations of motion are as follows:

ṙ�t� = v�t� ,

v̇�t� = f�r�t�,��t�� , �2�

0 = ��r�t�� .

The acceleration can be split according to f = fcstr+ f imp,
where f imp denotes the local impulsive contribution due to
the collisions. It can be considered as the �generalized� gra-
dient of the hard core potential

��r� � 	0, if there are some i � js . t. �ri − r j� � d

� , otherwise,



where d is the diameter of the hard spheres. The part of the
force acting perpendicular to the submanifold of accessible
polymer configurations, defined by Eq. �1�, is

fcstr = −
1

m
� ��r�T� , �3�

and labels the acceleration due to the constraint force, where
��RM is the vector of undetermined Lagrange multipliers.
Note that the constraint force is not a smooth function at the
collision points since the multipliers are discontinuous. Be-
tween the collisions, instead, there are no impulsive forces so
that f = fcstr is smooth.

B. Collocation method

We seek a continuous numerical approximation of the
smooth polymer motion between two collisions, say, in the
time interval �t0 , t0+�� with � being sufficiently small. To
this end we shall approximate the solution �r ,v ,�� of the
equations of motion �2� by polynomials x ,u ,� of degree s
with vectorial coefficients that will have to be determined by
the numerical scheme to be presented. That is, in the follow-
ing �r ,v ,�� will always refer to the solution while �x ,u ,��
refers to its polynomial approximation. Let us write Ps�Rd�
for the space of all polynomials of degree s with coefficients
in Rd, thus x ,u�Ps�R3N� and ��Ps�RM�. In order to deter-
mine the coefficients of x ,u ,� uniquely, we need �6N+M�
��s+1� independent conditions. To specify them, colloca-
tion methods first introduce s distinct points in time,

tj = t0 + cj�, j = 1, . . . ,s ,

denoting the so-called collocation points, where the nodes
0	c1	 . . . 	cs
1 will be specified later on. General collo-
cation theory11 now asserts that the first s�6N+M� unknowns
are to be determined by requiring that the polynomials

x ,u ,� have to satisfy the equations of motion �2� at each
collocation point tj, i.e.,

ẋ�t0 + cj�� = u�t0 + cj�� ,

u̇�t0 + cj�� = fcstr�x�t0 + cj��,��t0 + cj��� , �4�

0 = ��x�t0 + cj��� ,

with j running from 1 to s. The missing 6N+M conditions
are then determined by the initial conditions

x�t0� = r�t0� ,

u�t0� = v�t0� , �5�

��t0� = ��t0� .

Typically, the initial conditions will be the values of �r ,v�
and � right after the last collision. We shall expand the poly-
nomials x ,u ,� in the Lagrange polynomials

lj�t� = �
i=1,i�j

s
t − ci

cj − ci
.

Obviously, we have lj�ck�=� jk and lj �Ps−1�R�, i.e., the lj are
polynomials of degree s−1. In fact, �lj , j=1, . . . ,s� is a basis
of Ps−1�R�. Accordingly, we can expand any polynomial of
degree less than s uniquely in terms of the Lagrange basis.
Since dx /dt ,du /dt�Ps−1�R3N�, we thus may write

ẋ�t0 + ��� = �
j=1

s

ẋ�t0 + cj��lj��� ,

u̇�t0 + ��� = �
j=1

s

u̇�t0 + cj��lj��� .

This is true for all ��R. Integration with respect to time
yields another general formula

x�t0 + ��� = x�t0� + �
0

�

ẋ�t0 + ��d ,

u�t0 + ��� = x�t0� + �
0

�

u̇�t0 + ��d .

Setting �=ci for any i=1, . . . ,s, the latter expressions can be
recast as

x�t0 + ci�� = x�t0� + ��
j=1

s

aijẋ�t0 + cj�� ,

�6�

u�t0 + ci�� = u�t0� + ��
j=1

s

aiju̇�t0 + cj�� ,

where we have used the shorthand
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aij = 
0

ci

lj��d

for the scalar coefficients that can be computed in advance
once the nodes cj are specified. If we insert conditions �4�
and �5� into Eq. �6�, we obtain the following equations for
the coefficients of the polynomials x ,u ,�:

Xi = r�t0� + ��
j=1

s

aijUj ,

Ui = v�t0� − ��
j=1

s

aij
1

m
� ��Xj�T · � j , �7�

0 = ��Xj� ,

with the abbreviations �j=1, . . . ,s�

Xj = x�t0 + cj�� � R3N,

Uj = u�t0 + cj�� � R3N, �8�

� j = ��t0 + cj�� � RM .

The system of Eq. �7� forms a set a s�6N+M� nonlinear
equations for the unknowns �Xj ,Uj ,� j�, j=1, . . . ,s. Since the
first equation in Eq. �7� is linear, we can eliminate the Uj and
reduce the task to solving s�3N+M� nonlinear equations with
s�3N+M� unknowns.

As there is no analytical solution available, we have to
apply an iterative method in order to solve the equations
numerically; details of how this is done are given in Appen-
dix B. For the ease of the presentation, we confine ourselves
to constraints of the form

�i�r� = �ri − ri+1�2 − a2 = 0, i = 1, . . . ,N − 1, �9�

but we emphasize that our general scheme can be general-
ized in a straightforward fashion.

We have presented a collocation method of degree s,
using s internal nodes. General collocation theory11,12 tells us
that the accuracy of the methods depends on the choice of
the internal nodes ci, i=1, . . . ,s. For the problem at hand
�mechanical systems with constraints�, the maximally
achievable order of accuracy is 2s−2 as has been proved in
Ref. 13. The maximal order of accuracy is obtained if the
collocation nodes are chosen to be Gauss nodes, and litera-
ture contains tables or algorithms for computing Gauss nodes
for arbitrary s.11,13 In this case the local error in approximat-
ing �r ,v ,�� by the polynomial �x ,u ,�� is of the order �2s−1.

Collocation methods are contained in the much larger
class of implicit Runge–Kutta methods. In application to
constrained mechanical systems, as it is the case here, they
are known by the name of specialized partitioned additive
Runge–Kutta methods.13 Gaussian collocation methods fur-
thermore belong to the class of variational integrators.14 This
is important for the present work since it implies that the
associated discrete flow maps are volume preserving �in fact
symplectic� and reversible, and that the method presented
above preserves quadratic invariants; hence both kinetic en-
ergy and the constraints are exactly preserved along the

nodes �provided the nonlinear equations are solved exactly�.
The literature furthermore contains alternative methods that
certainly are more efficient or more stable than the technique
presented herein; see, e.g., Ref. 15. Such methods, however,
are rather difficult to implement and have not been general-
ized to include collisions. Therefore, we prefer to stick to the
relatively simple collocation method in order to allow for
simple inclusion of collisions and to keep the following dis-
cussion transparent.

III. ANALYTICAL SOLUTION TO THE COLLISION
PROBLEM

We now want to study what happens in the moment a
collision takes place. To this end, let us recall the equations
of motion for the velocity, viz.,

mv̇ = − ���r�T� ,

and let us split the constraint force acting on the ith hard
sphere that is involved in a collision according to

���r�T��t� � ���r�T���t� + ��t�� .

Here the rightmost term is the discontinuous part acting only
during the collision. In what follows we shall use the sub-
scripts “�” and “+” to denote discontinuous quantities im-
mediately before and after the collision. Letting �i denotes
the derivative with respect to ri, the relation between the
impulse due to the collision and the change in the linear
momentum of the sphere i reads

mvi,+ − mvi,− = − 
0−

0+

�i��r��i�t�dt = − 
0−

0+

�i��r�i��t�dt .

The smooth part does clearly not contribute to the change in
momentum, while the impulsive part yields

vi,+ − vi,− =


m
�i��r� . �10�

For a single constraint ��r�= �ri−r j�2−d2, we have

�i��r� = 2�ri − r j� . �11�

Hence the generic collision contribution to the velocity of the
ith particle having a rigid bond with particle j is

vi,+ − vi,− = �rij , �12�

where we used the shorthand notations

rij = ri − r j and � = 2/m

that will be used throughout the article. If the hard sphere is
connected to more than one hard sphere by further bond
constraints, we have to sum up the contributions coming
from every single constraint.

A. Velocity update due to polymer collisions

Next we derive computable expressions for the velocity
update of colliding hard sphere particles of polymers. Con-
sider polymer chains consisting of N hard spheres. Let us
suppose that the collision occurs between the spheres n and

144101-3 Fast simulation of polymer chains J. Chem. Phys. 130, 144101 �2009�



m, belonging either to the same or to different polymers.
Using the � notation from above, the conservation law for
the total linear momentum reads

m�
i=1

NT

vi,+ = m�
i=1

NT

vi,−, �13�

where NT is equal to N in the case of intramolecular colli-
sions or equals 2N in case of intermolecular collisions. Re-
call that all particles have the same mass; therefore the mo-
mentum law reduces to the conservation of total velocity. In
the spirit of Eqs. �11� and �12� above, we obtain a linear
system of equations per polymer for the postcollision veloci-
ties of the noncolliding hard spheres,

v1,+ = v1,− + �1r12

v2,+ = v2,− − �1r12 + �2r23

]

vi,+ = vi,− − �i−1ri−1,i + �iri,i+1

]

vN−1,+ = vN−1,− − �N−2rN−2,N−1 + �N−1rN−1,N

vN,+ = vN,− − �N−1rN−1,N.

�14�

The �’s in the system of equations are the Lagrange multi-
pliers that are to be determined by the constraints �see be-
low�. We can write the solution in this form since all the
particles �except the one colliding� feel the collision only
through the constraints, and each particle is only subjected to
one �extremities� or two constraints.

We also have to account for the momentum exchanged
between the colliding atoms n and m, �V, as the hard sphere
colliding bears the contribution from the collision, equal and
opposite to the one received by the other colliding sphere,
namely,

vn,+ = vn,− − �n−1rn−1,n + �nrn,n+1 + �V ,

�15�
vm,+ = vm,− − �m−1rm−1,m + �mrm,m+1 − �V ,

where the spheres m and n may belong to different polymers
in case of intermolecular collision or to the same polymer in
case of an intramolecular collision �the net effect on the other
particles is zero�. Depending on the type of collision, we
have either one or two sets of equations. Note that the con-
servation of total linear momentum, Eq. �13�, is entailed by
Eqs. �14� and �15�.

The conservation law for the total angular momentum is

m�
i=1

NT

ri � �vi,+ − vi,−� = 0. �16�

After substituting the final velocities �14� and �15� in
Eq. �16�, we obtain

0 = �
i=1

NT

ri � �vi,+ − vi,−� = �rn − rm� � �V ,

which implies that �V is parallel to the vector �rn−rm�,

�V = �v
rn − rm

�rn − rm�
.

The yet unknown factor �v will be determined later on by
requiring that the energy be conserved.

Since �rn−rm�=d at the moment of collision, the last
equation can be equivalently expressed as

�V =
�v
d

�rn − rm� . �17�

Let us now determine the �’s. The constraint ��r�=0 implies
the condition ���r� ·v=0 on the polymer velocity. Hence, by
Eq. �11�, the condition

�vi,+ − vi+1,+� · ri,i+1 = 0 �18�

must hold for all i=1, . . . ,N−1. Substituting Eq. �14� into
Eq. �18�, we obtain the following equation for the velocity
constraint between the spheres i and i+1:

�vi,− − �i−1ri−1,i + 2�i ri,i+1 − �i+1ri+1,i+2 − vi+1,−� · ri,i+1 = 0.

A similar equation is obtained upon inserting Eq. �15� that
holds for the colliding spheres. Noting that �ri,i+1�2=a2 and
that the velocities before the collision satisfy the constraint,
the last equation simplifies according to

�i−1ri−1,i · ri,i+1 − 2�ia
2 + �i+1ri+1,i+2 · ri,i+1 = 0. �19�

Going through all N−1 constraints in this way, we obtain a
system of N−1 equations for �= ��1 , . . . ,�N−1� and for each
polymer participating in the collision �one in case of a in-
tramolecular collisions and two otherwise�. The equation for
� can be written in the form

K� =
�v
d

b , �20�

with a yet unknown proportionality factor �v that is given in
Eq. �25� below. The matrix K�R�N−1���N−1� is symmetric
tridiagonal; for systems of moderate size, its inverse can be
analytically computed;16 but also for large systems, tridiago-
nal systems such as Eq. �20� can be easily solved by back-
ward substitution employing the Thomas algorithm.17 The
matrix K has the form
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K =�
− 2a2 r12 · r23 0 0 0 . . . 0

r12 · r23 − 2a2 r23 · r34 0 0 . . . 0

0 . . . . . . . . . . . . . . . 0

0 . . . ri−1,i · ri,i+1 − 2a2 ri,i+1 · ri+1,i+2 . . . 0

0 . . . . . . . . . . . . . . . 0

0 . . . 0 0 rN−3,N−2 · rN−2,N−1 − 2a2 rN−2,N−1 · rN−1,N

0 . . . 0 0 0 rN−2,N−1 · rN−1,N − 2a2

� . �21�

The entries of the vector b�RN−1 are zero except for

bn−1 = �rm − rn� · rn−1,n,

�22�
bn = �rn − rm� · rn,n+1,

and

bm−1 = �rn − rm� · rm−1,m,

�23�
bm = �rm − rn� · rm,m+1.

Clearly, for n ,m being 1 or N−1 only one term appears. Note
that in case of intermolecular collision the elements bn−1 and
bn belong to the system of equations which correspond to the
first polymer, whereas the elements bm−1 and bm belong to
the system of equations for the second polymer. In case of an
intramolecular collision, all elements in Eqs. �22� and �23�
are included in the same vector b in a single system of equa-
tions.

B. Conservation of energy

The unknown factor �v in Eq. �20� can be determined
by the scalar conservation law for the kinetic energy during
the collision, i.e.,

m

2 �
i=1

NT

�vi,+�2 =
m

2 �
i=1

NT

�vi,−�2. �24�

Inserting the Eqs. �14�, �15�, and �17� into the energy balance
�24� with the Lagrange multiplier given by �=��v /d,
where, for each polymer participating in the collision, the
vector ��RN−1 is the solution of

K� = b ,

we obtain a quadratic equation for �v. Factorizing out the
trivial solution �v=0 leaves a linear equation. Lengthy but
straightforward manipulations reveal that the solution to the
linear equation is given by

�v =
d

R + d2 �vn,− − vm,−� · �rm − rn� , �25�

with

R = a2�
i

�i
2 − �

i

�i�i+1ri,i+1 · ri+1,i+2 + rnm

· ��nrn,n+1 − �n−1rn−1,n� + rnm · ��m−1rm−1,m − �mrm,m+1� ,

where we have taken advantage of the fact that the precolli-
sion velocities satisfy the constraints. The summations in the
expression for R are over all indices i that correspond to a �i

�of which there are N−1 for an intramolecular and 2N−2 for
intermolecular collisions: the second sum has one term less�.
Thus, we have explicitly computed all expressions that are
needed to compute all polymer velocities after a collision.

IV. NUMERICAL SOLUTION INCLUDING
COLLISIONS

We now are going to generalize the collocation method
introduced in Sec. II B such that collisions can be included.
We approach the problem in the following way: Suppose we
have computed the collocation solution �x ,u ,�� in the inter-
val �t0 , t0+�� and we ask whether a collision has occurred. If
not, we proceed with the time integration. If a collision has
occurred, the first collision point t� is identified by a nested
interval method based on the polynomial solution �x ,u ,��, a
new collocation solution on �t0 , t�� is computed, velocities
are updated according to the previous section, and we con-
tinue with the integration in �t� , t�+��.

Our approach links our specific collocation and nested
intervals scheme with an analytical treatment of the velocity
update at the collision points. The literature contains alterna-
tive approaches that address the entire problem by direct dis-
cretization without handling the velocity update analytically,
see, e.g., Refs. 18 and 19. However, most of these ap-
proaches have not been algorithmically designed to include
constraints. Moreover typical fixed time step integration
schemes suffer from energy dissipation at the point of
impact;20,21 cf. also Ref. 22. We will study below as to
whether this is also the case for the scheme proposed in this
article.

A. Detection of collision points

Solving the collocation Eqs. �7� and �8� we have the
polynomials �x ,u� as continuous functions in time. As the
exact solution �r ,v� is not available, we have to identify the
collision points based on its polynomial approximation.
Again, letting d�0 denote the spheres’ diameter, we call the
motion of a single polymer free whenever
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�xi�t� − x j�t�� � d, ∀ t � �t0,t0 + ��, ∀ �i, j� � M . �26�

If this condition is violated, we employ the continuous poly-
nomial x to determine the first time of collision, where we
shall take advantage of the fact that both the constraints and
the energy are quadratic and therefore are exactly preserved
at the discrete collocation points. We adopt the following
simple nesting strategy: Let tk+1 be the first collocation point
at which Eq. �26� is violated. Now we refine the time interval
either by setting t0= tk and �= tk+1− tk or by keeping t0 fixed,
setting �= tk+1− t0, and computing a new trajectory. By re-
peating these steps until the present iterate � falls below a
prescribed tolerance, we eventually determine the point of
impact t� �within the prescribed accuracy�. It is advisable to
decrease the polynomial degree s in the course of refinement
in order to avoid condition problems �see Appendix B and
Table I below�.

B. Error due to collisions

In principle, the collocation method preserves quadratic
invariants exactly at the collocation points. Since the colli-
sion point t� is determined on the basis of the polynomial
approximation instead of the exact solution and only up to
some tolerance, it can only be an approximation of the exact
collision point. However even if we had the exact collision
point we would have to compute the collision update using
the polynomial solution, thereby introducing an error. Now
let �X and �U be the local error in the positions and the
velocities at t= t�. These errors then give rise to errors in the
velocity updates after a collision. Due to the finite precision
in the nested interval iteration, t� will moreover not coincide
with a collision point �at which, e.g., energy is conserved�.
As a consequence the error propagates into the �kinetic� en-
ergy. Furthermore the scheme is not symplectic at interme-
diate collocation points so the energy error will not be con-

TABLE I. Global integration error ��x�� between the reference and collocation trajectories, CPU run time TCPU

�arbitrary units�, and the energy error ��E�� for various combinations of the collocation parameters � and s.

� s=4 s=5 s=6 s=7 s=8 s=9 s=10

0.1 1.7�10−4 1.5�10−5 4.1�10−6 4.2�10−6 4.2�10−6 4.2�10−6 4.2�10−6

TCPU=35 TCPU=50 TCPU=60 TCPU=76 TCPU=90 TCPU=115 TCPU=135
6.7�10−6 4.5·10−7 2.5·10−9 3.1·10−10 3.7·10−11 6.5·10−13 3.8·10−13

0.2 4.4·10−3 1.9·10−4 4.6·10−6 4.1·10−6 4.4·10−6 4.2·10−6 4.2·10−6

TCPU=23 TCPU=28 TCPU=35 TCPU=45 TCPU=54 TCPU=62 TCPU=72
1.7·10−4 8.2·10−6 3.1·10−7 3.6·10−8 1.3·10−8 3.9·10−10 5 ·10−11

0.3 2.5·10−2 2.5·10−4 4.6·10−5 1.2·10−5 9.6·10−6 4 ·10−6 4.1·10−6

TCPU=19 TCPU=25 TCPU=27 TCPU=35 TCPU=38 TCPU=45 TCPU=52
9.3·10−4 3.4·10−5 5.9·10−6 1 ·10−6 4.1·10−7 2.6·10−8 6.7·10−9

0.4 7 ·10−2 7 ·10−3 3.9·10−4 1.2·10−4 1.3·10−5 3.6·10−6 2.4·10−6

TCPU=18 TCPU=23 TCPU=26 TCPU=28 TCPU=32 TCPU=40 TCPU=45
2.8·10−3 3.4·10−4 3.9·10−5 8.9·10−6 2.1·10−6 2.8·10−7 9.5·10−8

0.5 0.105 1.2·10−2 1.5·10−3 1.9·10−4 8.7·10−4 1.6·10−5 5.4·10−6

TCPU=17 TCPU=19 TCPU=23 TCPU=26 TCPU=29 TCPU=35 TCPU=40
3.1·10−3 9.3·10−4 1.5·10−4 3.3·10−5 2.7·10−5 2 ·10−6 4.8·10−7

0.6 0.186 3.5·10−2 2.9·10−3 7.3·10−4 3.5·10−3 1.2·10−4 5.3·10−5

TCPU=17 TCPU=20 TCPU=24 TCPU=25 TCPU=29 TCPU=32 TCPU=38
8.6·10−3 2.4·10−3 3.9·10−4 1 ·10−4 1.8·10−4 9.4·10−6 4 ·10−6

0.7 0.256 8.4·10−2 1.9·10−3 3.2·10−3 1.4·10−2 3.2·10−4 2.4·10−4

TCPU=15 TCPU=18 TCPU=19 TCPU=25 TCPU=26 TCPU=29 TCPU=33
1.1·10−2 4.9·10−3 7.6·10−4 3 ·10−4 7.4·10−4 3.4·10−5 2.2·10−5

0.8 0.441 0.209 7.1·10−3 4 ·10−3 1.5·10−2 1 ·10−4 6.5·10−5

TCPU=14 TCPU=16 TCPU=18 TCPU=21 TCPU=25 TCPU=29 TCPU=32
1.9·10−2 1.1·10−2 1.6·10−3 7.7·10−4 9 ·10−4 1 ·10−4 3.7·10−5

0.9 1.73 0.516 1.5·10−2 1.8·10−2 1.3·10−2 3.1·10−4 3.3·10−4

TCPU=16 TCPU=17 TCPU=18 TCPU=23 TCPU=24 TCPU=26 TCPU=31
6.3·10−2 2.6·10−2 3.7·10−3 2.1·10−3 1.9·10−3 2.9·10−4 1.2·10−4

1.0 1.24 0.83 2.8·10−2 3.4·10−2 9.5·10−4 0.255
TCPU=15 TCPU=16 TCPU=18 TCPU=19 Unstable TCPU=29 TCPU=27
5.5·10−2 3.5·10−2 5.6·10−3 3.6·10−3 3.8·10−4 1.4·10−2
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trolled by the symplecticness of the method. In the numerical
examples below, we will study to what extend this lack of
symplecticness introduces a drift in the energy.

V. NUMERICAL EXAMPLES

A. Self-intersecting trimer

In order to test our collocation method we simulate the
simplest possible polymer chain: a trimer whose particles are
allowed to self-intersect; we do not include collisions at this
stage, as we shall first study the long-term stability of the
scheme. For a detailed description of the collocation algo-
rithm, we refer to Appendixes A and B.

The parameters for the polymer chain to be used in the
following are m=1 �particle’s mass�, d=1 �particle’s diam-
eter�, and a=1 �particle distance�. The initial conditions

r�0� = �1,0,0,0,0,0,0,1,0� ,

v�0� = �1/2,− 1/2,0,1/2,0,0,− 1/2,0,0�

were chosen such that the constraints are satisfied. As a ref-
erence solution, we calculate a �rather expensive� trajectory
employing an ordinary velocity Verlet/SHAKE algorithm.
The reference solution is then compared to the collocation
solution for different polynomial orders s=4, . . . ,10 and dif-
ferent time steps �=0.1, . . . ,1.0, where �=1 corresponds to
2000 integration steps of the Verlet algorithm at step size h
=5�10−4; the Verlet time step is chosen sufficiently small so
as to obtain a rather accurate reference trajectory. All times
given in the following are in polymer units. The total length
of the trajectory for collocation and Verlet simulation is T
=105; this means that we do 2�108 Verlet steps.

We observe that the collocation scheme is numerically
stable for all possible combinations of �
0.8 �1600 Verlet
integration steps per collocation step� and s�6; the con-
straints are preserved to machine precision �the Newton tol-
erance was set to �tol=10−12; see Appendix B�.

Given the reference positions x̂�tl� at all collocation
points tl in the integration interval �0,T� from the Verlet
trajectory �by interpolation if necessary�, we introduce the
numerical error of the collocation trajectory x by

��x�� = max
l

��x�tl� − x̂�tl��� . �27�

Additionally, we compute the energy error

��E�� = max
l

��E�tl� − E0�� �28�

as the maximum deviation from the initial �kinetic� energy
that is given by 2E0= �v�0��2. The simulation results are pre-
sented in Table I. As the table indicates, energy is reasonably
well preserved up to �=0.5 �corresponding to 1000 Verlet
steps�. A segment of a collocation trajectory for �=0.5 and
s=10 is shown in Fig. 1 and compared to the reference so-
lution. Figure 2 illustrates the conservation of kinetic energy
for the same trajectory. The energy shows fluctuations
around the exact value as is typical for a symplectic method.
Although the collocation scheme preserves quadratic invari-
ants in principle, we cannot expect any actual implementa-
tion to inherit this property as we use a Newton solver with

finite precision to solve the nonlinear equations. If the time
step � is chosen too large for a given collocation order s the
energy starts to drift slowly.

In fact the energy criterion suggests that a safe choice
are all combinations of � and s lying strictly above the diag-
onal that goes from ��=0.1, s=4� to ��=0.7, s=10� in
Table I. It is interesting to note that the CPU run time in-
creases if the number of nodes s is kept fixed, while the time
step � is decreased; see the rightmost column in Table I. We
suspect that this effect is due to degrading numerical condi-
tion of the Jacobi matrix in the Newton iteration since its

FIG. 1. �Color� Short segment of a trimer trajectory, time 0–500, with self-
intersections simulated by Gauss collocation for �=0.5 and s=10 �stars�
compared to reference trajectory obtained by the velocity Verlet algorithm
�lines�.
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FIG. 2. �Color online� Error �Ekin=E−E0 of the total energy of a single
trimer simulated by the Gauss collocation method using s=10 collocation
points with �=0.5 �1000 Verlet steps�.

144101-7 Fast simulation of polymer chains J. Chem. Phys. 130, 144101 �2009�



columns become nearly linearly dependent as the Gauss
nodes become closer to each other �see Appendix B 2�. Fi-
nally, the best efficiency among all simulations �in terms of
energy and trajectory error compared to CPU time� is
achieved by the simulations with �=0.4 and s=9 or �=0.5
and s=10.

B. Colliding trimers

To test the collision routine we simulate two colliding
trimers with the parameters a=d=1. The collisions involve
both self-collisions and collisions between the trimers. In
order to verify the stability of the algorithm we check con-
servation of energy, angular momentum, and constraints. The
linear momentum remains conserved within the machine pre-
cision. It is therefore omitted in the following. We run the
algorithm with the initial conditions

r�0��1� = �1,0,0,0,0,0,0,− 1,0� ,

r�0��2� = �2,1/2,0,3,1/2,0,4,1/2,0� ,

v�0��1� = �1/2,0,0,1/2,0,0,0,0,0� ,

v�0��2� = �− 1/2,0,0,− 1/2,0,0,− 1/2,0,0� .

Times are again given in polymer units. Given our particular
choice of s=10, we observe the onset of drift in the angular
momenta for step sizes ��0.5; the total energy does not drift
though—even for step sizes beyond �=0.5. We confine our
attention to step sizes �
0.5 and terminate the nested inter-
vals when tk+1− tk
10−4; further iterations are not advisable
unless the number of collocation points is reduced in the
course of the iterations. All other parameters for the Newton
solver were left as before. The collocation trajectory is com-
puted in the time interval �0,T� with T=103 which corre-

sponds to 2�106 Verlet steps at step size h=5�10−4 and
about 200 collisions during the simulation.

The energy behavior is shown in Fig. 3. Looking at the
left panel we observe that the total energy remains stable up
to �=0.5; there is no noticeable drift, yet the variance of the
energy error increases linearly �but slowly� with time. Addi-
tionally the right panel shows a short initial segment of the
entire simulation for �=0.5. It can be clearly seen that the
energy does not oscillate but rather exhibits discrete jumps
that are located at the collision points �see the discussion in
Sec. IV B�. A similar behavior can be observed in Fig. 4,
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FIG. 3. �Color� Total energy. The left panel shows the energy for s=10 at various step sizes �. The right panel shows a small initial segment of the entire
simulation, from t=0 to t=50. It demonstrates that the sudden jumps in the energy are in fact related to the collisions �blue circles�.

0 100 200 300 400 500 600 700 800 900 1000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

−8

time

∆
L

3

τ=0.2
τ=0.4
τ=0.5

FIG. 4. �Color� Angular momentum �z-component� for different step sizes �.
Notice the staircaselike behavior of the angular momentum component; each
jump occurs at a collision.
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where the collisions lead to discrete jumps in the angular
momentum. In contrast to that, the constraints show no
collision-related behavior as Fig. 5 indicates for the bond
constraint �r2−r1�2−1=0 of polymer number one. All con-
straints are well within the prescribed numerical accuracy of
the Newton method ��TOL=10−12�.

C. Comparison with Verlet

To conclude, we compare the efficiency of our colloca-
tion method with Verlet, simulating a single trimer undergo-
ing self-collisions. For each algorithm we determine the

maximum stable step size that turns out to be h=0.01 for
Verlet and �=0.5 for the collocation algorithm. The initial
values were set to

r�0� = �1,0,0,0,0,0,0,− 1,0� ,

v�0� = �0,1/2,0,0,0,0,− 1/2,0,0� .

A comparison of the energies is made in the left panel of Fig.
6 where we observe the typical oscillatory energy behavior
of the Verlet scheme in contrast to almost perfect energy
conservation of the collocation method; strictly speaking, the
collocation method exhibits random energy fluctuations of
the order 10−9, hence about three orders of magnitude
smaller than that of the Verlet method; the erratic energy
jumps have already been discussed in Section IV B. In order
to suppress the effect, the tolerances have to be reduced �of
course, only if collisions are detected�. However this will
render the algorithm inefficient if collisions are frequent,
thus showing a limitation of the present approach.

The right panel of Fig. 6 shows the 1–3 distance,

dist�r1,r3� = �r1 − r3� ,

of the polymer for both Verlet and collocation as a function
of time. The motion is clearly periodic, but after a few turns
the trajectories show a slight phase drift that is probably
caused by the finite tolerance tk+1− tk
10−4 in determining
the moments of collision. Intriguingly the period of energy
oscillations of the Verlet method is different from that of the
collisions which suggests that the energy error is dominated
by the integrator rather than by the collision algorithm �most
notably, given the fact that we use the same refinement strat-
egy for collision detection as is used in the collocation algo-
rithm�.

FIG. 5. �Color� Constraint �r3−r2�2−1=0 for various time steps.
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FIG. 6. �Color� Comparison between Verlet and collocation trajectories in a small initial segment of the entire simulation. Left panel: total energy. Right panel:
distance between the first and the third atom.
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For the efficiency comparison between collocation and
Verlet we have implemented two different variants of the
Verlet �more precisely: SHAKE/RATTLE� integrator: in the
traditional “sweeping” method that is due to23 the unknown
Lagrange multipliers are determined iteratively by updating
the constraints one by one, whereas in the “analytic” method
all Lagrange multipliers �here only 2� are updated simulta-
neously, employing the analytic inverse of the constraints’
Jacobian; for our little toy example latter method is about
two times faster than the sweeping method, but, clearly, com-
puting the inverse is not the method of choice if the number
of constraints is large. The tolerance of the SHAKE/
RATTLE iteration was set to 10−12, i.e., equal to the Newton
tolerance �tol. All simulations were carried out in MATLAB

using a laptop computer �2.5 GHz dual core processor,
4Gbytes memory� with the results being shown in Table II
below. For the single trimer, collocation clearly beats Verlet
by a factor of 3–6. Interestingly enough, collocation in MAT-

LAB automatically uses both of the available processor cores
�most probably by parallelizing the matrix inversion in the
Newton iteration�, whereas Verlet runs only on a single core.
Generally speaking, when the average size of a single poly-
mer grows large, the implicit collocation method offers many
possibilities for efficient implementations by parallelizing
the chosen nonlinear solver. However even without the addi-
tional speed-up of the two processor cores, the efficiency
gain for our small benchmark system would still be a factor
of 1.5–3.

VI. CONCLUSIONS

We have presented a collision algorithm for the fast nu-
merical integration of polymer chains. The scheme is a
collocation-based partitioned Gauss–Runge–Kutta method
with a nested intervals method to determine when an inter- or
intramolecular collision takes place. For a test system of two
colliding trimers, the algorithm turns out to be stable on the
typical time scales of MD simulations when the time steps is
up to 50 times the maximum Verlet time step. Notice that the
maximum stable time step without collision was found to be
about two times larger. Beyond their stability limits both
Verlet and collocation method show a slight drift of the in-
tegral invariants total energy and angular momentum. Instead
of the rather naive nested intervals strategy, a genuinely
event-driven algorithm would require to treat the collision
points as additional unknowns that are determined within the
Newton iteration while using a larger integration time step.
Work in this direction is currently undertaken by the authors.

APPENDIX A: COLLOCATION ALGORITHM

We propose the following collocation algorithm.

�1� Pick initial values �x0 ,u0�= �r�t0� ,v�t0�� that satisfy the
constraints

��x0� = 0 and � ��x0� · u0 = 0,

and �0=��t0� that is consistent with

� d

dt
�

t=t0

� ��x�t�� · u�t� = 0,

where u̇�t�=−���x�t��T��t�. Given s�N and ��0,
compute �Xj ,Uj ,� j�= �x�tj� ,u�tj� ,��tj�� according to
Eqs. �B1�–�B3� below at all Gauss nodes tj = t0+cj�
with j=1, . . . ,s.

�2� Repeat the last steps with t0ªcs� while condition �26�
is met �i.e., no collisions occur�.

�3� If a collision occurs between, say, nodes ti and ti+1 start
the integration at t0 : = ti with the new time step � :
= ti+1− ti, and refine until convergence toward the point
of impact t� is reached.

�4� Compute the impulsive Lagrange multiplier � using
Eq. �20� and update the velocity u�t�� according to Eqs.
�14� and �15�.

�5� Restart the integration from t0 : = t� with initial values
�x0 ,u0�= �x�t�� ,u�t��� and the corresponding �0�t��.

APPENDIX B: COMPUTATIONAL ISSUES

For the numerical implementation it is convenient to re-
cast the collocation methods �7� and �8� as an equation in the
unknown positions X and the Lagrange multipliers � only.
This is done by inserting the second equation of Eq. �7� into
the first one. We obtain

Xi = r0 + v0��
j=1

s

aij −
2�2

m
�

j,k=1

s

aijajkG
TXk�k,

where �r0 ,v0�= �r�t0� ,v�t0��, and we have replaced f = fcstr,
by expression �3� for the constraint acceleration upon noting
that

���Xk� = 2Xk
TG .

We employ a vectorial notation and understand the last ex-
pression as a shorthand for

Xk
TG = �Xk

TG1, . . . ,Xk
TGN−1� � R�N−1��3N,

with Xk�R3N and G= �G1 , . . . ,GN−1�T. The Gl are 3N�3N
matrices corresponding to �l, namely,

TABLE II. CPU run time in seconds for various integration methods and
different total trajectory lengths.

Total length Collocation Analytic Sweeping

T=10 TCPU=1.94 TCPU=5.76 TCPU=9.38
T=100 TCPU=16.55 TCPU=40.18 TCPU=78.99
T=1000 TCPU=151.88 TCPU=537.98 TCPU=939.61
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Gl =�
0 . . . 0 0 . . . 0

] � ] ] ]

0 . . . 1 − 1 . . . 0

0 . . . − 1 1 . . . 0

] ] ] � ]

0 . . . 0 0 . . . 0

� ,

with 0 and 1 denoting 3�3 zero and unit matrices; the non-
zero entries of Gl correspond to the �l , l�− �l+1, l+1� blocks.
Note that the collocation coefficients cj and aij depend only
on the degree s of the interpolants, and have to be computed
only once. Hence we are left with the system of equations

0 = Xi − r0 − v0��
j=1

s

aij +
2�2

m
�

j,k=1

s

aijajkG
TXk�k

Fi
1

,

0 = Xi
TGXi − a�1, . . . ,1�T

Fi
2

,
�B1�

with i running from 1 to s. For simplicity we abbreviate our
nonlinear system of 3Ns+ �N−1�s equations by F�z�=0 with
F= �F1

1 , . . . ,Fs
1 ,F1

2 , . . . ,Fs
2� and z= �X ,��. The equations are

easily solved by means of Newton’s method: Given a starting
guess z�0�, we solve the equation F�z�=0 by successive
linearization24

�F�z�k���z�k� = − F�z�k�� , �B2�

where k=0,1 , . . . and

z�k+1� = z�k� + �z�k�. �B3�

The analytic expression for �F, also called the Jacobian ma-
trix of F, is given below. The iteration is terminated, if either
the increments �z or the function F have become sufficiently
small. Here we use the most simple Newton strategy without
damping. Clearly, F is not strictly convex, but as the nonlin-
earity is only quadratic we expect that �F�→0 �or ��z�→0,
respectively� in some appropriate norm � · � and for almost all
starting values.25 Regarding our numerical examples we
found that the collocation method performs best when we
use the increments �z as termination criterion in the Newton
iteration �in the maximum norm ��z��=maxi��zi�� rather than
the residuum �F��.

1. Jacobian matrix

The Jacobian of the right hand side of the 3Ns+ �N
−1�s Eq. �B1� has the following block structure:

�F = � I L

K 0
� .

Here I= �Iij��R3N·s�3N·s, L= �Lij��R3N·s��N−1�·s, and K
= �Kij��R�N−1�·s��N−1�·s. The respective entries Iij

�R3N�3N , Lij �R3N��N−1� and Kij �R�N−1��3N are again
matrices which read

�Fi
1

�Xj
= �ij13N�3N +

2�2

m
�
l=1

s

ailaljG
T� ,

�Fi
1

�� j
=

2�2

m
�
l=1

s

ailaljG
TXj ,

�Fi
2

�Xj
= 2Xj

TG�ij .

2. Condition problems

In each step of the Newton method we will have to solve
linear systems of equations of the form Jz=b. The Jacobian
J=�F and the right hand side vector b=F are functions of
the approximate solutions x ,u ,�. Thus J and b contain er-
rors, say, �J and �b. For the solution of the linear equations,
these errors induce an error26

��z� 
 cond�J�� ��J�
�J�

+
��b�
�b� ��z�

with cond�J�= �J��J−1� denoting the condition number of the
matrix J. Here the norm �A� of a matrix is defined in terms of
the associated vector norm, i.e., by �A�=maxz�Az�, where the
maximum goes over all vectors of unit length. General col-
location theory tells us that cond�J� can be large �the so-
called condition problem� if the collocation points t0+ci�, i
=1, . . . ,s get too dense. Thus, when the value of � is rather
small, one should choose s not too large.
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