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Abstract

The problem of estimating a Markov transition matrix to statistically describe the dynamics

underlying an observed process is frequently found in the physical and economical sciences. How-

ever, little attention has been paid to the fact that such an estimation is associated with statistical

uncertainty, which depends on the number of observed transitions between metastable states. In

turn, this induces uncertainties in any property computed from the transition matrix, such as

stationary probabilities, committor probabilities, or the eigenvalues. Assessing these uncertainties

is essential for testing the reliability of a given observation and also, if possible, to plan further

simulations or measurements in such a way that the most serious uncertainties will be reduced

with minimal effort. Here, a rigorous statistical method is proposed to approximate the complete

statistical distribution of functions of the transition matrix provided that one can identify discrete

states such that the transition process between them may be modeled with a memoryless jump

process, i.e. Markov dynamics. The method is based on sampling the statistical distribution of

Markov transition matrices that is induced by the observed transition events. It allows the con-

straint of reversibility to be included, which is physically meaningful in many applications. The

method is illustrated on molecular dynamics simulations of a hexapeptide that are modeled by a

Markov transition process between the metastable states. For this model the distributions and

uncertainties of the stationary probabilities of metastable states, the transition matrix elements,

the committor probabilities and the transition matrix eigenvalues are estimated. It is found that

the detailed balance constraint can significantly alter the distribution of some observables.

Keywords: Markov chain, transition matrix, Sampling, MCMC
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I. INTRODUCTION

State transitions are essential to complex dynamical systems. In many such systems, the

dynamics has multiple scales in time, and, on a given time scale of interest, the dynamics is

metastable; i.e., there are regions in state space (metastable sets) within which transitions are

rapid compared to the time scale of interest, while transitions between them are rare events.

A prominent example for such systems are biomolecules [1], whose dynamics involve various

processes such as binding of macromolecules and their ligands [2], complex conformational

rearrangements switching between native protein substates [3, 4] to the folding of proteins

and RNA [5, 6]. Further examples include Ising models [7], meteorological systems [8] and

economic systems [9].

The slow transitions between metastable states are often well described by a memoryless

jump process on a finite discrete state space, say S = {1, ...,m}, i.e. with a memoryless

Master equation:
dp(t)

dt
= p(t)L, (1)

with p(t) being an m-dimensional row vector containing the probability to find the system

in each of its m states at time t. L is a rate matrix with (Lij)i,j∈S being the transition rate

from state i to state j and the diagonal elements are Lii = −
∑

j 6=i Lij to ensure probability

mass conservation. Alternatively, the system dynamics can be described by a discrete-time

Markov process using the transition matrix, T (τ), whose entries, Tij, i, j ∈ S, provide the

probability of the system to be found in state j at time t + τ given that it was in state i at

time t. The time-discrete analog to Eq. (1) is the Chapman-Kolmogorov equation:

p(kτ) = p(0)T k(τ). (2)

Eq. (1) and (2) provide equivalent results at discrete times t = kτ , k ∈ N0 and are related by

T (τ) = exp(τL) [10]. Here, we will concentrate on the transition matrix T (τ) and Eq. (2).

This transition matrix approach to molecular dynamics has been developed and successfully

applied in a number of publications [11–14, 26, 30] The memoryless ansatz implies that the

dynamics X(t) ∈ S between states is Markovian at time lag τ . In other words, the state of

the system in the next time step, t + τ , is assumed to only depend on the system’s state at

the current time t, and not on its previous history:

p(X(t + τ) |X(t)) = p(X(t + τ) |X(t), X(t− τ), X(t− 2τ), ..., X(0)).
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In many cases it is not trivial to ensure Markovianity. The definition of states and the time

lag τ need to be defined appropriately. However, this issue is beyond the present study and

is addressed elsewhere [11, 12, 14, 26].

Usually, T (τ) is not readily given but needs to be estimated from a set of observations

or simulations such as molecular dynamics simulations. Since these simulations are of finite

length, the estimated T̂ (τ) is associated with uncertainty. For a given set of observed

transitions from trajectory data, what is the uncertainty in T̂ (τ) and how does this affect

the uncertainty of some function of T̂ (τ), say f(T̂ (τ))? This question is addressed in the

present paper.

II. BAYESIAN FORMULATION

Consider one trajectory Y = {y0 = X(t = 0), . . . , yN = X(t = Nτ)} given (The gen-

eralization to multiple trajectories is straightforward). Let the frequency matrix C(Y ) =

(Cij)i,j∈S associated to a trajectory Y count the number of consecutively observed transi-

tions between states, i.e. Cij is the number of observed transitions from state i at time t to

state j at time t + τ , summed over all times t. In the limit of an infinitely long trajectory,

the elements of the underlying transition matrix T (τ) are given by:

Tij(τ) = lim
N→∞

Cij∑
k∈S Cik

.

where we dropped the dependency of the frequency matrix on the given trajectory Y for

notational simplicity. For a trajectory of limited length, the underlying transition matrix

T (τ) cannot be uniquely determined. The probability that a particular T (τ) would generate

the observed trajectory is given by:

p(Y |T ) =
N−1∏
k=0

Tyk,yk+1
=
∏
i,j∈S

T
Cij

ij . (3)

In this paper we are interested in the opposite question: what is the probability p(T |Y ) that

a particular transition matrix T (= T (τ)) has generated the observed data. By virtue of the

Bayesian Theorem it follows that the law of p(T |Y ) is proportional to p(T )p(Y |T ), where

p(T ) is the prior probability of transition matrices. The particular choice of the prior reflects

knowledge or reasonable assumptions on the set of all transition matrices before observing

any data. Here we make the restriction that the prior probability can be written in the form
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∏
i,j∈S T

Bij

ij with some prior count matrix B ∈ Rm×m. Together with the likelihood p(Y |T )

in (3), the law of the posterior takes the form:

P (T |Y ) ∝ p(T )p(Y |T ) =
∏
i,j∈S

T
Bij+Cij

ij =
∏
i,j∈S

T
Zij

ij ,

where we have defined the effective count matrix Z = B + C. Notice that the posterior

is fully characterized by the effective count matrix Z which we emphasize in the following

by denoting the the non-normalized probability density function (pdf) of P (T |Y ) by pZ(T ),

i.e.,

P (T |Y ) ∝ pZ(T ) =
∏
i,j∈S

T
Zij

ij . (4)

The specific form of the prior probabilities allows a number of common prior distributions

to be used by simply adding a corresponding B matrix to the observed transition count

matrix:

1. Uniform prior : The uniform prior is simply given by using no prior counts, Bij = 0:

pZ,uniform(T ) = pC(T ) =
∏
i,j∈S

T
Cij

ij . (5)

This prior distribution is used in all numerical experiments shown here. Notice again

that for the uniform prior, pC(T ) is fully characterized by the frequency matrix C

associated with the observation Y .

2. Jeffrey’s prior : is given by using Bij = −0.5 for all i, j.

3. 1/m prior : was suggested in [15] and ensures that there is a constant amount of

information in the prior, independent of the size of the Markov model. It is given by

using Bij = −1 + m−1 for all i, j.

Defining Zi =
∑

k∈S Zik as the total number of effective transitions leaving the state i, it

turns out that T̂ (τ), given by

T̂ij(τ) =
Zij

Zi

, (6)

is the unique maximizer of pZ(T ). In the case of a uniform prior (B ≡ 0), T̂ (τ) is also the

unique maximizer of P (Y |T ) and, hence, is called maximum likelihood estimator. In the limit

of infinite sampling, pZ(T ) converges towards a delta distribution at T̂ (τ). When sampling is

finite, the uncertainties of the entries of T̂ (τ) may be estimated by the element-wise standard

deviations of pZ(T ).
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Figure 1: Probability distribution of 2x2 transition probability matrices for the observation given

in (7). The resulting pdf, pC(T12, T21) = (1 − T12)5T 2
12T

3
21(1 − T21)10, is shown in terms of the

off-diagonal matrix elements. The color intensity encodes the probability density, with white=0

and dark=1, with the density being scaled such that its maximum is equal to 1.

Example II.1. In a first example we illustrate the pdf pC(T ) in (5) on a 2-state Markov

chain. Again, pC(T ) is fully characterized by the frequency matrix C, e.g.,

C =

 5 2

3 10

 , (7)

associated with a given finite observation Y . Let T ∈ R2×2 be a stochastic matrix, i.e.,

T =

 T11 T12

T21 T22


with Tij ≥ 0, 1 ≤ i, j ≤ 2 and Ti1 + Ti2 = 1, i = 1, 2. The non-normalized pdf pC(T )

associated with the observation in (7) takes the form:

pC(T ) = pC(T11, T12, T21, T22) = T 5
11T

2
12T

3
21T

10
22 .

Exploiting the stochasticity of T , pC(T ) can be written as

pC(T ) = pC(T12, T21) = (1− T12)
5T 2

12T
3
21(1− T21)

10, T12, T21 ∈ [0, 1].

See Fig. 1 for an illustration of the transition matrix density function pC(T12, T21).

In general, one is interested to compute a particular property from the transition matrix,

f(T (τ)). f may represent any mathematical function, decomposition or algorithm. In

particular, we will consider following properties here:
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1. The stationary distribution, π, which is the probability to be in each state in equilib-

rium and is given by the left 1-normalized eigenvector of T to the eigenvalue 1.

2. The positive real eigenvalues, (λ1, . . . , λn), n ≤ m of T (τ) which indicate the time

scales of the transition processes involved. The time scale implied by the ith positive

real eigenvalue is given by

t∗i = − τ

log(λi)
. (8)

3. The committor, qAB, which is the probability, for each state i, that the system being

in state i will go to state set B next, rather than to state set A. In protein folding,

if A and B correspond to the unfolded/folded state, qAB denotes the probability of

folding. The committor is computed via:
∑

j(Tij − δij)q
AB
i = 0 ∀ i ∈ S \ (A ∪B)

qAB
i = 0 ∀ i ∈ A

qAB
i = 1 ∀ i ∈ B

(9)

with the Kronecker delta: δij = 1 for i = j and 0 otherwise.

One is then interested how the uncertainty of the transition matrix, induced by the

distribution p(T |Y ), carries over to uncertainties in the target function. In other words,

for a given observation Y , what is the distribution of target functions, p(f(T )|Y ) and their

variance?

An approach suggested in [15, 16] is based on first-order perturbation theory: The pos-

terior probability (4) is locally approximated by a multivariate Gaussian centered at the

maximum, T̂ (τ), and the target function, f(T ), is approximated by a Taylor series trun-

cated after the first term. The linear approximation of f preserves the Gaussian shape of the

distribution, allowing the variance of f(T ) to be calculated analytically. This approach is

very efficient in order to estimate the second moment of the sought distribution, and thus in

estimating the sampling error. Nevertheless, the approach makes some two approximations

which may cause problems in practice:

1. The method does not preserve stochasticity: The distribution of each transition matrix

element, Tij, is approximated by a Gaussian, and thus allows for a finite probability

for values < 0 and > 1, which are unphysical.
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2. It is unclear how well the first-order Taylor expansion will perform for various nonlinear

target functions f(T ).

An alternative to employing linear error analysis is to generate an ensemble of transition

matrices, according to the posterior probability Eq. (4), to compute the target functions f(T )

for each sampled T , thus sampling the distribution of f(T ). One approach, also suggested

in [15, 16], is to rewrite the posterior probability (4) as:

p(T |Y ) ∝
∏
i∈S

∏
j∈S

T
Zij

ij =
∏
i∈S

∏
j∈S

T
αij−1
ij ,

where each factor
∏

j∈S T
αij−1
ij has the form of a Dirichlet distribution with the parameters

αij = Zij + 1. Efficient samplers for the Dirichlet distribution exist (see p. 594 in [18] and

[19]). This approach ensures that all sampled transition matrices are stochastic matrices (i.e.

0 ≤ Tij ≤ 1 and
∑

j Tij = 1) drawn from the correct posterior probability. Unfortunately,

this approach does not allow properties of T to be ensured which involve multiple rows. In

particular, it is desirable to sample only transition matrices that fulfill detailed balance with

respect to their stationary distribution, π:

πiTij = πjTji. (10)

On such method was proposed in [17]. Here, an alternative and general method to sample

transition matrices according to the posterior probability (5) based on Markov Chain Monte

Carlo (MCMC) is proposed. While it is computationally more expensive than the linear

error analysis and the Dirichlet sampling, it allows the sampling to be restricted to transition

matrices fulfilling additional constraints, such as (10).

III. MONTE-CARLO SAMPLER FOR TRANSITION MATRICES

A Metropolis MCMC sampler is proposed. For notational convenience we denote the set

of all transition matrices by

T =

{
T = (Tij)i,j∈{1,...,m} : Tij ∈ [0, 1],

m∑
k=1

Tik = 1 ∀i, j ∈ {1, ..., m}

}
.

The MCMC sampler will generate an ensemble of transition matrices drawn from T and

distributed according to the posterior probability in (5).
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Generally, a Metropolis MCMC scheme works as follows. Suppose that pZ(T ) is the pdf

to be sampled from, and TC is the current state. In the proposal step a new state TN is

generated with probability p(TC → TN ). In the acceptance step the proposed state TN is

accepted with the probability

pacc = min

{
1,

pZ(TN )p(TN → TC)

pZ(TC)p(TC → TN )

}
. (11)

If the new state is accepted, then TN is added to the ensemble and the scheme restarts with

TN as the current state. Otherwise, the current state TC is added to the ensemble and is

considered again in the next iteration of the scheme. This approach has a number of useful

properties, including:

1. The target density function pZ(T ) does not need to be normalized as the normaliza-

tion factor cancels in the ratio pZ(TN )/pZ(TC) involved in the acceptance probability

in (11). Thus, the proportionality factor in the posterior probability (5) does not need

to be determined.

2. In principle, any strategy for the generation of a new state in the proposal step may

be used as long as the probabilities p(TC → TN ) and p(TN → TC) can be evaluated

and any two permitted states can be connected via a finite number of proposal steps.

The choice of the proposal step strategy, however, is important for the efficiency and

the convergence of the sampling procedure [20].

A. Monte Carlo in Transition Count Matrix Space

We will ensure the constraint
∑m

j=1 Tij = 1 while maintaining efficiency through a change

of variables. For this, consider the matrices containing nonnegative reals, K ∈ Rm2

+ , and the

transformation:

Tij =
Kij∑
j Kij

=
Kij

Ki

with Ki =
∑m

j=1 Kij. This transformation maps K-matrices to transition matrices. Consid-

ering Eq. (6), K may be interpreted as a matrix of fictitious transition counts and T as the

corresponding maximum likelihood transition matrix. This mapping is formally written as

the function:

u(K)
def
=

(
K11

K1

, . . . ,
Kmm

Km

)
∈ T (12)
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such that T = u(K).

The crucial idea is now to generate an ensemble of count matrices K = {K ∈ Rm2

+ } via

an MCMC procedure which is distributed according to the pdf pZ(T ). For this approach to

be valid, the mapping u(K) must be such that the ensemble T = {T = u(K), K ∈ K} is

distributed according to pZ(T ). This is indeed the case and it is established by Theorem V.1,

stated in the Appendix V. Particularly, we show that the ensemble of count matrices K has

to be restricted on the subset:

K =

{
K ∈ Rm2

+ : k−
i ≤

m∑
j=1

Kij ≤ k+
i , i = 1, . . . , m

}
, (13)

with 0 < k−
i < k+

i , i = 1, . . . ,m. The restriction on the set K is independent of the proposal

step and accounts for the non-invertibility of the transformation u(K). Furthermore, it

ensures the right statistical weights of the transition matrices in the ensemble T = {T =

u(K), K ∈ K}.

Let (i, j), 1 ≤ i, j ≤ m, be a uniformly drawn pair of indices. We suggest the following

proposal step scheme for KN = ((KN )kl), 1 ≤ k, l ≤ m:

(KN )kl =

(KC)ij + ε if (k, l) = (i, j),

(KC)kl otherwise,
(14)

where the random variable ε is drawn such that the constraints,

0 ≤ (KN )ij and k−
i ≤

m∑
k=1

(KN )ik ≤ k+
i , (15)

are satisfied. This is achieved by drawing ε uniformly from the interval

[a, b] =
[
max

{
−(KC)ij, k

−
i − (KC)i

}
, k+

i − (KC)i

]
, (16)

where (KC)i =
∑m

k=1(KC)ik. Consequently, the proposal probabilities simply reduces to

p(KC → KN ) = p(KN → KC) =
1

b− a
.

The algorithm in Figure 2 summarizes our approach to generating an ensemble of transition

matrices distributed according to pZ(T ).

We end this section with a discussion of the computational cost of our proposed scheme.

The computational cost of a single iteration step is dominated by the evaluation of the
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Input: Count matrix Z = (Zij)i,j∈S ,

set of boundary constants {(k−
i , k+

i )}, 1 ≤ i ≤ m.

Output:Ensemble T of transition matrices.

(1) Initialize KC with a nonnegative matrix, e.g., Z.

(2) Loop until convergence:

(2.1) Draw uniformly pair of indices (i, j) : 1 ≤ i, j ≤ m.

(2.2) Draw uniformly

ε ∈
[
max

{
−(KC)ij , k

−
i − (KC)i

}
, k+

i − (KC)i

]
.

(2.3) Generate proposal KN :

(KN )kl =


(KC)ij + ε if (k, l) = (i, j),

(KC)kl otherwise.

(2.4) Accept KN with acceptance probability:

pacc = min
{

1, pZ(u(KN ))
pZ(u(KC))

}
.

(2.5) If KN is accepted then set KC ← KN .

(2.6) Add u(KC) to the transition matrix ensemble T .

Figure 2: Metropolis algorithm: General case

ratio pZ(u(KN ))/pZ(u(KC)) for the acceptance probability. Since the update of KC in the

proposal step affects only one entry the evaluation of pacc can efficiently be performed in

O(m). The overall memory requirement scales with O(|T |m2) where |T | is the size of the

transition matrix ensemble. However, the overall performance and memory requirement

depend crucially on the matrix function f(T ) under consideration. If both scale reasonably,

e.g., with O(m), then the proposed MCMC scheme can even be applied on state spaces with

m ≈ 1000 states.

B. Sampling Reversible Transition Matrices

In this section we present a MCMC sampling scheme which allows us to sample reversible

transition matrices distributed according to the posterior (5). The scheme is based on the

following simple observation: If K ∈ Rm×m is a symmetric nonnegative matrix then the
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transition matrix T = u(K) (see Eq. (12)) is reversible with respect to the probability

distribution

π =

(∑m
j=1 K1j∑m
i,j=1 Kij

, . . . ,

∑m
j=1 Kmj∑m
i,j=1 Kij

)
.

Hence, the symmetry of the proposed count matrices needs to be ensured in the proposal

step. Furthermore, to ensure the correct statistical weights, the MCMC sampling has to be

restricted on the set

Ksym =

{
K ∈ Rm2

+ : Kij = Kji ∀i, j ∈ {1, ..., m}, k− ≤
m∑

i,j=1

Kij ≤ k+

}
, (17)

with 0 < k− < k+ < ∞. For the particular choice of the set Ksym see Theorem V.3 in the

Appendix.

Let (i, j), 1 ≤ i, j ≤ m, be a uniformly drawn pair of indices. We propose the following

proposal step scheme for a symmetric proposal KN = ((KN )kl), 1 ≤ k, l ≤ m:

(KN )kl =

(KC)ij + ε if (k, l) ∈ {(i, j), (j, i)},

(KC)kl otherwise,
(18)

where ε is uniformly drawn from the interval

[a, b] =


[
max

{
−(KC)ij,

1
2
(k− − SC)

}
, 1

2
(k+ − SC)

]
if i 6= j,

[max {−(KC)ij, k
− − SC} , k+ − SC] if i = j,

(19)

with SC =
∑m

k,l=1(KC)kl.

The proposal scheme in (18) together with (19) guarantees that KN ∈ Ksym if KC ∈ Ksym.

Analogously to (14), the proposal probability p(KC → KN ) is symmetric. Finally, the

algorithm in Figure 3 summarizes our approach to generating an ensemble of reversible

transition matrices distributed according to pZ(T ).

IV. EXAMPLES

A. Distributions of Nonreversible and Reversible T -Matrices for a 3-state system

To illustrate the sampling algorithms, first a 3-state system is considered. Let C, given by
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Input: Count matrix Z = (Zij)i,j∈S ,

boundary constants k−, k+.

Output:Ensemble T of reversible transition matrices.

(1) Initialize KC with a symmetric and nonnegative matrix, e.g., 1
2(Z + ZT ).

(2) Loop until convergence:

(2.1) Draw uniformly pair of indices (i, j) : 1 ≤ i, j ≤ m.

(2.2) Draw uniformly ε ∈ [a, b] (SC =
∑m

k,l=1(KC)kl)

[a, b] =


[
max

{
−(KC)ij ,

1
2(k− − SC)

}
, 1

2(k+ − SC)
]

if i 6= j,

[max {−(KC)ij , k
− − SC} , k+ − SC ] if i = j.

(2.3) Generate proposal KN :

(KN )kl =


(KC)ij + ε if (k, l) ∈ {(i, j), (j, i)},

(KC)kl otherwise.

(2.4) Accept KN with acceptance probability:

pacc = min
{

1, pZ(u(KN ))
pZ(u(KC))

}
.

(2.5) If KN is accepted then set KC ← KN .

(2.6) Add u(KC) to the transition matrix ensemble T .

Figure 3: Metropolis algorithm: Reversible case

C =


1 10 2

2 26 3

15 20 20

 , (20)

be a count matrix associated with a fictitious observation of a 3-state Markov chain. We

compare the exact pdf pC(T ) in (5) with the sampled distribution of 3 × 3 transition ma-

trices (compare Example II.1). In the first column of Fig. 4 we illustrate three different

2-dimensional projections of pC(T ). For example, panel A illustrates the marginal pdf

p̃Y (T12, T13) = (1− (T12 + T13))
1T 10

12 T 2
13

with 0 ≤ T12, T13 ≤ 1 and 0 ≤ 1 − (T12 + T13) ≤ 1. The panels in the second column show

the corresponding distributions resulting from sampling of pC(T ). To be more precise, we
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Figure 4: Visualization of the probability density of transition matrices to the observation in (20).

Different 2-dimensional marginal distributions (see axes) are shown in the columns. The exact and

sampled distributions for stochastic matrices are shown in columns 1 and 2, respectively. Column

3 shows the sampled distribution for stochastic matrices fulfilling detailed balance.

generated an ensemble of 106 transition matrices by means of the algorithm in Figure 2 and

computed 2-dimensional histograms, respectively, depicted as contour plots. As an initial

transition count matrix we chose KC ≡ 1/3 and we set k− ≡ 0.9 and k+ ≡ 1.1.

Finally, we sampled pC(T ) restricted on the set of reversible 3 × 3-transition matri-

ces by means of the algorithm in Figure 3. We chose the same initial transition count

matrix as in the nonreversible case and generated an ensemble of 106 transition matrices

(k− =
∑m

i,j=1(KC)i,j and k+ = 1.05
∑m

i,j=1(KC)i,j). The resulting 2-dimensional marginal

distribution are depicted in the panels C,F and I. One can clearly see that the marginal

distributions illustrated in panel C,F significantly differ from the corresponding the nonre-

versible ones, respectively.
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B. Nonreversible versus Reversible sampling

To illustrate the effect of enforcing reversibility, let us consider the reversible 5-state transi-

tion matrix shown in Fig. 5a. Each state in the series 1-2-3-4-5 has a stationary probability

ten times greater than the previous one, such that the stationary probabilities of states 1 and

5 relate as 1:10000. 1000 transition counts are generated for each state and are distributed

according to the transition probabilities (see Fig. 5b). Based on these transition counts,

the distribution of transition matrices is sampled with and without enforcing reversibility.

These two distributions are almost identical in all transition matrix elements except for T51.

This transition probability is very low (T51 = 10−5) and no transition has been observed,

such that the only pieces of information available to bound the value of T51 are the number

of failed attempts to observe that transition (1000 times), and constraints on the ensemble of

transition matrices (stochasticity and reversibility). Fig. 5c shows that without reversibil-

ity, the distribution of T51 is very wide and its peak is much larger than the true value

T51 = 10−5. Enforcing reversibility strongly sharpens the distribution and its peak is rather

close to the true value. This is explained by the fact that enforcing reversibility allows to

estimate a transition probability i → j based on the estimate of the backwards transition

probability j → i, if a good estimate for the relative stationary probabilities of i and j are

available. In the present example:

T15 = T51
π5

π1

(21)

The relative probabilities π5/π1 are well estimated because a sufficient number of counts is

available along the chain 1-2-3-4-5, and T51 can also be well estimated. Of course, enforcing

reversibility is only allowed if it is known that the underlying system has reversible dynamics.

C. Probability distribution of spectrum and stationary distribution and their de-

pendence on the observation length

In computer simulations of stochastic systems, such as Molecular Dynamics (MD) simula-

tions, the matrix of observed transition counts, C, depends on the length of the observations.

Upon lengthening the simulation, more transitions will be observed and the implied distri-

bution of transition matrices, pC(T ), will become narrower. In a similar fashion, properties
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Figure 5: A) a reversible 5-state transition matrix. The states with higher stationary probability are

shown in darker colors. B) the transition counts used for sampling the distribution of transition

matrices. C) the distribution of the transition matrix element T51 with and without enforcing

reversibility.

computed from T will become generally more accurate as the length of the simulation, and

thus the C-matrix, is increased. To study this effect, consider a 4-state system defined by

the true transition matrix:

T =


0.7 0.3

0.5 0.47 0.03

0.01 0.96 0.03

0.03 0.97

 . (22)

Starting in state 4, we generated a realization according to T , of the total length 2000 and

considered the first 100, 500, 1000, 5000 and 20000 steps. For the C-Matrices corresponding

to each of these chains, the nonreversible transition matrix distribution is sampled to con-

vergence using the algorithm in Figure 2 where the parameters were chosen analogously as

in the previous example (see Section IVA).

A particular interesting property of T is its spectrum, i.e. its eigenvalues λi with i ∈

{2, 3, 4}, which indicate the time scales of the transition processes in the system, t∗i , via
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Eq. (8). The first eigenvalue, which is always λ1 = 1, is irrelevant in this respect as it only

represents the fact that the system as a whole is never left (t∗1 =∞). The next time scales

t∗2, t
∗
3, ... correspond to the time scales of the slowest and next-slowest transition processes.

Since there is a distribution of T , there is not a unique eigenvalue spectrum for a given

observed transition count C, but rather a spectral distribution. With an increased number

of observed transition counts, the uncertainties of individual λi will decrease, thus allowing

for some of these λi to be distinguished from the rest of the spectral distribution. Fig. 6

shows the distribution of the two eigenvalues 1 > |λ2| ≥ |λ3| with second and third highest

order of magnitude for the four simulations of different lengths. For the 100 step simulation,

the spectral distributions do not exhibit any distinctive features except a broad peak. For

500 and 1000 steps, it is apparent that the distribution starts to separate into two distinct

eigenvalues close to 1 and for 5000 steps these two modes of the distribution are clearly

separated and closely located around the true eigenvalues of T which are λ2 = 0.9857 and

λ3 = 0.9336 (indicated by a disc and a triangle on the x axis, respectively).

Next, the stationary distribution of T is estimated from the 4 differently long simulations

(see Fig. 7). One can clearly see that the distributions shift towards the correct values and

attain a Gaussian-like shape as the length of the realization increases from N = 500 to

N = 5000. After 20000 steps, the distributions are close to convergence and their peaks are

located around the true values (indicated by triangles on the x axis).

D. Example from molecular dynamics: a 33-state system

In order to illustrate the transition matrix sampling on a realistic example, a 1 microsec-

ond molecular dynamics (MD) simulation of the synthetic hexapeptide MR121-GSGSW

peptide [21] in explicit water is used. The simulation setup is described in the Appendix. In

order to concentrate on the metastable dynamics, 33 metastable states were identified and

the interconversion between them was described with a Markov model using a lag time of

τ=1ns. See Appendix for the detailed description of the Markov model construction. By

counting the transitions between metastable conformations at time intervals of 1 ns along

the trajectory, the transition count matrix, C ∈ N33×33
0 is obtained which serves as a test

case for the sampling procedure.

Our proposed method estimates the distribution of transition matrices via Monte Carlo
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Figure 6: Distribution of eigenvalues close to 1 for different realizations of the Markov chain induced

by the transition matrix T given in (22). A) realization of length N = 100. B) length N = 500. C)

N = 1000. D) N = 5000. Observe that the spectrum becomes the sharper distributed the larger

N .

sampling and, hence, allows us to estimate the uncertainty of observables. Particularly, the

following observables are chosen:

(i) the self-transition probabilities T11 and Tmm corresponding to the least and most pop-

ulated states, respectively.

(ii) the first two nontrivial dominant eigenvalues 1 > |λ2| ≥ |λ3| of T .

(iii) the stationary probabilities π(1) and π(m) corresponding to the least and most pop-

ulated states.

(iv) the committor probability q(i1/2) corresponding to a 1/2-committor state where i1/2

is defined by

i1/2 = argmin
i∈S

{|q̂(i)− 0.5|} .
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Figure 7: Distribution of stationary probabilities of states i = 1, . . . , 4 for different realizations

of length N = 500, 1000, 5000, 20000 of the Markov chain induced by the transition matrix T

given in (22). As the length of the realization increases the stationary distribution gradually shifts

towards its limit values (indicated by triangles on the x axis).

The committor function q̂(·) satisfies Eq. (9) with respect to the MLE T̂ given in (6).

The set A and B consists of the respective state which corresponds to the unfolded

and folded state.

Now a couple of questions arise: (i) what is the burn-in time of the MCMC sampling

scheme, i.e., how many samples are necessary to consider the underlying Markov chain to

be stationary, (ii) how many samples are necessary to consider the estimated distributions

as “correct” (converged).

To answer the first question, we considered the time trace of the self-transition proba-

bilities T11, Tmm and the log-likelihood function log(pC(T )) as a result of the algorithm in

Figure 2. As initial count matrix we chose K ≡ 1/33 and set k− ≡ 1 and k+ ≡ 2. The time

traces depicted in the panels of Figure 8 suggest that the Markov chain is well mixed after

200000 steps. Moreover, to guarantee decorrelated samples, we took every 1000-th sample
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Figure 8: The time trace of the self-transition probabilities T11 and Tmm (panel A) and the log-

likelihood function log(pC(T )) (panel B). Both time traces suggest that the Markov chain is well

mixed after 200000 steps.

of the continued sampling and stopped after a total of 100000 samples.

Next, we address the question of convergence. Among different approaches to assess

convergence of a MCMC simulation, we employed the method of Gelman and Rubin [27]

where we followed the presentation in [28]. Suppose n different chains have been simulated

each with different start point with respect to the distribution to be sampled. Roughly

spoken, the idea of Gelman and Rubin’s method is to infer convergence from comparing

the between-chain statistics and the within-chain statistics in terms of the variance. In

practice, the so-called potential scale factor R̂ is computed which indicates convergence if R̂

is close to one. Instead of launching different simulations, here we divided one long single

run simulation into 100 equally sized pieces and calculated R̂ for each observable. The

resulting R̂-values for some observables are given in the first row in Table I and indeed

indicate convergence of the sampling.

The algorithm in Figure 3 allows us to sample pC(T ) subject to the detailed balance

constraint in (10). Hence, we asked if restricting on reversible transition matrices result

in significant differences of the observables’ distributions? To make things comparable, we

chose the same initial count matrix, burn-in time, thinning and sampling length as in the

nonreversible simulation where we used the boundary parameters k− = 1 and k+ = 1.01.
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R̂(T11) R̂(Tmm) R̂(π1) R̂(πm) R̂(q(i1/2))

nonreversible 1.0049 1.0183 1.0018 1.0087 1.0032

reversible 1.0047 1.0177 1.0029 1.0578 1.0152

Table I: Convergence diagnostic due to Gelman and Rubin [27] in the nonreversible case with respect

to the observation C. We divided a single-run simulation with sampling size 100000 into 100 equally

sized pieces and calculated the potential scale factor R̂ for some observables, respectively. Since

all R̂-values are close to one, we consider the sampling to be converged.

E. Uncertainty in Molecular Dynamics Simulations

Next, the effect of simulation length on the uncertainties of T itself is studied. For this,

segments of the complete 1 µs trajectory were considered, starting at time 0 and having

lengths between 10 and 1000 ns. For each segment, the transitions between states were

counted using always the same definition of states. For each C matrix obtained in this way,

the T matrices were sampled without and with the detailed balance constraint. Fig. 9 shows

the mean uncertainties of the diagonal elements in panel (a) and the off-diagonal elements in

panel (b). All uncertainties become smaller with increasing trajectory length. The decay of

the uncertainty follows roughly a power law with increasing simulation length and is slower

than the t−0.5 which would be expected from uncorrelated samples. Introducing detailed

balance increases the uncertainty in the diagonal elements but decreases the uncertainty in

the off-diagonal element. This is to be expected, since detailed balance constraints only the

ratio of symmetric off-diagonal elements.

Next, the effect of simulation length on the uncertainties of properties derived from the

transition matrix are analyzed. First, consider the stationary probabilities of the metastable

states, as provided by the first left eigenvector of T (τ). The stationary probabilities were

computed for each sample T (τ). In order to avoid the average to be dominated by the few

most-populated states, the mean relative uncertainty was computed via

σ̄r(πi) =
1

m

m∑
i=1

σ(πi)

µ(πi)
, (23)

where µ(πi) and σ(πi) are the means and standard deviations of the stationary probability of

state i, respectively. These mean relative uncertainties are shown in Fig. 10. It is apparent

that introducing detailed balance has almost no effect on the uncertainties in the stationary
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Figure 9: Mean uncertainties of (panel A) the diagonal and (panel B) the off-diagonal elements of

the transition matrix for different simulation lengths. The uncertainties are shown for the ensembles

of transition matrices (nonreversible) and transition matrices with detailed balance (reversible).
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Figure 10: State-averaged standard deviations of the stationary probabilities for different simula-

tion lengths. The uncertainties are shown for the ensembles of transition matrices (nonreversible)

and transition matrices with detailed balance (reversible).

probabilities.

Another property of interest is the committor probability of each state, with respect to

two end-states A and B. Here, the two metastable states with the most distant values in the

second eigenvector were chosen as A and B, thus representing the states between which the

slowest transition in the system occurs. The committor was computed for each sample of

T (τ) using Eq. (9) and its mean relative uncertainties are shown in Fig. 11. This shows that

the uncertainties of a property derived from T (τ) decrease with increasing simulation time,

even if new states being found as the simulation proceeds. It is apparent that incorporating
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Figure 11: State-averaged relative standard deviations of the committor probabilities for different

simulation lengths. The uncertainties are shown for the ensembles of transition matrices (nonre-

versible) and transition matrices with detailed balance (reversible).

detailed balance somewhat reduces the uncertainties of the committor. This is expected since

the committor is a dynamical property and thus benefits from the reduced uncertainty in

the off-diagonal elements of the transition matrix observed in Fig. Fig. 9b. Similarly as the

off-diagonal transition matrix elements, the committor uncertainties decay with increasing

simulation time approximately by a power law that is slower than t−0.5.

Finally, another interesting property of T is its spectrum, i.e. its eigenvalues λi with

i ∈ {1, ...,m}, which indicate the time scales of the transition processes in the system, t∗i ,

via Eq. (8). Due to the distribution of T , there is not a unique eigenvalue spectrum for a

given observed transition count C, but rather a spectral distribution. With an increased

number of observed transition counts, the uncertainties of individual λi will decrease, thus

allowing for some of these λi to be distinguished from the rest of the spectral distribution.

Fig. 12 shows the spectral distribution for several simulation lengths. For simulation times

up to 100 ns, the spectral distribution has no distinctive features. With increasing simulation

time, some peaks at the large eigenvalue region start to form. From 400 ns on, the slowest

transition process at λ2 ≈ 0.75 can be clearly distinguished and continues to narrow with yet

increasing simulation time. At 1000 ns, the spectrum exhibits a lot of structure in the range

λ ≥ 0.5, but apart from λ2 no peaks are clearly separated. This indicates that even for a

small peptide, 1 µs simulation time is rather short when good convergence of the kinetics is

expected. Introducing detailed balance somewhat shifts large-eigenvalue (slow time) range

of the spectrum to the right. In order to better see how the uncertainty of individual
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Figure 12: Distributions of the eigenvalue spectrum of T for different simulation lengths. The

distributions are shown for the ensembles of transition matrices (nonreversible, first row), transition

matrices with detailed balance (reversible, second row).
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Figure 13: Relative uncertainties of the second (panel A) and third-largest (panel B) eigenvalues

of the transition matrix.

eigenvalues changes with sampling length, the relative uncertainties of second and third-

largest eigenvalues are plotted in Fig. 13. The uncertainties decay roughly with t0.5 with

increasing simulation time t, which is reasonable for a Markovian system as the estimate

of the eigenvalues depends on the number of observed transitions along the corresponding

eigenvector which itself is proportional to the sampling time. Again, introducing detailed

balance significantly reduces the uncertainties since the eigenvalues are dynamic properties.
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V. CONCLUSION

Methods were introduced for approximating the probability density of Markov transition

matrices induced by observed transition counts. Algorithms are given for sampling stochastic

matrices and stochastic matrices that fulfill detailed balance. The algorithms are based on

Metropolis Monte Carlo, are easy to implement and exhibit good convergence properties.

Molecular dynamics in equilibrium always fulfills detailed balance. It has been shown

that including detailed balance can significantly alter the distribution of transition matrices.

In particular, it may reduce the uncertainties of some transition matrix properties, which

may be essential when computing kinetic properties, such as transition pathways or rates.
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Appendix

Proof of Correctness

The proposed MCMC scheme generates an ensemble of transition count matrices K dis-

tributed according to pZ(u(K)). It remains to prove that the ensemble of transition matrices

T = {u(K)} resulting from the transformation K 7→ T = u(K) is indeed distributed ac-

cording to pZ(T ).

In order to motivate the need of a restriction of the MCMC-scheme on a subset K ⊂ Rm2

notice that the transformation u(K) is a projection. In particular, u(K) is not injective

because, e.g.,

u(K) = u(αK) ∀α ∈ R, α 6= 0,

which further shows that without any constraints on the ensemble K the statistical weight

of u(K) would not be well defined. Fortunately, the lack of invertibility can be compensated
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the particular choice of the set K in (24). A row-vector (K11,K12) of a 2×2 transition count matrix

K is mapped via the transformation F into the (α1, T11)-space and vice versa.

by a restriction of the MCMC scheme on an appropriate state space. In the nonreversible

case it turns out that the restriction of the MCMC scheme on the set

K =

{
K ∈ Rm2

0+ : k−
i ≤

m∑
j=1

Kij ≤ k+
i , i = 1, . . . ,m

}
(24)

with 0 < k−
i < k+

i , i = 1, . . . , m leads to the right statistical weights. For a schematic

illustration of (24) see Figure 14.

Theorem V.1. Let K = {K ∈ K} be an ensemble of count matrices distributed according

to pZ(u(K)). Then the ensemble T = {u(K) : K ∈ K} is distributed according to pZ(T ),

i.e.,

P[u(K) = T ] = cpZ(T ) ∀T ∈ T ,

where c > 0 is a positive constant independent of the matrix T .

Proof. The probability P[u(K) = T ] can formally be written as

P[u(K) = T ] =

∫
u−1(T )

pZ(u(K))dK. (25)

Since the map u(K) is a projection, the inverse u−1(T ) is not unique. However, for an T ∈ T

the inverse can be parameterized by:

u−1(T ) = {diag(α1, . . . , αm)T}

with αi ∈ [k−
i , k+

i ], i = 1, . . . ,m. In order to evaluate the integral in (25) we change variables

via:

F : K 7→ (α1, T11, . . . , T1,m−1, α2, T21, . . . , T2,m−1, . . . , αm, Tm1, . . . , Tm,m−1), (26)
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where αi =
∑m

j=1 Kij and Tij =
Kij

Pm
n=1 Kin

, 1 ≤ i ≤ m. See Figure 14 for a schematic

illustration of F (K).

Lemma V.2.∫
u−1(T )

pZ(u(K)) dK =

∫ k+
1

k−
1

· · ·
∫ k+

m

k−
m

pZ(T ) αm−1
1 · · ·αm−1

m dα1 · · · dαm

Proof. The transformed integrand in the new variables is given by [25]

pZ(u(F−1))
∣∣det(J(F−1))

∣∣ , (27)

where J(F−1) is the Jacobian of the transformation F−1 which takes the form:

F−1 : (α1, T11, . . . , T1,m−1, . . . , αm, Tm1, . . . , Tm,m−1) 7→ (K11, . . . , Kmm),

with Kij =

αiTij if 1 ≤ i ≤ m, 1 ≤ j ≤ m− 1,

αi(1−
∑m−1

j=1 Tij) if j = m.

(28)

Let (α1, T11, . . . , T1,m−1, . . . , αm, Tm1, . . . , Tm,m−1) ∈ F (u−1(T )) then the first factor in (27)

reduces to pZ(T ). The Jacobian in (27) has a diagonal block structure since (Ki1, . . . , Kim)

for a fixed i depends only on (αi, Ti1, . . . , Ti,m−1). Thus, det(J) = det(J1) · · · det(Jm) with:

det Ji =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ti1 αi 0 0 . . .

Ti2 0 αi 0 . . .
...

...
. . . . . .

...

Ti,m−1 0 . . . . . . αi

1−
∑m−1

j=1 T1j −αi . . . . . . −αi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ti1 αi 0 0 . . .

Ti2 0 αi 0 . . .
...

...
. . . . . .

...

Ti,m−1 0 . . . . . . αi

1 0 . . . . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)(d−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . . . . 0

Ti1 αi 0 0 . . .

Ti2 0 αi 0 . . .
...

...
. . . . . .

...

Ti,m−1 0 . . . 0 αi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)(m−1)α

(m−1)
i .
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Thus, | det(J)| = α
(m−1)
1 · · ·α(m−1)

m

It follows that:

P[u(K) = T ] =

∫
u−1(T )

pZ(u(K)) dK

=

∫ k+
1

k−
1

· · ·
∫ k+

m

k−
m

pZ(T ) αm−1
1 · · ·αm−1

m dα1 · · · dαm = cpZ(T ),

where the constant c is independent of the matrix T .

Finally, we prove the reversible case. Recall the definition of the set

Ksym =

{
K ∈ Rm2

+ : K symm., k− ≤
m∑

i,j=1

Kij ≤ k+

}

with 0 < k− < k+ <∞.

Theorem V.3. Let K = {K ∈ Ksym} be an ensemble of symmetric count matrices dis-

tributed according to pZ(u(K)). Then the ensemble T = {u(K) : K ∈ K} of reversible

transition matrices is distributed according to pZ(T ).

Proof. The proof follows the reasoning of the nonreversible case. The key observation is

that the statistical weight of a reversible transition matrix T ∈ {u(K) : K ∈ K} is given by∫
{αS}

pZ(u(K)) dK,

where

S = diag(π1, . . . , πm)T

is a symmetric matrix with α ∈ {k−, k+} and π = (πi), i = 1, . . . , m is the unique stationary

distribution of T .

To motivate the following transformation, notice that for symmetric K the stationary

distribution of T = u(K) is simply given by

πi =

∑m
j=1 Kij∑m

k,j=1 Kkj

and we conclude

πiTij =
Kij∑m

k,l=1 Kkl

.
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A short calculation shows that by virtue of the transformation

K 7→

(
m∑

k,l=1

Kkl,
K11∑m

k,l=1 Kkl

, . . . ,
Km,m−1∑m

k,l=1 Kkl

)

and the definition of the set Ksym in (17) the integral evaluates to∫
{αS}

pZ(u(K)) dK =
(
(k+)m2−1 − (k−)m2−1

)
pZ(T ).

Molecular Dynamics Setup and Markov Model for the Model Peptide

A molecular dynamics simulations of the MR121-GSGS-W peptide in water was per-

formed with a simulation length of 1 µ s. The simulation was performed in explicit water

at 293 K using the GROMOS96 force field [23] and the GROMACS program [22]. Partial

atomic charges for the dye MR121 were taken from Vaiana et al. [31]. One peptide molecule

in an extended conformation was solvated with water and placed in a periodic rhombic do-

decahedron box large enough to contain the peptide molecule and ≈ 1.0 nm of solvent on all

sides at a liquid density of 55.32 mol/l (≈ 1 g/cm3), producing 1155 water molecules. Water

was modeled by the simple point charge (SPC) model [32]. Simulations were performed in

the NVT ensemble using a Berendsen thermostat.

All bond lengths were fixed using the Lincs algorithm [33] and a time step of 2 fs for

numerical integration was used. Periodic boundary conditions were applied to the simula-

tion box and the long-range electrostatic interactions were treated with the particle mesh

Ewald method [34] using a grid spacing of 0.12 nm combined with a fourth-order B-spline

interpolation to compute the potential and forces in between grid points. The real space

cut-off distance was set to 0.9 nm. The C-terminal end of the peptide was modeled as COO−

to reproduce a pH of about 7 as in the experimental conditions [21]. No counter ions were

added since the simulation box was already neutral (one positive charge on MR121 and one

negative charge on the terminal COO−). The coordinates were saved every ∆ t=0.2 ps.

Next, a transition matrix model was built. To distinguish all relevant conformations of

the system, the peptide coordinates were fitted to the extended configuration and then the

state space was partitioned into small regions using a k-means clustering with k=1000. A

fine-grained transition matrix, Tfine(τ) was estimated from the data at τ = 1 ns. In order
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Figure 15: Implied time scales of the Markov model for MR121-GSGS-W depending on the lag time

τ . The different curves represent the time scales implied by the eigenvalues of the transition matrix

evaluated at lag time τ . This indicates that the dynamics becomes approximately Markovian at

about τ ≈ 1 ns.

to concentrate on the metastable states in the system, the 1000 fine states were grouped

together using the PCCA+ method [24] as described in [4] into 33 metastable sets, which

were used for the transition matrix sampling in the present paper. In order to determine the

lag time τ , the implied time scale method proposed in [26] was employed, indicating that

for τ = 1 ns the transitions are approximately Markovian (see Fig. 15).
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