
Freie Universität Berlin

Fachbereich Mathematik u. Informatik
Studiengang Bioinformatik

Prediction of Post-translational Modifications of

Proteins from 2-DE/MS Data

Vorhersage post-translationaler Modifikationen anhand

von 2-DE/MS Daten

Masterarbeit
zur Erlangung des akademischen Grades

"Master of Science (M.Sc.)"

Bearbeiter: Axel Rack
M.-Nr.: 3579100

Betreuer: Dr. K.-P. Pleißner
Prof. Dr. K. Reinert

Acknowledgments i

Acknowledgments

First of all, I would like to thank Dr. Klaus-Peter Pleissner for suggesting the topic of
this thesis and for providing the possibility to work at the Max Planck Institute for
Infection Biology. I very much appreciated his advice and the valuable discussions
we had. I am indebted to Prof. Dr. Knut Reinert for helpful advice and suggestions.
I am also grateful to Prof. Dr. Sebastian Böcker for suggestions concerning the
implementation of the algorithm. I would also like to thank Dr. Peter R. Jungblut
and Dr. Robert Stein for insightful discussions.

Zusammenfassung ii

Zusammenfassung

Die lebende Zelle ist eine komplexe Einheit, die aus Nukleinsäuren, Proteinen und
anderen Biomolekülen besteht, welche zusammen ein dynamisches Netzwerk bil-
den. Die Entschlüsselung dieses Netzwerks ist für viele Wissenschaftler verschiede-
ner Disziplinen von großem Interesse. Durch die Sequenzierung zahlreicher Genome
gelang ein großer Schritt in Richtung des Verständnis der fundamentalen Elemente
der Zelle — der Gene. Im Menschen existieren ungefähr 20 000 bis 25 000 Gene, die
mehr als eine Million Proteine codieren. Die Komplexität auf der Ebene der Pro-
teine wird herbeigeführt durch alternatives Spleißen und co- und posttranslationale
Modifkationen. Diese produzieren mehrere Proteinspezies pro Transkript. Modi-
fikationen sind in der Regulation der zellulären Prozesse absolut notwendig, und
sie verursachen die Aktivierung oder Inaktivierung von Enzymen oder sogar von
ganzen Signalwegen.
Die Gesamtheit aller Proteine in einer Zelle, zu einem bestimmten Zeitpunkt und
unter bestimmten biologischen Umständen, wird Proteom genannt. Die Analyse
des Proteoms wird als Proteomics bezeichnet. Ein Forschungsgebiet der Proteomics
ist die Identifikation von Proteinen und ihren posttranslationalen Modifikationen.
Peptide Mass Fingerprinting ist eine oft benutzte und erprobte Methode, um mit
Hilfe von Massenspektrometrie und einer Proteinsequenz Datenbank Proteine durch
ihre Aminosäuresequenz zu identifizieren. Diese Methode vergleicht experimentelle
(gemessene) Massenpeaks mit theoretischen Massen, die von einem Protein in der
Sequenz Datenbank errechnet werden. Die Masse eines modifizierten Proteins un-
terscheidet sich von der Masse seines nicht-modifizierten Gegenstücks. Deshalb
muss dieser Massenunterschied berücksichtigt werden, wenn Peptide Mass Finger-
printing zur Detektion von Potein Modifikationen angewendet wird.
In der vorliegenden Arbeit wurde ein neuer Algorithmus entwickelt und imple-
meniert, der in Peptide Mass Fingerprint Daten Proteinmodifikationen identifiziert.
Der Algorithmus betrachtet den Prozeß der Vorhersage von Proteinmodifikationen
als ein erweitertes Geldwechsel-Problem, das mit bestimmten Kombinationen von
Modifikationen versucht, einen Massenunterschied zu erklären. Im Gegensatz zu
den existierenden Algorithmen, ist der hier präsentierte Algorithmus nicht in der
Anzahl der zu berücksichtigen Modifikationen beschränkt. Desweiteren ist der Al-
gorithmus effizient, da er für eine Liste von Modifikationen nur ein Mal alle Kombi-

Zusammenfassung iii

nationen der Modifikationen berechnet, unabhängig von der Anzahl der Abfragen.
Die Häufigkeiten des Auftretens von Proteinmodifikationen sind allerdings kaum
bekannt, so dass keine verlässliche Aussage über die Qualität der Identifikatio-
nen getroffen werden kann. Trotzdem ist dieser neue Ansatz ein verheißungsvoller
Schritt, um mehr über die Komplexität der Proteine zu erfahren.

Abstract iv

Abstract

The living cell is a complex entity consisting of nucleic acids, proteins, and other
biomolecules that form an interrelated and dynamic network. The unraveling of
this network is of great interest for scientists of different disciplines. With the se-
quencing of the genome a step was made to the understanding of the fundamen-
tal elements of the cells — the genes. In humans, approximately 20,000 to 25,000
genes exist which encode about more than one million proteins. This complexity
at the protein level is a result of alternative splicing and co- and post-translational
modifications producing several protein species per transcript. Modifications are
essential to the regulation of cellular processes and account for the activation or de-
activation of enzymes and whole signaling pathways. The entirety of all proteins
present in a cell at a fixed point of time and under particular biological conditions is
called proteome, and the analysis of it is proteomics. One particular area of interest
in proteomics is the identification of proteins and their post-translational modifica-
tions. Peptide mass fingerprinting is an established method and has proved useful
to identify proteins by their amino acid sequence using mass spectrometry and pro-
tein sequence databases. This method relies on the idea of comparing experimental
(measured) mass peaks to theoretical (calculated) masses, the latter being generated
from a protein in a sequence database. As the mass of a modified protein differs
from the mass of its unmodified counterpart, this mass distance is to be considered
when detecting protein modifications with peptide mass fingerprinting.
In the work described here, a novel algorithm was developed and implemented that
allows for the identification of protein modifications from data derived by peptide
mass fingerprinting. The algorithm transformed the process of predicting protein
modifications to an extended Money Changing Problem of finding suitable combi-
nations of modifications that explain the observed peak mass distances. Unlike com-
mon computational approaches the algorithm presented here will not be restricted
in the number of modifications to be considered. Furthermore, this algorithm is
efficient by calculating for a given list of modifications the combinations of mod-
ifications only once, independent of the number of queries. Although there exist
hardly any frequencies of protein modifications, which turns the validation of the
results very difficult, this novel approach is a promising step towards the unraveling
of protein complexity.

Contents v

Contents

Acknowledgments i

Zusammenfassung ii

Abstract iv

1 Introduction 1
1.1 Proteomics . 1
1.2 Classical Approach of Protein Identification 2

1.2.1 Two-Dimensional Polyacrylamide Gel Electrophoresis 3
1.2.2 Mass Spectrometry . 3

1.3 Peptide Mass Fingerprinting . 7
1.3.1 Identification of Protein Modifications 8
1.3.2 Existing Tools for the Detection of Protein Modifications . . . 10

1.4 Goals of this study . 11

2 Algorithm 13
2.1 Protein Modification as a Money Changing Problem 13
2.2 Dynamic Programming for the Money Changing Problem 16
2.3 Dynamic Programming for the Protein Modification Money Chang-

ing Problem . 19
2.3.1 Constraints on the use of Protein Modifications 20
2.3.2 Negative Mass Changes . 21
2.3.3 Definition of the Algorithm . 23

2.4 Efficient Dynamic Programming . 25
2.4.1 Ragged Array Storage of the Dynamic Programming Table . . 26
2.4.2 Efficient Construction of the Dynamic Programming Table . . 27

3 Implementation 29
3.1 Programming Language and Environment 29
3.2 External Classes and Class Libraries 29
3.3 Data Sources . 30
3.4 A Tool for the Detection of Protein Modifications 30

Contents vi

3.4.1 Theoretical Digestion . 31
3.4.2 Precomputation and Identification of Protein Modifications . 33
3.4.3 Parameterization . 34
3.4.4 User Interface . 34

4 Evaluation 36
4.1 Testing Environment . 36
4.2 Construction of the Dynamic Programming Table 38
4.3 Backtracking . 38

5 Discussion 41
5.1 Algorithm . 41
5.2 Assessment of Decompositions . 42
5.3 Outlook . 43

6 Summary 44

List of Figures I

List of Tables II

Abbreviations III

Bibliography IV

A Reference Data X
A.1 Proteolytic Enzymes . X
A.2 Amino Acid Masses . XI
A.3 Atomic Masses . XII

Affidavit XIII

1 Introduction 1

1 Introduction

1.1 Proteomics

A living cell is a complex system of a multitude of proteins, nucleic acids and other
molecules that participate in numerous interrelated molecular processes, forming a
dynamic network. The prospect of unraveling this complex network was promoted
by the sequencing of the genomes of a broad variety of organisms from bacteria to
eukaryotes. Finally, the sequencing efforts reached a major milestone when draft se-
quences of the complete human genome were published (Venter et al., 2001; Lander
et al., 2001). Investigation of these sequences gave rise to an approximate number
of 30,000 to 35,000 protein-encoding genes — just about one-third higher than that
reported for the simple organism Caenorhabditis elegans in 1998. Three years after
the publication of the first draft sequences, the International Human Genome Se-
quencing Consortium revised the former assumption of the number of genes on the
basis of an improved version of the original sequences to an even lower approxi-
mation of only 20,000 to 25,000. This relatively low number of genes in the human
genome is, however, assumed to be complemented by a number of probably more
than one million different protein species as a result of alternative splicing and co-
and post-translational modifications (Jensen, 2004).

Indeed, the mere number of genes allows no simple assumption of a cell’s complex-
ity, which has been discussed by Claverie (2001). Even a simple mechanism like
“on” and “off” regulation of genes introduces an enormous combinatorial complex-
ity at the level of transcripts, which is further increased by alternative splicing pro-
ducing an average of 5 to 6 splicing variants per gene (Jensen, 2004). Furthermore,
the complexity at the protein level is even higher because co- and post-translational
modifications give rise to several protein species per transcript. These modifications
are essential to the regulation of cellular processes and account for the activation
or deactivation of enzymes and whole cellular signaling pathways, as in the case
of phosphorylation (Leevers and Marshall, 1992; Colgan et al., 1998; Livolsi et al.,
2001).

1 Introduction 2

For all the intense interest in genomic research and the insights into gene expression
patterns that our knowledge of the genome has generated, we are still left in the
dark about exactly where and when all these genes are expressed in the form of
proteins. In contrast to the virtually static genome, the proteins present in a cell
change constantly in response to environmental factors or developmental stages.
Understanding the function of proteins and the molecular processes in which they
are involved is essential to understanding their role in the cell. This can only be
achieved by direct study of the proteins expressed in a cell, which is the subject of
proteomics.

The term “proteome” was coined by Wilkins et al. (1997) to indicate the PROTEins
expressed by a genOME or tissue. It defines a variable feature of an organism, com-
prising all proteins that are present in a cell, an organ, or an organism under par-
ticular biological conditions and at a fixed point in time. One particular area of
interest in proteomics is the identification of proteins and their post-translational
modifications (PTMs) that account for much of the biological complexity of the pro-
teome. The combination of protein separation by two-dimensional gel electrophore-
sis (2-DE) and mass spectrometry (MS) is a well-established method allowing for
the identification of post-translationally modified proteins (Jensen, 2004). But, the
quantitative and qualitative characterization of PTMs on a large scale still presents
a considerable challenge in proteomics (Mann and Jensen, 2003; Jensen, 2004).

1.2 Classical Approach of Protein Identification

The classical workflow of the analysis of expressed proteins in a cell or tissue com-
prises three major steps (Wilkins et al., 1997):

1. Protein separation

2. Protein analysis

3. Protein identification and characterization

The two classical techniques that contribute to the proteomics workflow are two-
dimensional polyacrylamide gel electrophoresis (2D-PAGE) (Klose, 1975; O’Farrell,
1975) for protein separation and identification, and MS for protein identification,
and characterization.

1 Introduction 3

1.2.1 Two-Dimensional Polyacrylamide Gel Electrophoresis

The 2D-PAGE technique allows for the simultaneous separation of thousands of
proteins (Klose and Kobalz, 1995) in an electric field. In the first dimension, proteins
are isoelectrically focused on a polyacrylamide gel, which means that they are se-
parated in a pH gradient until they reach a stationary position — their isoelectrical
point (pI). The pI is the pH at which a protein has a net charge of zero. The second
dimension separates the proteins according to their molecular weight (mw). The
proteins, already separated in the first dimension, are now separated orthogonally
in the presence of sodium dodecyl sulphate (SDS). This anionic detergent binds to
the backbone of the zero-net-charge proteins, and as a result, all proteins have a
uniform negative charge. Since all the proteins also have the same charge density,
they are separated by their mw during electrophoresis because of the sieving effect
of the gel pores.
The result of a 2D-PAGE is a protein map on which proteins are separated according
to pI and mass. In order to visualize the proteins on the gel, different techniques are
applied. Among these are staining with dyes (e.g. Coomassie Blue), fluorescence
(e.g. Sypro Ruby) or chemoluminescence detection, immunohistochemical staining
(Western-Blot), or radio-isotope marking (Thébault et al., 2001). After visualization,
proteins can be detected as spots on the gel (Fig. 1.1). For the purpose of protein
identification, these stained spots, ideally corresponding to isolated proteins, are
excised from the gel and further analyzed by MS.

1.2.2 Mass Spectrometry

MS is a method that analyzes molecules of different molecular masses and has be-
come one of the most important techniques used for analysis, characterization and
identification of proteins in proteomics (Mann and Pandey, 2001). In principle, a
mass spectrometer is an instrument that measures the mass-to-charge ratio (m/z
ratio) of free ions under vacuum conditions (Beckey, 1969). A mass spectrometer
consists of three essential parts (Fig. 1.2):

1. An ion source in which the analyte is ionized and transforms into the gaseous
phase.

2. A mass analyzer separating the ions by m/z ratio.

1 Introduction 4

Figure 1.1: Protein map of the intracellular proteins of Helicobacter pylori 26695
obtained by 2D-PAGE. The proteins were separated according to pI (x-axis) and
molecular weight (y-axis). Subsequently, the spots have been visualized by silver
staining. The image has been published in the 2D-PAGE database (Pleissner et al.,
2004) at the Max Planck Institute for Infection Biology available at http://web.
mpiib-berlin.mpg.de/cgi-bin/pdbs/2d-page/extern/index.cgi.

3. A detector which records the charge that is induced when an ion passes by or
the current that is produced when it hits a surface.

The sample is introduced into the ion source either as a solid, a liquid, or in the
gaseous phase, depending on the sample and the kind of mass spectrometer used.
In the case of protein analysis, the proteins are digested by proteolytic enzymes
before being introduced to the mass spectrometer. For sample ionization the follow-
ing methods can be used : bombardment with photons, thermal or electrical energy,
molecules, ions, or electrons. The ionization results in a stream of ions leaving the
source and then being accelerated in an electric/ magnetic field on their way to the
mass analyzer. This field separates the ions by their m/z ratio. Subsequently, the
separated ions are directed to the detector. The result of a mass spectrometric mea-
surement is a mass spectrum (Brunneé, 1987) that allows to infer information about
which ions, i.e. at which m/z ratio, and in what relative amount these ions were
detected. In mass spectrometry, the mass m of ions is typically given in Dalton, that
is 1

12 th of the mass of a 12C atom. The charge z is given in the fundamental unit of
charge. Although a mass spectrometer typically measures the mass-to-charge ratio
of a molecule, this ratio is often loosely referred to as "mass". However, this is only
true if an ion carries a single positive charge. Note that a molecule with a monoiso-

http://web.mpiib-berlin.mpg.de/cgi-bin/pdbs/2d-page/extern/index.cgi
http://web.mpiib-berlin.mpg.de/cgi-bin/pdbs/2d-page/extern/index.cgi

1 Introduction 5

Figure 1.2: Scheme of a typical mass spectrometer. The ion source produces ions
(red dots) of the analyte molecules which are accelerated in an electric field. Sub-
sequently, the ions reach the separator, which bends the flight path of the ions in a
magnetic or an electric field depending on their mass and charge. Ions that are too
heavy or too light are deflected and are thus not detected. The flight paths of all
other ions are modulated only slightly, so that they hit the detector and their m/z
ratio is recorded.

topic mass of M=2000 Da can, for instance, produce an [M+ H]+ monoisotopic peak
at m/z = 2001 but also an [M+ 2H]2+ monoisotopic peak at m/z = 1001.

Several types of mass spectrometers exist which differ in their ionization, their sep-
aration, and their ion-detection methods. The most common ionization sources for
the analysis of proteins are matrix-assisted laser desorption/ionization (MALDI;
Karas and Hillenkamp, 1988) and electron ionization (ESI; Fenn et al., 1989).
The MALDI method requires the sample to be embedded in a crystalline structure
of a matrix. For the desorption and ionization of the sample, an ultra-violet or an
infrared laser beam is used. The ESI method uses a hypodermic needle through
which liquid, containing the analyte, is pumped at a high voltage. This causes the
liquid to electrostatically disperse (electrospray), resulting in small droplets which
quickly evaporate, passing their charge on to the analyte molecules.
Although many different types of analyzers exist, such as time-of-flight or ion-trap,
they all rely on the principle of using magnetic and/or electric fields to deflect the
ions and to separate them according to their m/z ratio.
For example, the time-of-flight (TOF) analyzer separates ions, accelerated in an elec-
trostatic field, based on the time it takes them to travel a fixed flight path in a field-
free region (flight tube). The traveling time for each ion depends on its m/z ratio.

1 Introduction 6

Figure 1.3: MS/MS fragmentation patterns. A peptide backbone can break at NH-
CH, CH-CO, and CO-NH bonds, as indicated by red and blue lines. Each type of
fragmentation produces one charged and one uncharged fragment. Mass measure-
ment of the charged fragments by MS produces different ion series, and the mass
difference between adjacent ions of one series ideally corresponds to the mass of an
amino acid which allows to derive the peptide sequence.

The tandem MS (MS/MS) technique extends the previously described MS proce-
dure. A tandem mass spectrometer consists of two analyzers separated by a frag-
mentation chamber (also called collision cell). This chamber fractions selected ions
from the first analyzer by the transfer of energy, usually by collision with an inert
gas. These fragments are subsequently separated in the second analyzer. The ra-
tionale behind MS/MS lies in the characteristic types of fragmentation that occur
when the peptide backbone is broken by collision at the NH-CH, CH-CO, and CO-
NH bonds (Roepstorrf and Fohlmann, 1984, Fig. 1.3). Each of these breakages yields
one uncharged and one charged fragment, and in an ideal case, each of the bonds
of a peptide backbone is destroyed in some portion of the sample molecules. The
result are N-terminal ion series (a, b, c ions) and C-terminal ion series (x, y, z ions)
that contain all prefixes and all suffixes of the peptide sequence. The most abundant
type of fragmentation occurs at CO-NH bonds, corresponding to b and y ions, and
the sequence of amino acids can be directly inferred by investigation of the mass
differences of adjacent ions of either b or y series. In practice, the MS/MS proce-
dure is far from ideal which is reflected in incomplete ion series and noisy spectra.
Thus, the de novo interpretation of MS/MS spectra to derive a proteins sequence is
complicated.

The major difference between MS and MS/MS spectra lies in information content.
MS spectra have more of a compositional character, because they contain informa-
tion about the masses of peptides, which is determined by a peptide’s composition
of amino acids. On the other hand, MS/MS spectra have a sequential character,
and ideally they can depict the complete sequence of a peptide by the masses of

1 Introduction 7

its fragments. Both methods are efficiently applied to protein and PTM identifica-
tion, but MS/MS is the more powerful method, since it allows to derive information
about the exact position of PTMs in the sequence; and interesting approaches for
the study of “unknown” PTMs using alignment of MS/MS spectra have recently
been published (Pevzner et al., 2000, 2001; Tsur et al., 2005). However, the interpre-
tation of MS/MS spectra is much more complicated than that of MS spectra used
for peptide mass fingerprinting.

1.3 Peptide Mass Fingerprinting

Peptide mass fingerprinting (PMF), first mentioned by Pappin et al. (1993), is one
of the foundational methods which has led, and is still fueling, the advance of pro-
teomics (Henzel et al., 2003). It allows identification of proteins by their amino acid
sequence using MS and protein sequence databases (DBs; Fig. 1.4).
PMF relies on the generation of a characteristic “mass fingerprint” of a protein. This
fingerprint is obtained by digestion of a purified protein with a sequence-specific
protease, usually trypsin, and subsequent mass spectrometric analysis of these pep-
tides, typically by MALDI–TOF. A mass fingerprint can be used to identify a pro-
tein via its amino acid sequence by matching the experimental peptide mass peaks
against a set of calculated, theoretical peptide mass peaks from the entries in a pro-
tein sequence DB. As early as 1993, research groups demonstrated that for each en-
try in a protein sequence DB, or translation of a nucleotide sequence DB, peptide
masses could be calculated by the use of the expected cleavage specificity of the en-
zyme employed in the experiment (James et al., 1993; Pappin et al., 1993; Yates et al.,
1993).

There are, however, several prerequisites that must be met to apply PMF success-
fully. First, it is required that the analyzed sample contains a purified protein. In-
sufficient separation of sample proteins or, for example, contamination with keratin
or protease autolysis products can lead to an adulterated mass fingerprint. Sec-
ond, the protein under study must be represented in the sequence DB to be iden-
tified. Moreover, the interpretation of peptide mass fingerprints is complicated by
the suboptimal efficiency of proteases that may cause some of the cleavage sites in
a protein to remain uncleaved. Consequently, the set of peptides and subsequently
the mass fingerprint will not match the perfectly cleaved theoretical mass finger-
print of the corresponding protein sequence in the DB. However, PMF algorithms

1 Introduction 8

Figure 1.4: Protein identification by peptide mass fingerprinting. The protein sam-
ple is separated by 2D-PAGE or other separation methods. Subsequently, the pu-
rified proteins are excised and digested with a proteolytic enzyme. The obtained
peptides are measured in a mass spectrometer and the resulting peptide mass fin-
gerprint of a protein is used to identify the protein by comparing it with the entries
of a sequence DB.

commonly account for this by generating theoretical masses that correspond to pep-
tides with up to a certain number of missed cleavage sites. One of the elementary
drawbacks of PMF, however, is the inability to distinguish peptide homologues, i.e.
peptides with a different amino acid sequence but with a similar mass. Addition-
ally, masses of peptides that were subject to post-translational modification deviate
from the masses of their unmodified forms that are calculated from the DB proteins
and cannot be matched directly.

Nevertheless, PMF is a powerful method that proved useful for rapid, large-scale
protein identification, because a protein can often be reliably identified by only a
subset of its peptide masses. As a result, the identification of proteins is quite robust
against irregularities in the experimental mass fingerprints, for instance, by mass
changes of peptides due to post-translational modification (Henzel et al., 2003).

1.3.1 Identification of Protein Modifications

The actual protein identification from sequence DBs is usually a matter of pairwise
peak comparisons between mass peaks of an experimental mass fingerprint and the

1 Introduction 9

calculated masses in a theoretical mass list (generated from a protein in the DB). Due
to the limited measurement accuracy of mass spectrometers, an experimental mass
mE and a theoretical mass mT are considered equal if they are not further apart from
each other than a tolerance ε:

|mE −mT| ≤ ε

Using the above definition, the similarity of two masslists can be described by the
shared peaks count (spc), which is defined as the number of experimental mass
peaks that match a theoretical mass. Current PMF algorithms, such as Mascot
(Perkins et al., 1999) or ProFound (Zhang and Chait, 2000), actually use a more so-
phisticated strategy that assigns probability-based scores to each single match, and
therefore produces pairs of matching masses of different quality. The total similarity
of a mass fingerprint and a protein from the DB is then given by the combined scores
of all matches. Nevertheless, the basic idea of matching is the same and works well
in the case of unmodified proteins. It fails, however, if a peptide is modified, i.e.,
one or more of its amino acids were subject to a gain or loss of atoms.
Usually, a protein modification δ is reflected in a measurable mass change denoted
by m(δ) 7→ R, which is the sum of the masses of all newly introduced atoms mi-
nus the sum of the masses of all removed atoms. Consequently, the distance be-
tween the masses of a peptide in its modified and its unmodified form is given by
M∆ = ∑i m(δi), the sum of the mass changes of each modification occurring on that
peptide. Taking this into consideration, an experimental mass peak and a theoretical
peptide mass match if their mass difference mE −mT is equal to an M∆ produced by
any combination of modifications that can occur on the peptide:

|mE −mT − M∆| ≤ ε.

The usual procedure of DB search algorithms is to generate all masses for a theoret-
ical peptide that might occur using all the different combinations of variable modi-
fications, i.e. modifications that may or may not be present (Fig. 1.5). Subsequently,
the resulting extended list of theoretical masses is compared to the experimental
mass fingerprint, and even if only a few variable modifications are considered, the
number of theoretical masses becomes quite large. Matthiesen et al. (2005) have de-
scribed x, the number of possibilities to modify a peptide with a length of l residues,
by

x =
l

∏
i=1

(Vi + 1),

1 Introduction 10

Figure 1.5: Combinatorial explosion introduced by variable modifications. Two
theoretical mass fingerprints of the sequence shown on top of the figure. The diges-
tion was done in silico using trypsin cleavage rules. Peptides were calculated with a
maximum of 2 missed cleavages, a length of at least 4 residues, and a mass between
800 Da and 4000 Da. a) 9 theoretical masses, calculated without variable modifica-
tions. b) 338 theoretical masses, calculated with a few modifications: oxidation of M;
phosphorylation of S, T and Y; sulphation of Y; nitration of Y; carbamidomethylation
of C; carboxymethylation of C; methylation of K; and acetylation of K.

where Vi is the number of different modifications that may occur on the i-th residue.
Clearly, it is infeasible to iterate over the x possible combinations of modifications
for each peak–peak comparison, especially if many modifications are considered.
Thus, it is a common procedure in PMF algorithms to restrict either the number of
modifications that is allowed on a peptide, or to consider only a few modifications
in order to avoid the combinatorial explosion.

1.3.2 Existing Tools for the Detection of Protein Modifications

Apart from the common PMF algorithms that carry out protein identification by
searching sequence DBs, there are two popular tools, FindMod (Wilkins et al., 1999)

1 Introduction 11

and FindPept (Gattiker et al., 2002), that detect variable PTMs or single amino-acid
substitutions. These tools compare an experimental mass fingerprint with a single
theoretical mass list, calculated from the expected protein identification. The ratio-
nale is to increase the number of mass assignments between the experimental and
theoretical mass list by allowing a large number of modifications. The DB search
algorithms have to match an experimental mass fingerprint against a large set of
proteins in a DB, so that it is infeasible to include high numbers of modifications in
a search. However, obtaining correct identifications is often still possible.
Both FindMod and FindPept are available at the Expasy1,2 server. The former per-
forms PTM detection assuming sequence-specific cleavage, whereas the latter as-
sumes unspecific cleavage of a protein. The detection of PTMs is done by simply
iterating over all possibilities to modify a peptide, and even though these tools com-
pare an experimental mass fingerprint with only a single theoretical mass list, the
number of modifications that is allowed in a search is still limited. FindMod, for
instance, includes about 60 modifications in a search, if at most two modifications
per peptide are allowed, and only 12, if at most three modifications per peptide are
considered. Additionally, it finds single amino-acid substitutions.

There are data sources that provide highly accurate mass changes for a large number
of modifications that have been observed on proteins. For example, the current re-
lease of the Unimod DB of protein modifications for mass spectrometry3 provides a
compilation of 508 different modifications4 including PTMs, single amino-acid sub-
stitutions or chemical modifications introduced by experimental techniques. Nev-
ertheless, none of the PTM detection approaches allows for an exhaustive analysis
of protein modifications using PMF data by taking into account all known modifi-
cations.

1.4 Goals of this study

PTMs influence the function of proteins and account for a large part of the com-
plexity of the proteome (Jensen, 2004). PMF allows investigation and identification
of protein modifications. However, common computational approaches for protein
identification (e.g. Mascot) or PTM detection (e.g. FindMod) are restricted in the

1http://expasy.org/tools/findpept.html
2http://expasy.org/tools/findmod/
3http://www.unimod.org
4The Unimod compilation of modifications is also used by Mascot.

1 Introduction 12

number of modifications that they can consider to avoid combinatorial explosion
for the comparison of masses.
This thesis will present a novel algorithmic approach to detect PTMs or other pro-
tein modifications by comparing an experimental and a theoretical mass fingerprint.
The problem of PTM detection will be discussed from a combinatorial point of view,
by investigating its relationship to a simple “Money-Changing Problem”. Currently,
there exist hardly any comprehensive data about the frequencies of protein modi-
fications, making validation of results especially difficult. Therefore, the main goal
of this study will be computational efficiency, allowing for an exhaustive search of
protein modifications in PMF data.

2 Algorithm 13

2 Algorithm

2.1 Protein Modification as a Money Changing

Problem

In the mass spectrometric context, the modification of proteins can be defined as a
set of events that lead to a measurable mass difference M∆ between a protein and
its unmodified counterpart. Assume that there is a set of k different modifications
{δ1, ..., δk} for which the single mass changes A = {m(δ1), ..., m(δk)} = {a1, ..., ak}
are given by a mass function m(δ) 7→ R. Then, any mass difference M∆ that is
truly the result of one or more modifications can be expressed as a k-tuple with non-
negative integer entries, where the i-th entry denotes the number of modifications δi.
In the following, each k-tuple will be referred to as a decomposition or compomer
c := (c1, ..., ck) ∈ (N0)k of M∆ over A, its length by |c| = ∑k

i=1 ci, and its mass,
reflecting the mass change introduced to a protein, by m(c) = ∑k

i=1 ciai. Finally, the
“empty compomer” denotes the compomer with length |c| = 0 and mass m(c) = 0.
The concept of compomers has been introduced in a different context to describe
the composition of biomolecules over weighted alphabets of smaller building blocks
like amino acids or nucleotides (Böcker, 2004; Böcker and Liptak, 2004). However,
it can also be used to describe the composition of modifications that results in a
mass change M∆ of a protein, and it can even be used to describe any composition
of numbers or things that can be assigned a number. For the sake of clarity, the
modifications are hereafter referred to only by their mass changes A = {a1, ..., ak}.

The above definitions oversimplify the “real” situation because modifications can-
not occur arbitrarily at each residue of a protein, and consequently not all com-
pomers with a mass m(c) = M∆ make biological sense. The modification of a pro-
tein is a chemical process that leads to changes in the structure and atomic com-
position of amino acids, and is restricted to specific residues at specific locations in
a protein. The following categories of modifications can be distinguished (Perkins
et al., 1999):

1. Modifications which affect a residue anywhere in a protein or peptide.

2 Algorithm 14

Table 2.1: Descriptors of the specificity of protein modifications based on Unimod.
A complete specificity definition comprises one descriptor from the site domain and
one from the position domain.

Descriptor Domain Description
Amino acid Site One of the 20 amino acids.
C-term Site Any C-terminal amino acid.
N-term Site Any N-terminal amino acid.

Anywhere Position Residue can be anywhere in the sequence.
C-term Position Residue must be C-terminal of a protein or peptide.
N-term Position Residue must be N-terminal of a protein or peptide.
Protein C-term Position Residue must be C-terminal of a protein.
Protein N-term Position Residue must be N-terminal of a protein.

2. Modifications which affect a protein or peptide terminus, independent of the
terminal residue.

3. Modifications which affect a specific residue that is located at a protein or pep-
tide terminus.

Therefore, the specificity of any single modification can be characterized by (i) a site
descriptor, defining what can be modified, and (ii) a position descriptor, defining
where the modification can occur. Both site and position classifiers are chosen from
a controlled vocabulary (Table 2.1) in accordance to the Unimod DB, and each mod-
ification is assigned at least one pair of site and position definitions. As an example,
Unimod describes two particular instances of deamidation as pairs (R, “Anywhere”)
and (F, “Protein N-term”). The former declares that it can occur on arginine residues
anywhere in a protein sequence, the latter that it can also occur on phenylalanine
residues located at the N-terminal end of a protein.

The problem that arises in protein identification is to find out whether a theoretical
reference mass mT of an unmodified peptide and an experimentally observed mass
mE (of which the underlying peptide is unknown) essentially represent the same
peptides that differ only by some number of modifications giving rise to a mass dis-
tance mE − mT = M∆. The set of all compomers that explain this mass distance is
defined as C(M∆) := {c | m(c) = M∆} over A and the total number of decomposi-
tons is given by the cardinality of C(M∆), which will in the following be denoted
γ(M∆) := |C(M∆)|. Finally, M∆ is called decomposable over A if at least one com-
pomer has a mass equal to the observed mass change, i.e. γ(M∆) ≥ 1. According
to these definitions the problem of protein identification with modifications can be
formulated as finding C(M∆), i.e. finding all compomers with m(c) = M∆ which

2 Algorithm 15

corresponds to a changing problem. The search space (N0)k, however, is huge if
many modifications are considered, even though the compomers are restricted by
the theoretical peptide sequence and the specificities of the modifications. This com-
binatorial complexity prevents direct iteration over all possible ways to combine the
k possible modifications. To find a way to compute C(M∆) it is useful to investigate
the simpler Money Changing Problem (MCP).

Problem 2.1 (Money Changing Problem). Given a positive integer M and k positive

integers A = {a1, ..., ak}, are there non-negative integers ci such that
k
∑

i=1
aici = M?

The MCP is NP-hard (Lueker, 1975) if A and M vary, but it is possible to compute a
solution in pseudo-polynomial time using a dynamic programming (DP) algorithm
(Martello and Toth, 1990). A variation of this algorithm has been sketched by Böcker
and Liptak (2004). It can be used to solve the MCP and a set of related integer de-
composition problems: the "Find-One" problem asking for one way to represent M
as the sum of positive integers ci, and the "Find-All" problem asking for all solu-
tions.
Unfortunately, the algorithms can not be applied directly for the problem of identi-
fying protein modification compomers given a mass difference M∆ for two reasons:
First, a modification can reduce or increase the mass of a protein or peptide; and an
appropriate algorithm has to deal with positive and negative ai and M∆. Second,
the compomers correspond to distinct combinations of modifications, and at least
some compomers with m(c) = M∆ will violate the specificity constraints. The de-
cision of which number and which combinations of modifications can be attached
to a peptide sequence is a combinatorial problem and makes the determination of
correct compomers in a biological sense even more intricate.

To anticipate a little: it is possible to adapt the idea of the DP approaches for the MCP
and derive a new DP algorithm that is suitable to compute modification compomers
for a peak distance M∆. Due to complexity reasons, the DP algorithm is defined for
integers (like the DP algorithm for the MCP). The abstraction of the problem to in-
tegers is straightforward: Typically, the masses obtained in a mass spectrometric
measurement are real numbers that are accurate up to a decimal place that depends
on the measurement process. Therefore, they can be treated as integers that cap-
ture a certain precision of the real mass if multiplied by a precision p ∈ R. The
conversion can be calculated for any mass value m by m∗ = round(1

p m). For ex-
ample, p = 0.1 takes into account the first decimal place and the tendency of the
second decimal place of a mass value. By treating all mass values as integers the

2 Algorithm 16

Figure 2.1: Example Boolean table of the original DP algorithm. The table B has
been constructed for a query M = 15 and the set of input integers A = {3, 5, 7, 9}.
i corresponds to the row indices and m to the column indices 0 ≤ m ≤ M. A value
Bi,m = 1 denotes m can be decomposed over {a1, ..., ai}.

“Protein Modification Money Changing Problem” (PMMCP) can be formulated as
an extended MCP in the following way:

Problem 2.2 (Protein Modification Money Changing Problem). Given an integer
mass distance M∆ and a set of k modification integer mass changes A = {a1, ..., ak},

are there non-negative integers ci such that
k
∑

i=1
aici = M∆ and all ci fulfill the modi-

fication constraints?

The next section gives a short introduction to the variation of the original DP algo-
rithm solving the MCP. This algorithm is used as a basis to discuss the extended DP
algorithm that solves the PMMCP in section 2.3.

2.2 Dynamic Programming for the Money Changing

Problem

The DP algorithm sketched by Böcker and Liptak (2004) computes the decomposi-
tions of an integer query M over a set of integers A = {a1, ..., ak} in two steps. First,
it constructs a Boolean table B with rows i = 1, ..., k and columns m = 0, ..., M that
stores for each integer 0 ≤ m ≤ M whether it is decomposable. Subsequently, B
allows to solve the MCP and the related integer-decomposition problems for M by
a simple backtracking procedure.

2 Algorithm 17

Construction of the DP Table

The DP algorithm relies on two simple considerations about the sums of positive
integers that are used to recursively define whether a positive integer is decompos-
able:

1. A = {a1}. Clearly, explaining one integer (m) by the sum of another integer
(a1) is only possible if m is a multiple of a1. Thus, m is decomposable if and
only if m mod a1 = 0.

2. A = {a1, ..., ai}, i > 1. It is possible to explain an integer m by the sum of
other positive integers A in two cases: Either m is the sum of a combination of
multiples of the integers {a1, ..., ai−1} and ai is not part of the sum, or m − ai

is the sum of a combination of multiples of the integers {a1, ..., ai}, and m can
therefore be simply explained by adding another ai.

On the basis of these rules, the algorithm constructs B (Fig. 2.1) up to the query M,
such that

Bi,m = 1 ⇔ m is decomposable over {a1, ..., ai}.

B is initialized by setting Bi,0 = 1 for all 1 ≤ i ≤ k in the first column, and B1,m = 1
if and only if m mod a1 = 0 in the first row. For i, m > 1 the table is computed
recursively:

Bi,m =

Bi−1,m if m < ai,

Bi−1,m ∨ Bi,m−ai otherwise.

The time and memory to construct B are O(kM). Even though it can be used to
solve the decomposition problems for all queries from 1 to M without the need for
re-computation, this may be impractical for large k or M. To overcome this ob-
stacle, Böcker and Liptak (2004) have presented a sophisticated DP algorithm that
constructs a different data structure called an extended residue table. It can be con-
structed independent of the query M using O(ka1) runtime and memory costs.

Backtracking

In a second step, B allows to find the decompositions of the query M over {a1, ..., ak}
by straightforward recursive backtracking. Each decomposition corresponds to a
path in B that contains only values Bi,m = 1, starting at Bk,M and ending in any cell
Bi,0, 1 ≤ i ≤ k. The algorithm begins with a single lookup of Bk,M to check if M
can be decomposed (Bk, M = 1). If this is the case, it tries to add an integer ak to

2 Algorithm 18

Figure 2.2: Example of backtracking of the original DP algorithm. Two possible
backtracking paths of the table B constructed for A = {3, 5, 7, 9} and M = 15 are
highlighted. Green: Path corresponding to the decomposition 5 + 5 + 5. Red: Path
corresponding to the decomposition 9 + 3 + 3.

the solution by "going left" to Bk,m−ak
, or to skip ak by "going up" to row Bk−1,m. In

both cases, the algorithm checks whether the newly reached cells have a value of 1
and repeats the procedure of path extension to Bi−1,m and Bi,m−ai for each Bi,m = 1
that is visited. One decomposition run is completed, if a path reaches column 0.
Fig. 2.2 shows an example of the backtracking procedure in a table B constructed
for A = 3, 5, 7, 9 and M = 15. Two possible backtracking paths corresponding to
the decompositions 15 = 9 + 3 + 3 and 15 = 5 + 5 + 5 are highlighted. Note that
the backtracking algorithm produces the same results whatever order of {a1, ..., ak}
is used for the construction of B because addition is a commutative operation and
eventually all integers A will be considered in row k.
By backtracking or single lookups the algorithm can compute the solution of several
decomposition problems with the following costs:

• Existence: Whether M is decomposable over A can be evaluated in constant
time by a single lookup of Bk,M.

• Find-One: Finding any decomposition of M over A requires at most k + M
min(A)

steps. Consequently, the worst-case time to find a single decomposition is
O(k + 1

min(A) M).

• Find-All: The time to compute all decompositions of M over A by backtrack-
ing is the number of decompositions (γ(M) in compomer notation) times the
worst-case cost of computing one decomposition. Consequently, all witnesses
can be computed in O(γ(M)(k + 1

min(A) M)) time.

As indicated by Böcker and Liptak (2004), the Existence and Find-One problems can
also be solved with a Boolean vector that is constructed up to M in construction time
O(kM). The number of decompositions can be obtained in the last row of a table of

2 Algorithm 19

Figure 2.3: Compressed vector representation of the Boolean table of the original
DP algorithm. The vector F is constructed for the query M = 15 and integers A =
{3, 5, 7, 9}. A value Fm denotes the row index of the first appearance of a "1" in
column m of the original DP table.

integers E with rows i = 1, ..., k and columns m = 0, ..., M. This table is initialized
by Ei,0 = 1 and afterwards computed recursively by Ei,m = Ei−1,m + Ei,m−ai .
It is worth adding to Böcker and Liptak’s suggestions that the Find-All problem can
as well be solved by constructing a vector of integers F up to a query M in worst-
case runtime O(kM). Fm stores the smallest i such that m is decomposable over
{a1, ..., ai}, or 0 if no such i exists (Fig. 2.3), and consequently

Fm > 0 ⇔ m is decomposable over {a1, ..., ai} for all i ≥ Fm.

F is a compressed representation of B which is correct because if m is decomposable
over {a1, ..., ai}, it immediately follows that m is also decomposable over {a1, ..., aj}
for all i, j with i < j ≤ k.
F is constructed by initializing F0 = 1 and Fm = 0 for 1 ≤ m < min(A). For
m ≥ min(A), Fm is computed recursively:

Fm = min {i ∈ {1, 2, ..., k} | m ≥ ai ∧ 0 < Fm−ai ≤ i}.

2.3 Dynamic Programming for the Protein Modification

Money Changing Problem

The DP algorithm that computes the PMMCP proceeds similarly to the simple DP
approach presented for the MCP: First, it recursively constructs a DP table D by
defining Di,m via previously computed results Di−1,m and Di,m−ai . In a second step
D is used to compute the decompositions for a query M∆. Similarly to the Boolean
table B of the original algorithm the table D stores in Di,m whether a mass m can
be decomposed over {a1, ..., ai}. However, due to the greater complexity of the

2 Algorithm 20

PMMCP D stores non-Boolean values and must be computed in a different, more
specific way in contrast to the table B of the original algorithm. The new DP proce-
dure and the required preconditions are specified in the following.

2.3.1 Constraints on the use of Protein Modifications

In section 2.1 a simple model of the specificity of protein modifications has been
introduced that restricts the set C(M∆) to those compomers that correspond to com-
binations of modifications that might occur on a given protein sequence. To recapit-
ulate briefly: The specificity of each modification ai is defined as a set of rules that
define the residues and positions in a protein that can be subject to that modifica-
tion. The specificities, however, are not unique to a single modification so that an
amino acid might be modified differently.
To emphasize the influence of the specificity constraint on the DP algorithm, con-
sider how to decide whether single modifications can be added to a protein or pep-
tide sequence one after another: Adding any one modification ai to an unmodified
sequence is easy because it can be placed arbitrarily on any residue that matches its
specificity rules. Whether additional modifications can be added to the sequence,
however, depends on the way other modifications have been distributed among the
residues beforehand. In the worst-case it may be impossible to add a new modi-
fication or a change in the position of one or more already attached modifications
may be required. Either way, all possibilities to distribute the previously attached
modifications to the sequence have to be tested before ai is accepted or rejected.
Obviously, the PMMCP does not exhibit optimal substructure if the modifications
cannot be used arbitrarily to decompose a mass change m because the optimal choice
of placing a modification on a sequence depends on the subsequent modifications.
As a result, the DP approach would become useless because it relies on the optimal
substructure of the problem to define further stages of the solution by previously
computed (optimal) solutions. Consequently, the only way to integrate the speci-
ficity constraints to restrict C(M∆) is in the backtracking procedure by filtering out
compomers that do not match the specificity constraints of a given sequence.
To define the DP algorithm for positive and negative modifications ai in a subse-
quent step, however, it is necessary to place some kind of restriction on the com-
pomers. Fortunately, it is no problem to define a global upper bound |c| ≤ n for the
length of the compomers, and to define the table D recursively such that Di,m stores
information whether m can be decomposed over {a1, ..., ai} using at most n modifi-

2 Algorithm 21

cations. Put another way, n is an upper bound for the number of modifications that
are allowed on a protein or peptide at a time.

The value of Di,m is defined recursively by Di−1,m and Di,m−ai . It is not necessary to
consider n, if the former defines the outcome of Di,m because no additional modifi-
cation ai is required to decompose a mass distance m. In the latter case, one ai has
to be used to extend any decomposition of m− ai, and the algorithm has to decide
whether an extension is possible if |c| ≤ n. It is sufficient for the algorithm to know
whether there is any compomer c over {a1, ..., ai} with m(c) = m− ai and |c| < n,
or else whether the length of the shortest compomer that decomposes m − ai over
{a1, ..., ai} is smaller than n, which would guarantee that at least one compomer can
be extended.
In general, the algorithm has to keep track of the lengths of the shortest compomers
for every mass distance m that is represented in D. Using an additional integer vec-
tor T with a length according to the number of columns in D, it is possible to store
in Tm the current minimum for each m in the table. If no decomposition of m exists,
set Tm = ∞.
The computation of D has to be carried out row by row to ensure that Tm contains
the minima for the modifications {a1, ..., ai−1} from the previous row, while Tm−ai

contains those computed in the current row using the modifications {a1, ..., ai}. T
is updated each time a cell Di,m is computed and is constructed in the following
way: First, set T0 = 0 because m = 0 can always be decomposed by the empty
compomer with |c| = 0, and for m ≥ 1 set Tm = ∞ by convention. Subsequently,
D can be constructed row by row by DP and a cell Di,m is set to decomposable if
Tm = min(Tm−ai + 1, Tm) ≤ n.

2.3.2 Negative Mass Changes

The upper bound |c| ≤ n for the length of the compomers defines an upper bound
Mmax = max(A)n and a lower bound Mmin = min(A)n for the mass distance that
can be explained by sums of the modifications A such that any query M∆ < Mmin or
M∆ > Mmax is not decomposable. If A contains both negative and positive ai, then
Mmin < 0 and Mmax > 0, and the table D must comprise a range of masses including
m = 0. The query M∆, however, is either positive or negative, such that D only has
to be constructed for either one of the cases. Assume without loss of generality
that M∆ > 0 because every decomposition of a negative M∆ can be also obtained

2 Algorithm 22

by changing the sign of M∆ and correspondingly of all ai prior to computation. In
order to build an appropriate table D for positive and negative ai that considers all
possible decompositions of M∆ two prerequisites must be met:

1. The number γ(M∆) of compomers that decompose M∆ must be finite. Con-
sider the case that the partial mass of at least one compomer c with m(c) = M∆

equals 0, then those entries ci that contribute to the partial mass and conse-
quently |c| can become infinitely large while m(c) remains constant. Each
of the so obtained compomers c adds to the set C(M∆) and computation of
the table D would become impossible because infinitely many columns would
have to be constructed to include all solutions. By way of example, think of
8 = 4 + 4 but also 8 = 4 + 4 + 4 − 2 − 2 and so forth. In section 2.3.1 a
restriction has been presented that defines an upper bound |c| ≤ n and thus
directly restricts γ(M∆).

2. All compomers must be represented in the table D. Clearly, one cannot explain
a positive number merely by the sum of negative numbers, meaning that the
computation of D must not start with a1 < 0. For all subsequent computa-
tions, the algorithm proceeds row by row extending {a1, ..., ai−1} by one mod-
ification ai, and only masses m which are decomposable over {a1, ..., ai−1} or
m = 0 can be used to explain any subsequent m that is to be decomposed over
{a1, ..., ai}. The masses m that can be decomposed using positive and negative
ai therefore depend on the decompositions using positive ai. Furthermore, the
algorithm must fill the table D up to Mmax to make sure that all compomers
including negative ai are represented. To process the negative ai after all posi-
tive modification mass changes, A has to be sorted according to sign such that
i < j if ai > 0∧ aj < 0.

Although the above prerequisites allow construction of D as a Boolean table, this
is actually not very clever. The reason lies in the negative mass changes ai itself
that allow to take detours during backtracking. Detours which lead to paths cor-
responding to compomers with |c| > n cannot be avoided and are not recognized
until reaching the n-th cell of a backtracking path if Boolean storage is used (Fig.
2.4a). Instead, if the algorithms knows for each Di,m by how many modifications a
compomer must at least be extended to create a complete compomer when adding
ai, detours can be avoided. If no valid compomer exists, the number of required
extensions is defined as infinite (Fig. 2.4b). The number of modifications that must
at least be added to a compomer when using an ai can be obtained for each m dur-
ing the construction of D from the vector of minima T that has been introduced in

2 Algorithm 23

Figure 2.4: Influence of different storage schemes on the backtracking behavior of
the new DP algorithm. Both matrices have been constructed for the input modifica-
tion mass changes A = {2, 3,−2} and an upper bound of |c| ≤ n = 2. a) Boolean ta-
ble. Using a negative ai (red arrows) can lead to wrong backtracking paths (|c| > n).
b) Integer table. Detours leading to paths corresponding to compomers with |c| > n
are avoided by storing the lowest number of extensions that are required to include
an ai in a valid compomer (|c| ≤ n), or infinity if no such compomer exists.

section 2.3.1. Additionally, because m − ai > m if ai < 0, rows that correspond
to negative mass changes have to be iterated over starting at m = Mmax down to
m = 0 to consider the previously computed results correctly. The whole construc-
tion process of the integer table D by DP is presented in more detail in section 2.3.3
including the recursive definitions.

2.3.3 Definition of the Algorithm

The new DP algorithm requires the following input: An upper bound |c| ≤ n, the
modification mass changes A = {a1, ..., ak} and the peak distance M∆ from which
Mmax = max(A)n is calculated. Without loss of generality the algorithm is defined
for M∆ > 0 as detailed in section 2.3.2. It solves the PMMCP by first constructing
an integer table D with rows i = 1, .., k and columns m = 0, ..., Mmax, and it subse-
quently uses this table to find the decompositions of M∆ over A by backtracking.

Construction of the Table

Prior to construction, A is sorted by sign such that i < j if ai > 0 ∧ aj < 0. Subse-
quently, the integer table D is constructed so that Di,m stores the minimal number of
modifications needed to decompose m over {a1, ..., ai} if one ai is used, or 0 if m is
not decomposable over a1, ..., ai. If m cannot be decomposed by extending m− ai but
is already decomposable over {a1, ..., ai−1}, define Di,m := ∞, and consequently

Di,m > 0 ⇔ m is decomposable over {a1, ..., ai}.

2 Algorithm 24

Figure 2.5: Example integer table constructed according to the new DP algo-
rithm. The table D has been constructed for the modification mass changes A =
{2, 5, 9,−2}, an upper bound n = 2, and applying a computational precision p = 1.
Non-zero cells are highlighted.

D (Fig. 2.5) is constructed row by row up to mass Mmax to allow for negative ai

and the upper bound n: Rows are computed from left to right iterating over m =
1, 2, ..., Mmax if ai > 0, and from right to left iterating over m = Mmax, Mmax − 1, ..., 0
if ai < 0. An auxiliary vector T is also constructed up to Mmax in parallel so that for
the computation of row Di, Tm stores the minimal number of modifications needed
to decompose m over {a1, ..., ai} if m has already been computed in that row, or else
the according minimum over {a1, ..., ai−1}. T is initialized by setting T0 = 0, and for
m ≥ 1 setting Tm = ∞. For 1 ≤ i ≤ k, D is computed recursively:

Di,m =

Tm−ai + 1 if m ≥ ai ∧ Tm−ai < n,

∞ if Tm ≤ n ∧ (m < ai ∨ Tm−ai ≥ n),

0 otherwise.

The vector T, storing the column minima, is updated each time a value Di,m has been
computed by

Tm = min(Tm, Tm−ai + 1).

D can be constructed in runtime and memory O(kMmax), which is essentially the
same as for the original DP algorithm. It can be used to solve the PMMCP for all
mass changes 0 ≤ M∆ ≤ Mmax.

Backtracking

The backtracking procedure is similar to that of the original DP algorithm presented
in section 2.2. According to the updated definition of D, each compomer corre-
sponds to a path in D that contains only values Di,m > 0 and has a length of at most
n, starting at Dk,M∆ and ending in a cell Di,0 of the first column. Whether a path

2 Algorithm 25

can be extended by the use of ai is evaluated by comparing the current path length
l with the value Di,m: If Di,m > 0 and n− l ≤ Di,m, at least one path exists that uses
Di,m−ai and corresponds to a compomer with |c| ≤ n and m(c) = M∆.
The algorithm begins with a single lookup of Dk,M∆ to check if M can be decom-
posed. If Dk,M∆ > 0, it tries to add an integer ak to the solution by going left to
Dk,M∆−ak

, or to skip ak by going up to row Dk−1,m. The algorithm checks in both
directions if the cells are set to decomposable and repeats the procedure of path ex-
tension to Di−1,m ∧ Di,m−ai for each Di,m > 0 that is visited. One decomposition
run is completed, if a path reaches column 0. The different costs to solve the relevant
integer decomposition problems by backtracking are:

• Existence: Whether M∆ is decomposable over {a1, ..., ak} can be evaluated in
constant time by a single lookup of Dk,M∆ .

• Find-One: Finding one decomposition of M∆ over {a1, ..., ak} has a worst-case
running time of O(k + n). If the highest number of specificity definitions per
modification is s, it takes additional O(sn) time to decide whether the com-
pomer is valid. Consequently, the complete backtracking costs for the worst-
case are given by O(k + n + sn).

• Find-All: The time to compute all decomposition of M∆ over A by back-
tracking is the number of decompositions γ(M∆) times the worst-case cost
of computing one decomposition. Consequently, all decompositions can be
computed in O(γ(M∆)(k + n)) time. Let s be the largest set of specificity def-
initions of a modification. The overall backtracking cost in the worst-case is
then given by O(γ(M∆)(k + n) + γ(M∆)sn).

2.4 Efficient Dynamic Programming

The modified DP algorithm constructs D in O(kMmax) to construct the table D. For
small precisions like p < 0.01 and large numbers of modificiations per peptide n in
parallel the runtime and memory consumption become impractical. On the other
hand, it is advisable to use a computational precision as high as the input mass
measurements can reliably provide.

To improve the efficiency of preprocessing, one can make use of the sparse structure
of D which is especially the case for a moderate upper bound n and a small pre-
cision p.By way of example, consider the set of modifications A = 2, 5, 9,−2, and

2 Algorithm 26

Figure 2.6: Ragged storage of the new DP table. Both examples have been con-
structed for the input modification mass changes A = {2, 3,−2} and upper bound
of |c| ≤ n = 2. a) Row-by-row storage avoiding trailing zeros of each row. b)
Column-by-column storage saving leading zeros of each column. Non-zero cells are
highlighted.

parameters n = 2, p = 1. Preprocessing then produces a table that contains 30 non-
zero values of a total of 76 values (see fig. 2.5). If p = 0.1, the number of cells in D
becomes ten times higher, whereas the number of non-zero values stays constant.
At this point remember that the algorithm requires an ordering of the set of modifi-
cations only by sign, such that i < j if ai > 0 and aj < 0. Clearly, each modification
alone can change the mass of a peptide by at most nai, but the largest m that can be
decomposed in row i depends on the already decomposable mass changes m in the
previous rows 1 . . . i − 1. Nevertheless, it can be guaranteed to reach a maximum
m of nai for all ai > 0 in row i, if A is sorted such that ai = max({a1, ..., ai} for all
ai > 0. Using this ordering, D can be computed more efficiently in ragged array
representation.

2.4.1 Ragged Array Storage of the Dynamic Programming Table

Using a sorted set of modifications, a considerable amount of memory and time
might be saved by constructing D as a ragged array (vector of vectors), i.e. each row
or column is stored and treated as a separate entity that can have its own size. Both
column-by-column and row-by-row representations of D are possible but produce

2 Algorithm 27

different results: The row-by-row representation (Fig. 2.6a) excludes all zero values
of row i for m > nai (trailing zeros). The column-by-column representation (Fig.
2.6b) is more efficient for the structure of D because it avoids storage of leading ze-
ros in each column, which also includes trailing zeros in rows. However, to access
Di,m, the index i in a column m has to be computed by im = i − (k − l(m)), where
l(m) denotes the length of column m.
The concept of ragged arrays allows to efficiently implement the table D and thereby
reduce the average runtime and memory with only little computational overhead in
the column-by-column case. Nevertheless, ragged-array storage is no improvement
of the algorithm itself and is still inefficient for small p as it requires iteration over all
columns in the worst-case. However, by using additional data structures it is pos-
sible to construct D with running time independent of the computational precision.
The precise procedure will be sketched in the next section.

2.4.2 Efficient Construction of the Dynamic Programming Table

In the worst case, the DP algorithm for the PMMCP iterates over the whole range
of indices 1 ≤ m ≤ Mmax to fill a row i, even if most of the values Di,m will be zero.
However, according to the idea of the algorithm, any new decomposition can only
be obtained by extending an existing decomposition that requires less than n modi-
fications.
Taking this into consideration, D could be efficiently computed assuming sparse
storage of D because the algorithm can then simply iterate over all columns m that
contain non-zero values in row i− 1. The generic concepts of sparse arrays or ma-
trices, however, are accompanied by large runtime penalties for getting and setting
values if the number of non-zero elements that are to be stored is not known before-
hand. Instead, these concepts are mainly suitable for efficient iteration over their
non-zero elements, which is useful for mathematical matrix computations. As an
example, see for instance Gundersen and Steihaug (2004). For the DP algorithm
presented here that frequently sets values in D, the runtime penalty would exceed
the benefit of sparse storage.
Nevertheless, the algorithm can use arbitrary storage and maintain a linked list of
column indices m, for which a decomposition has already been computed. This list
is then used as an iterator over the non-zero elements, and for each m a new decom-
position m + ai is appended to the end of the list if it is not yet contained. Initially,
before the computation starts in the first row of D, m = 0 which can always be de-

2 Algorithm 28

composed by the empty compomer is added as a first element to the linked list. To
allow for negative ai which require row i to be filled from “right to left”, a doubly-
linked list can be used that can be iterated over from start to end and vice versa.
Additionally, the algorithm must ensure that Di,m−ai is computed prior to Di,m. It
is thus necessary to keep the linked list in ascending order and to insert each new
m at its correct position. The latter can be achieved by using an auxiliary queue
structure, that serves as a buffer: Values m + ai that extend m and are not yet in the
linked list will be added to the queue first. Before proceeding with the next m in the
linked list, it is compared to the first element in the queue. If this queue element is
lesser (greater in the case of reversed-order iteration) than the next m, it is inserted
into the linked list at the current position and links to m afterwards. The algorithm
directly continues with this new element and a row has been filled completely if the
last element of the linked list has been processed and no more elements are left in
the queue.

All the operations, insert for the linked list and peek for the queue, can be performed
in constant time. It is also possible to check in constant time whether a value m is in
the linked list, by a lookup of Tm: If Tm < ∞, there is at least one way to decompose
m and if so, the value m must have already been added to the list. The two auxiliary
data structures use additional memory O(2Mmax) in the worst case. The overall
worst-case runtime for the construction of D does not change in comparison to the
easier DP algorithm, except for a constant factor. On the other hand, the average
runtime should have improved much, if D is sparse.

3 Implementation 29

3 Implementation

3.1 Programming Language and Environment

A test version of the DP algorithm been implemented using the Java™2 Standard
Edition Development Kit (JDK) 1.4.1 and JDK 1.5. Even though Java can hardly
compete with other languages like C or Fortran for solving computationally intense
problems, it offers great ease of programming and has been improved constantly
to provide better performance. Moreover, it offers excellent object-oriented design,
platform independence and the comprehensive and elaborate standard application
programming interface (API) that facilitated the integration and internal manage-
ment of auxiliary data that is required for the algorithm. Additionally, a graphi-
cal user interface (GUI) has been implemented that takes a protein sequence and
an experimental mass fingerprint as input and applies the DP algorithm to detect
matching peaks considering a list of possible modifications.

Programming was done using the Netbeans™Integrated Development Environment
(IDE) 5.5 by Sun Microsystems Inc. on a Microsoft Windows®XP professional plat-
form (standard PC with Intel®Pentium®4 cpu 2.8GHz, 1024mb main memory).

3.2 External Classes and Class Libraries

The JDOM™1.0 API was used to extract the modification datasets from the Unimod
DB XML output (for further details see section 3.3). It offers extensive features to
access, manipulate and output XML data with Java. The class packages and a more
comprehensive description can be accessed at the project homepage1.

To efficiently store the DP table D, a concept for sparse arrays has been used (Mc-
Cluskey, 1999). Although proposed in the context of the Java programming lan-
guage, it can be used similarly in all object-oriented programming languages.

1http://www.jdom.org

3 Implementation 30

3.3 Data Sources

Datasets of protein modifications, atomic and amino acid masses, and enzymatic
cleavage rules used in the implementation have been extracted from either the Uni-
mod database or the Mascot help pages.

1. Protein modifications: UniMod offers the possibility to retrieve a complete
database image in XML format, which was taken and parsed for relevant in-
formation. A total of 508 modifications has been extracted to be used in the
algorithm, each with monoisotopic and average mass change, and site and
position specifications.

2. Other mass data: For the calculation of the theoretical mass list of the in-
put protein, tables of the atomic and amino acid masses have been compiled.
Atomic masses were taken from the Unimod help page2 and amino acid masses
from the Mascot help page3. The list of all considered atoms and amino acids
is given in the appendix (Tables A.2, A.3).

3. Proteolytic enzymes: Cleavage recognition patters of different proteolytic en-
zymes were taken from the Mascot help page to be used for theoretical diges-
tion. For each enzyme, rules were formulated as a regular expression and the
cut position was marked by a “#”-sign. Enzymes with more than one cleavage
recognition pattern were described as a list of regular expressions for practi-
cal purposes. As an example, trypsin cuts C-terminal to arginine (R) or lysine
(K) if not followed by proline (P), such that the regular expression rules for
trypsin are formulated as K#[^P],R#[^P]. A list of all enzymes supported
by the digestion module can be found in the appendix (Table A.1).

3.4 A Tool for the Detection of Protein Modifications

The DP algorithm for the PMMCP presented in section 2.3 allows efficient calcu-
lation of the combinations of modifications that can give rise to an observed mass
distance M∆. The algorithm can be used in a typical PMF approach to detect pro-
tein modifications (Fig. 3.1) by comparing an experimental mass fingerprint and a
putative protein identification that is expected to underly the experimental data.

2http://www.unimod.org/masses.html
3http://www.matrixscience.com/help/aa_help.html

3 Implementation 31

The idea of the procedure is to calculate a theoretical mass fingerprint of the se-
quence of the unmodified input protein as a reference. Subsequently, any combina-
tion of a list of known protein modifications is used to find matches for each pair of
an experimental mass mE and a theoretical mass mT with distance mE −mT = M∆

by applying the DP algorithm for the PMMCP. The procedure comprises the follow-
ing steps:

1. Theoretical digestion: The input protein is theoretically digested to obtain a
reference mass fingerprint containing the masses of the unmodified peptides.

2. Precomputation of decompositions: Based on an input list of modifications,
the DP algorithm constructs a decomposition table D that contains all mass
distances that can be obtained by combinations of modifications.

3. Identification of protein modifications: For each mass distance observed be-
tween masses of the experimental mass fingerprint and the theoretical refer-
ence masses, D is queried to obtain potential combinations of modifications
that may explain the observed mass distance.

3.4.1 Theoretical Digestion

In the first step, a theoretical mass fingerprint is calculated from the input reference
protein. Theoretical digestion is computationally demanding when variable modifi-
cations are considered because every unmodified theoretical peptide can have many
modified counterparts for which a mass has to be calculated. However, for the
above described approach it is sufficient, and even desired, to have a theoretical
mass fingerprint corresponding to the unmodified peptides of the input protein for
subsequent comparison. A straightforward digestion algorithm was developed that
first gathers all cleavage positions in the protein sequence and subsequently iterates
over pairs of these positions to obtain the corresponding peptide sequences (Fig.
3.2). Subsequent to peptide construction, the algorithm then calculates the theoreti-
cal mass of each peptide based on its amino acid sequence.

1. Gathering of cleavage indices: Each of the cleavage recognition patterns,
given a proteolytic enzyme, is used to gather a sorted list L of cleavage posi-
tions of the input protein sequence S with length |S| in ascending order. Sub-
sequently, the start position 0 and the terminal position |S| are added, and
finally, L contains all cleavable sequence positions li, and li ≤ lj if i ≤ j.

3 Implementation 32

Figure 3.1: Principal approach of the detection of protein modifications using
PMF data. The protein modification identification process comprises 3 steps. 1. An
input protein is used as a reference to obtain a theoretical mass fingerprint that is
subsequently compared to the experimental mass fingerprint. 2. All possible ways
to combine modifications from a list of known modifications are precomputed by
DP and stored in a table, D. 3. Masses of experimental and theoretical mass fin-
gerprints are compared pair-wise, and combinations of modifications explaining an
observed mass distance are obtained by backtracking in D.

Figure 3.2: Illustration of the theoretical digestion process. Schematic of the pro-
cedure of the theoretical digestion algorithm. L0 to L|S| mark the cleavage positions
in a protein sequence S with length |S|. The peptides that are calculated by the al-
gorithm if one missed cleavage site is allowed are indicated by black lines below the
protein sequence (top line). N and C denote the N-terminal and C-terminal end of
the protein, respectively.

3 Implementation 33

2. Peptide construction: Theoretical peptides are generated by iterating over the
positions in L with two indices, istart and iend. Initially, istart points at l0 and iend

at l1. The algorithm proceeds by storing the peptide between positions l0 to l1
and increases a missed cleavages counter. While this counter is lower than a
threshold for the maximum of missed cleavages and iend does not point to the
last element in L, iend is incremented so that it points to the next cleavage posi-
tion. Otherwise, the missed cleavages counter is set to 0, istart is incremented,
and the procedure is repeated. The algorithm terminates if istart points at the
last element in L.

Real proteolytic enzymes often show suboptimal cleavage efficiency which means
that some of the possible cleavage positions remain intact. The algorithm accounts
for that by allowing a maximum number of missed cleavages. When set to 2, for ex-
ample, the algorithm produces all peptides with 0, 1 and 2 missed cleavage sites.
Additionally, if the protein sequence starts with a methionine residue at the N-
terminal end, two peptides are created, one including the initial residue, and one
excluding it.

3.4.2 Precomputation and Identification of Protein Modifications

Two decomposition tables have to be constructed to allow backtracking in the case of
positive and negative mass distances M∆, respectively. Both tables are constructed
on the basis of an input set of modifications A, a user-defined upper bound for the
maximum number of modifications per peptide n, and an appropriate computa-
tional accuracy p. The construction of the tables relies on the principles mentioned
in section 2.3.

Putative modifications of the peptides underlying the experimental mass fingerprint
are identified by backtracking in the previously constructed tables for each pair-
wise mass distance M∆ between the experimental and theoretical masses. However,
mass spectrometric measurements are not perfectly accurate such that the uncer-
tainty of mass values and similarly of peak distances M∆ needs to be considered.
Instead of computing only the compomers of M∆, the algorithm builds the interval
[M∆ − ε, M∆ + ε] and calculates the compomers for all masses inside this interval
by backtracking. Unfortunately, the limits of the tolerance interval can exceed the
lowest mass 0 and the largest mass Mmax. In these cases, only that part of the inter-
val can be used that is inside the range 0 and Mmax. The “quality” of a compomer

3 Implementation 34

is assessed by its deviation from an observed M∆ and its length |c| such that fewer
modifications in an explanation and compomers with smaller deviation from an ob-
served mass distance are considered to be better.

3.4.3 Parameterization

The various steps of the identification procedure are controlled by the following set
of parameters:

• Input list of modifications: The input list of modifications is used to construct
the decomposition table. While a large list is important to perform an exhaus-
tive search for protein modifications, it becomes more likely to explain a mass
distance M∆ simply by chance.

• Computational accuracy p: The computational accuracy defines the discretiza-
tion of the real mass values on the integer scale. p should be chosen to capture
the relevant decimal places of the experimental masses.

• Maximum number of modifications per peptide n: Defines the upper bound
|c| ≤ n for the modification compomers. Choosing a large n increases the num-
ber of modification compomers that may explain an observed mass distance
M∆.

• Mass error ε: The extent of an interval around the mass difference M∆ in
which other mass distances are considere equal. The defintion of ε accounts
for inaccuracies of the mass measurements.

3.4.4 User Interface

A graphical user interface (GUI) has been implemented that allows to run the al-
gorithm. The main window (Fig. 3.3) allows users to enter the input mass list and
protein sequence, as well as the parameters required for the theoretical digestion
and the DP procedure. However, the algorithm can also be run without using the
GUI to provide the ability to process batches of peaklists in a row. The results can
be stored as tab-separated tables in ASCII format and can be used for further pro-
cessing as needed.

3 Implementation 35

Figure 3.3: Main window of the GUI to run and configure the DP algorithm. The
main window provides a top-level interface to configure and run the algorithm to
detect putative protein modifications by comparing an experimental mass finger-
print with a protein sequence.

4 Evaluation 36

4 Evaluation

4.1 Testing Environment

The DP algorithm solves a combinatorial problem in a deterministic way. Each re-
sult, corresponding to a combination of modifications, is ranked by the number of
modifications required for a decomposition and the deviation from the observed
mass distance. This ranking is not based on biological background data like, for in-
stance, PTM frequencies which makes the investigation of the predictive capabilities
of this approach impossible. Therefore, the algorithm will only be evaluated under
the the aspect of computational performance.

The performance of the algorithm has been evaluated on an Intel®Pentium®4 CPU
(2.8GHz clock speed, 1024 MB main memory) running Windows®XP professional.
The evaluation was based on a large dataset (in the following referred to as “Unimod
dataset”) with all 508 entries included in the current release of Unimod compris-
ing PTMs, single amino-acid substitutions, and experimental artifacts. The smallest
monoisotopic mass change (−129.057849 Da) in the dataset corresponds to the sub-
stitution of tryptophan by glycine whereas the largest mass change (1768.6395170
Da) is observed for dHex(1)Hex(5)HexNAc(4). However, most of the mass changes
lie in the range between -100 Da and 500 Da (Fig. 4.1) and the majority of protein
modifications induces a positive mass change to a protein.
The influence of the computational precision p on the separability of modifications
by their mass change is shown in Fig. 4.2. It reveals high numbers of non-unique
modification mass changes for large computational precisions. The best separability
is observed for p ≤ 0.001 with 55 non-unique modification mass changes. Therefore,
a small computational accuracy has to be applied to reduce the number of false pos-
itive compomers due to redundancy in the protein modification mass changes.

4 Evaluation 37

Figure 4.1: Distribution of modification mass changes in the Unimod dataset. The
histogram has been computed with a bin size of 10 Da.

Figure 4.2: Numbers of non-unique modification mass changes in the Unimod
dataset. Modifications with non-unique mass change have been counted after ap-
plying different computational precisions p. The exact number of non-unique mass
changes is indicated on each bar.

4 Evaluation 38

Table 4.1: Runtimes for the construction of the DP table using the Unimod dataset.
p: Computational precision; tn=x: Construction time (measured in ms) in the case
that x modifications per peptide were allowed.

p tn=1 tn=2 tn=3 tn=4 tn=5
1.0 3.8556 12.8513 19.0837 20.9966 25.7742
0.1 37.8858 75.5808 106.3276 135.4023 169.9714
0.01 254.3822 533.4976 785.7779 1142.5357 1430.2937

4.2 Construction of the Dynamic Programming Table

The size of the DP table depends on the computational precision p, the upper bound
|c| ≤ n that restricts the maximum number of modifications per peptide, and the set
of modifications A that is used for the construction. The influence of parameters p
and n on the construction time of the DP table has been investigated.
The cost for the construction of the DP table increases linearly in dependence of n
and p (Figs. 4.3, 4.4; Table 4.1). Note that a change from p = 0.1 to p = 0.01 is a
10-fold increase in precision and causes the runtime to be roughly 10-fold higher.
Construction of the DP table takes less than 170 ms for a precision p ≥ 0.1 allowing
up to 5 modifications per peptide. Applying a computational precision of p = 0.01
requires up to 1430 ms to construct the DP table with n = 5. However, the DP table
needs to be constructed only once for any particular set of modifications which puts
the high runtimes using small precisions into perspective.

4.3 Backtracking

The results obtained by backtracking are restricted by the peptide sequence under-
lying a theoretical mass that is compared to an experimental mass. It is impossible
to measure a general trend in the number of decompositions for an observed mass
distance M∆ because peptides comprising only a few of the 20 amino acids can be
subject to fewer modifications than peptides with a large variety of different amino
acids. Therefore, the backtracking performance was investigated for a particular
example using the sequence of the 6 kDa early secretory antigenic target (ESAT-6)
[accession number: Q540D8] of Mycobacterium tuberculosis. This sequence was theo-
retically digested allowing no missed cleavage sites and subsequently, the resulting
theoretical mass list was compared to the experimental peaklist that gave rise to the
identification (Fig. 4.5).

4 Evaluation 39

Figure 4.3: Runtime for the construction of the DP table applying different com-
putational precisions. The runtime has been measured as the average of 15 con-
struction runs.

Figure 4.4: Runtime for the construction of the DP table applying different upper
bounds n. The runtime has been computed as the average of 15 construction runs.

4 Evaluation 40

Figure 4.5: Protein sequence of the 6 kDa early secretory antigenic target of My-
cobacterium tuberculosis. Left: Experimental peaklist of a protein that was identi-
fied as ESAT-6. Upper right: Protein sequence of ESAT-6.

Table 4.2: Runtime, spc, and number of decompositions for backtracking with
precisions p = 1.0, p = 0.1, and p = 0.01. The mass error has been set to ε = 0.
n: Maximum number of modifications per peptide; t: Backtracking time [ms]; spc:
Shared peaks count between experimental and theoretical mass fingerprint; c f : Total
number of decompositions for all matches with sequence constraints applied; cu f :
Total number of compomers for all matches without sequence constraints applied.

p = 1.0 p = 0.1 p = 0.01
n t spc c f cu f t spc c f cu f t spc c f cu f
1 78 12 64 64 62 6 36 36 62 0 0 0
2 79 18 3988 7252 78 14 1672 3424 93 9 120 212
3 594 19 321340 614104 438 16 109874 218322 328 12 11172 21912

The runtime to compare the experimental mass list and the theoretical mass list cal-
culated from the sample sequence, the shared peaks count, and the total number of
compomers for all assignments were measured in dependence of the parameter n
for computational precisions p = 1, p = 0.1, and p = 0.01 (Table 4.2). The maximum
number of modifications per peptide is the main influencing parameter of the back-
tracking performance because |c| ≤ n directly restricts the number of compomers
that can be used for a decomposition and the total number of compomers increases
with increasing n. For the same n, the number of compomers is significantly higher
in the case of larger precisions than in the case of smaller precisions which can be
attributed to the higher redundancy in the modification mass changes if small pre-
cisions are applied. However, the total number of decompositions is too high to
allow reasonable interpretation of the single compomers in all cases such that it is
infeasible to decide whether a combination of modifications is likely to be correct or
if it matches an observed mass distance only by chance.

5 Discussion 41

5 Discussion

5.1 Algorithm

The algorithm presented in this thesis addresses the problem of PTM detection by
formulating the Protein Modification Money Changing Problem. This problem asks
for combinations of protein modifications giving rise to a mass change observed
between an experimental and a theoretical mass. Other approaches like FindMod
avoid the integration of large numbers of modifications in parallel, because the com-
binatorial explosion makes it infeasible to iterate over all possible combinations of
modifications. The purpose of the novel algorithm is to allow for high numbers
of modifications to be searched in parallel by limiting the search space to all com-
binations of modifications that produce an observed mass change. This has been
achieved by investigating the classical Money Changing Problem which asks for
the decomposition of a non-negative integer over a set of other non-negative inte-
gers. This similar but simpler problem can be solved in pseudo-polynomial time
using DP (Böcker and Liptak, 2004). Although the original DP algorithm cannot be
applied to the Protein Modification Money Changing Problem directly, it was possi-
ble to extend the idea of the algorithm to allow for negative numbers (modification
mass changes and mass distances) and a restriction of the combinations by allowing
at most n of these numbers in a decomposition. In the context of protein modifica-
tions this corresponds to an upper bound for the number of modifications that are
allowed per peptide.
The general proceeding of the algorithm is to precompute the decompositions of all
mass changes in the range between 0 and Mmax, the maximum mass change that
is determined by the set of modifications and the upper bound n, by DP. This pre-
computation yields a decomposition table that allows to iterate exclusively over all
combinations of modifications that give rise to a mass change M∆ by backtracking.
However, filtering of the biologically correct decompositions according to the speci-
ficity of protein modifications has to be done after backtracking. This is a consider-
able drawback because it may require to investigate all possible decompositions of a
mass distance to decide whether there exists a solution that agrees to the biological

5 Discussion 42

constraints. If a large precision and a large n is chosen, the backtracking runtime
will become impractical.

Nevertheless, the algorithm can solve the combinatorial problem of PTM detection
efficiently for large numbers of modifications if p ≥ 0.01 and n ≤ 3 while taking
into account a multiple of the modifications used by FindMod. However, although
the algorithm can include many modifications in a search, the results are difficult to
interpret because hardly any information about the frequencies of modifications is
available to calculate the quality of the decompositions.

5.2 Assessment of Decompositions

The vast number of possibilities that explain a mass distance simply by chance can-
not be distinguished from those that might in fact be the result of modifications.
Therefore, it is necessary to introduce a scoring method that can rank the large num-
ber of putative results to allow for a reasonable application of the algorithm. One
reliable way to achieve this might be to assign a weight score to each combination
of modifications that is based on the frequencies (weights) of occurrences of single
modifications. However, no comprehensive dataset is available that allows to infer
the frequencies of all known protein modifications. Probably, more insight will be
gained from blind search approaches, for example by Tsur et al. (2005), that can pre-
dict known and unknown protein modifications and may allow to find and annotate
PTMs on a large-scale.
A simpler way of validation is by application of modification rules that describe
properties that may hinder or contribute to the occurrence of particular modifica-
tions. FindMod, for example, uses sequence patterns that were frequently observed
in correspondence to sites of post-translational modifications. Moreover, an ap-
proach to detect single residue PTMs by investigation of consensus sequence mo-
tives has been implemented in the AutoMotif server Plewczynski et al. (2005). Nev-
ertheless, the set of rules of both approaches is far from being comprehensive and
captures mainly the most common and best studied protein modifications like phos-
phorylation, acetylation, or methylation. Additionally, rule-based scoring does only
allow for a rudimentary ranking of different results because a rule can either be
accepted or rejected.

5 Discussion 43

5.3 Outlook

The DP algorithm allows for the computation of decompositions of observed mass
distances between experimental and theoretical masses efficiently if the computa-
tional precision and the number of modifications per peptide is limited (p ≥ 0.01,
n ≤ 3). Runtimes suggest that it is suitable to be applied on a small scale, i.e., when
only one experimental mass fingerprint is compared to one or a few theoretical mass
lists. It is not suitable to be applied in time-critical applications which require to con-
sider a large number of theoretical mass lists, as for example, in DB search methods.
To further improve the runtime of the algorithm it is necessary to integrate the speci-
ficity constraints of the protein modifications already in the construction of the DP
table. While this would require to build a separate table for each theoretical peptide
that is used for comparison, the performance penalty may be only little: It is likely
that only a subset of modifications can occur on a peptide so that the construction of
each separate table is more efficient because less rows of the table have to be com-
puted.
Nevertheless, the algorithm has little practical value for the prediction of PTMs
without an appropriate scoring procedure. Further efforts have to be made to com-
bine the efficient calculation of the PMMCP with means of interpreting the quality
of detections to prove this approach useful.

6 Summary 44

6 Summary

In this work, a novel algorithmic approach was presented that allows to detect PTMs
or other protein modifications by comparing an experimental and a theoretical mass
fingerprint. The algorithm is based on a variation of a DP algorithm for the classical
MCP which has been applied for the decomposition of biomolecules over alphabets
of amino acids or nucleotides. Here, the problem of PTM detection is formulated as
an extended MCP which is called the Protein Modification Money Changing Prob-
lem: For an observed mass distance between an experimental and a theoretical mass,
find all combinations of protein modifications that give rise to that mass difference.
The original algorithm could not be applied directly, because it is unable to deal
with non-negative numbers. The novel algorithm allows for decompositions of pos-
itive and negative numbers (mass distances M∆) over a set of positive and negative
numbers (protein modification mass changes A = {a1, ..., ak}) and integrates an up-
per bound n for the number of modifications that can be used to decompose a mass
distance.
The combinatorial complexity of PTM detection was addressed using this improved
DP algorithm to precompute all combinations of modifications that can result in
mass distances between 0 and a maximum mass Mmax = max(A)n. Subsequently,
for any observed M∆ in this range, only the precomputed results are iterated over to
find those combinations of protein modifications that agree with the biological con-
straints induced by the peptide sequence underlying the theoretical mass. Although
the algorithm allows to compute PTM candidates efficiently, even with high num-
bers of modifications in parallel, the number of results is usually too large to be in-
terpreted. Therefore, it will be essential to integrate a scoring method that evaluates
the quality of the results either by probabilities to observe particular combinations
of modifications, or by expert rules that indicate the quality of an explanation. At
the current time, however, there are no methods or data to evaluate the likelihood
of observing a particular modification for all, or at least for a large part of known
protein modifications.

List of Figures I

List of Figures

1.1 Protein map of the intracellular proteins of Helicobacter pylori 26695
obtained by 2D-PAGE. 4

1.2 Scheme of a typical mass spectrometer. 5
1.3 MS/MS fragmentation patterns. 6
1.4 Protein identification by peptide mass fingerprinting. 8
1.5 Combinatorial explosion introduced by variable modifications. . . . 10

2.1 Example Boolean table of the original DP algorithm. 16
2.2 Example of backtracking of the original DP algorithm. 18
2.3 Compressed vector representation of the Boolean table of the original

DP algorithm. 19
2.4 Influence of different storage schemes on the backtracking behavior

of the new DP algorithm. 23
2.5 Example integer table constructed according to the new DP algorithm. 24
2.6 Ragged storage of the new DP table. 26

3.1 Principal approach of the detection of protein modifications using
PMF data. 32

3.2 Illustration of the theoretical digestion process. 32
3.3 Main window of the GUI to run and configure the DP algorithm. . . 35

4.1 Distribution of modification mass changes in the Unimod dataset. . . 37
4.2 Numbers of non-unique modification mass changes in the Unimod

dataset. 37
4.3 Runtime for the construction of the DP table applying different com-

putational precisions. 39
4.4 Runtime for the construction of the DP table applying different upper

bounds n. 39
4.5 Protein sequence of the 6 kDa early secretory antigenic target of My-

cobacterium tuberculosis. 40

List of Tables II

List of Tables

2.1 Descriptors of the specificity of protein modifications based on the
Unimod DB. 14

4.1 Runtimes for the construction of the DP table using the Unimod dataset. 38
4.2 Runtime, spc, and number of decompositions for backtracking with

different precisions . 40

A.1 Proteolytic enzymes included in the current implementation. X
A.2 Amino acid masses used in the theoretical digestion procedure. . . . XI
A.3 Atomic masses used in the theoretical digestion procedure. XII

Abbreviations III

Abbreviations

2-DE Two-dimensional electrophoresis
2D-PAGE Two-dimensional polyacrylamide gel electrophoresis
API Application programming interface
DB Database
DP Dynamic programming
ESAT-6 6 kDa early secretory antigenic target
ESI Electrospray ionization
IDE Integrated development environment
JDK Java SE development kit
MALDI Matrix assisted laser desorption ionization
MCP Money Changing Problem
MS(/MS) (Tandem)Mass spectrometry
PMF Peptide mass fingerprinting
PMMCP Protein Modification Money Changing Problem
PTM Post-translational modification
spc Shared peaks count
TOF Time of flight
XML Extensible markup language

Bibliography IV

Bibliography

Böcker, S. (2004). Sequencing from compomers: using mass spectrometry for dna de
novo sequencing of 200+ nt. J Comput Biol, 11(6):1110–1134.

Böcker, S. and Liptak, S. (2004). Efficient mass decomposition. In 20th Annual ACM
Symposium on Applied Computing in Santa Fe, New Mexico.

Beckey, H. D. (1969). Field desorption mass spectrometry: A technique for the study
of thermally unstable substances of low volatility. International Journal of Mass
Spectrometry and Ion Physics, 2:500–502.

Brunneé, C. (1987). The ideal mass analyzer: fact or fiction. International journal of
mass spectrometry and ion processes, 76:125–237.

Claverie, J. M. (2001). Gene number. what if there are only 30,000 human genes?
Science, 291(5507):1255–1257.

Colgan, D. F., Murthy, K. G., Zhao, W., Prives, C., and Manley, J. L. (1998). Inhibi-
tion of poly(a) polymerase requires p34cdc2/cyclin b phosphorylation of multiple
consensus and non-consensus sites. EMBO J, 17(4):1053–1062.

Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., and Whitehouse, C. M. (1989).
Electrospray ionization for mass spectrometry of large biomolecules. Science,
246(4926):64–71.

Gattiker, A., Bienvenut, W. V., Bairoch, A., and Gasteiger, E. (2002). Findpept, a tool
to identify unmatched masses in peptide mass fingerprinting protein identifica-
tion. Proteomics, 2(10):1435–1444.

Gundersen, G. and Steihaug, T. (2004). Data structures in java for matrix computa-
tions. Concurrency Computat.: Pract. Exper., 16:799–815.

Henzel, W. J., Watanabe, C., and Stults, J. T. (2003). Protein identification: the origins
of peptide mass fingerprinting. J Am Soc Mass Spectrom, 14(9):931–942.

International Human Genome Sequencing Consortium (2004). Finishing the euchro-
matic sequence of the human genome. Nature, 431:931–945.

James, P., Quadroni, M., Carafoli, E., and Gonnet, G. (1993). Protein identification
by mass profile fingerprinting. Biochem Biophys Res Commun, 195(1):58–64.

Bibliography V

Jensen, O. N. (2004). Modification-specific proteomics: characterization of post-
translational modifications by mass spectrometry. Current Opinion in Chemical
Biology, 8:33–41.

Karas, M. and Hillenkamp, F. (1988). Laser desorption ionization of proteins with
molecular masses exceeding 10,000 daltons. Anal Chem, 60(20):2299–2301.

Klose, J. (1975). Protein mapping by combined isoelectric focusing and electrophore-
sis of mouse tissues. a novel approach to testing for induced point mutations in
mammals. Humangenetik, 26(3):231–243.

Klose, J. and Kobalz, U. (1995). Two-dimensional electrophoresis of proteins: an
updated protocol and implications for a functional analysis of the genome. Elec-
trophoresis, 16(6):1034–1059.

Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., De-
von, K., Dewar, K., Doyle, M., FitzHugh, W., Funke, R., Gage, D., Harris, K.,
Heaford, A., Howland, J., Kann, L., Lehoczky, J., LeVine, R., McEwan, P., McKer-
nan, K., Meldrim, J., Mesirov, J. P., Miranda, C., Morris, W., Naylor, J., Raymond,
C., Rosetti, M., Santos, R., Sheridan, A., Sougnez, C., Stange-Thomann, N., Sto-
janovic, N., Subramanian, A., Wyman, D., Rogers, J., Sulston, J., Ainscough, R.,
Beck, S., Bentley, D., Burton, J., Clee, C., Carter, N., Coulson, A., Deadman, R.,
Deloukas, P., Dunham, A., Dunham, I., Durbin, R., French, L., Grafham, D., Gre-
gory, S., Hubbard, T., Humphray, S., Hunt, A., Jones, M., Lloyd, C., McMurray, A.,
Matthews, L., Mercer, S., Milne, S., Mullikin, J. C., Mungall, A., Plumb, R., Ross,
M., Shownkeen, R., Sims, S., Waterston, R. H., Wilson, R. K., Hillier, L. W., McPher-
son, J. D., Marra, M. A., Mardis, E. R., Fulton, L. A., Chinwalla, A. T., Pepin, K. H.,
Gish, W. R., Chissoe, S. L., Wendl, M. C., Delehaunty, K. D., Miner, T. L., Dele-
haunty, A., Kramer, J. B., Cook, L. L., Fulton, R. S., Johnson, D. L., Minx, P. J.,
Clifton, S. W., Hawkins, T., Branscomb, E., Predki, P., Richardson, P., Wenning, S.,
Slezak, T., Doggett, N., Cheng, J. F., Olsen, A., Lucas, S., Elkin, C., Uberbacher, E.,
Frazier, M., Gibbs, R. A., Muzny, D. M., Scherer, S. E., Bouck, J. B., Sodergren, E. J.,
Worley, K. C., Rives, C. M., Gorrell, J. H., Metzker, M. L., Naylor, S. L., Kucher-
lapati, R. S., Nelson, D. L., Weinstock, G. M., Sakaki, Y., Fujiyama, A., Hattori,
M., Yada, T., Toyoda, A., Itoh, T., Kawagoe, C., Watanabe, H., Totoki, Y., Taylor,
T., Weissenbach, J., Heilig, R., Saurin, W., Artiguenave, F., Brottier, P., Bruls, T.,
Pelletier, E., Robert, C., Wincker, P., Smith, D. R., Doucette-Stamm, L., Rubenfield,
M., Weinstock, K., Lee, H. M., Dubois, J., Rosenthal, A., Platzer, M., Nyakatura,
G., Taudien, S., Rump, A., Yang, H., Yu, J., Wang, J., Huang, G., Gu, J., Hood,
L., Rowen, L., Madan, A., Qin, S., Davis, R. W., Federspiel, N. A., Abola, A. P.,

Bibliography VI

Proctor, M. J., Myers, R. M., Schmutz, J., Dickson, M., Grimwood, J., Cox, D. R.,
Olson, M. V., Kaul, R., Raymond, C., Shimizu, N., Kawasaki, K., Minoshima, S.,
Evans, G. A., Athanasiou, M., Schultz, R., Roe, B. A., Chen, F., Pan, H., Ramser,
J., Lehrach, H., Reinhardt, R., McCombie, W. R., de la Bastide, M., Dedhia, N.,
Blöcker, H., Hornischer, K., Nordsiek, G., Agarwala, R., Aravind, L., Bailey, J. A.,
Bateman, A., Batzoglou, S., Birney, E., Bork, P., Brown, D. G., Burge, C. B., Cerutti,
L., Chen, H. C., Church, D., Clamp, M., Copley, R. R., Doerks, T., Eddy, S. R.,
Eichler, E. E., Furey, T. S., Galagan, J., Gilbert, J. G., Harmon, C., Hayashizaki, Y.,
Haussler, D., Hermjakob, H., Hokamp, K., Jang, W., Johnson, L. S., Jones, T. A.,
Kasif, S., Kaspryzk, A., Kennedy, S., Kent, W. J., Kitts, P., Koonin, E. V., Korf, I.,
Kulp, D., Lancet, D., Lowe, T. M., McLysaght, A., Mikkelsen, T., Moran, J. V., Mul-
der, N., Pollara, V. J., Ponting, C. P., Schuler, G., Schultz, J., Slater, G., Smit, A. F.,
Stupka, E., Szustakowski, J., Thierry-Mieg, D., Thierry-Mieg, J., Wagner, L., Wal-
lis, J., Wheeler, R., Williams, A., Wolf, Y. I., Wolfe, K. H., Yang, S. P., Yeh, R. F.,
Collins, F., Guyer, M. S., Peterson, J., Felsenfeld, A., Wetterstrand, K. A., Patrinos,
A., Morgan, M. J., de Jong, P., Catanese, J. J., Osoegawa, K., Shizuya, H., Choi, S.,
Chen, Y. J., Szustakowki, J., and Consortium, I. H. G. S. (2001). Initial sequencing
and analysis of the human genome. Nature, 409(6822):860–921.

Leevers, S. J. and Marshall, C. J. (1992). Activation of extracellular signal-regulated
kinase, erk2, by p21ras oncoprotein. EMBO J, 11(2):569–574.

Livolsi, A., Busuttil, V., Imbert, V., Abraham, R. T., and Peyron, J. F. (2001). Tyrosine
phosphorylation-dependent activation of nf-kappa b. requirement for p56 lck and
zap-70 protein tyrosine kinases. Eur J Biochem, 268(5):1508–1515.

Lueker, G. (1975). Two np-complete problems in nonnegative integer programming.
Technical report, Department of Electrical Engineering, Princeton University.

Mann, M. and Jensen, O. N. (2003). Proteomic analysis of post-translational modifi-
cations. Nat Biotechnol, 21(3):255–261.

Mann, M. and Pandey, A. (2001). Use of mass spectrometry-derived data to annotate
nucleotide and protein sequence databases. Trends Biochem Sci, 26(1):54–61.

Martello, S. and Toth, P. (1990). Knapsack Problems: Algorithms and Computer
Implementations. John Wiley and Sons.

Matthiesen, R., Trelle, M. B., Højrup, P., Bunkenborg, J., and Jensen, O. N. (2005).
Vems 3.0: algorithms and computational tools for tandem mass spectrometry
based identification of post-translational modifications in proteins. J Proteome
Res, 4(6):2338–2347.

Bibliography VII

McCluskey, G. (1999). Thirty ways to improve the performance of your
java™programs. Online Article.

O’Farrell, P. H. (1975). High resolution two-dimensional electrophoresis of proteins.
J Biol Chem, 250(10):4007–4021.

Pappin, D. J., Hojrup, P., and Bleasby, A. J. (1993). Rapid identification of proteins
by peptide-mass fingerprinting. Curr Biol, 3(6):327–332.

Perkins, D. N., Pappin, D. J. C., Creasy, D. M., and Cotrell, J. S. (1999). Probability-
based protein identification by searching sequence databases using mass spec-
trometry data. Eletrophoresis, 20:3551–3567.

Pevzner, P. A., Dancík, V., and Tang, C. L. (2000). Mutation-tolerant protein identifi-
cation by mass spectrometry. J Comput Biol, 7(6):777–787.

Pevzner, P. A., Mulyukov, Z., Dancik, V., and Tang, C. L. (2001). Efficiency of
database search for identification of mutated and modified proteins via mass spec-
trometry. Genome Res, 11(2):290–299.

Pleissner, K.-P., Eifert, T., Buettner, S., Schmidt, F., Boehme, M., Meyer, T. F., Kauf-
mann, S. H. E., and Jungblut, P. R. (2004). Web-accessible proteome databases for
microbial research. Proteomics, 4(5):1305–1313.

Plewczynski, D., Tkacz, A., Wyrwicz, L. S., and Rychlewski, L. (2005). Automotif
server: prediction of single residue post-translational modifications in proteins.
Bioinformatics, 21(10):2525–2527.

Roepstorrf, P. and Fohlmann, J. (1984). Proposal for a common nomenclature for
sequencing ions in mass spectra of peptides. Biomedical Mass Spectrometry,
11:601–631.

Thébault, S., Machour, N., Perrot, F., Jouenne, T., Lange, C., Hubert, M., Fontaine,
M., Tron, F., and Charlionet, R. (2001). Objet et évolution méthodologique de
l’analyse protéomique. médecine/sciences, 17:609–618.

The C. elegans Sequencing Consortium (1998). Genome sequence of the nematode
C. elegans: A platform for investigating biology. Science, 282:2012 – 2018.

Tsur, D., Tanner, S., Zandi, E., Bafna, V., and Pevzner, P. A. (2005). Identification
of post-translational modifications via blind search of mass-spectra. Proc IEEE
Comput Syst Bioinform Conf, pages 157–166.

Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G.,
Smith, H. O., Yandell, M., Evans, C. A., Holt, R. A., Gocayne, J. D., Amanatides,
P., Ballew, R. M., Huson, D. H., Wortman, J. R., Zhang, Q., Kodira, C. D., Zheng,

Bibliography VIII

X. H., Chen, L., Skupski, M., Subramanian, G., Thomas, P. D., Zhang, J., Mik-
los, G. L. G., Nelson, C., Broder, S., Clark, A. G., Nadeau, J., McKusick, V. A.,
Zinder, N., Levine, A. J., Roberts, R. J., Simon, M., Slayman, C., Hunkapiller, M.,
Bolanos, R., Delcher, A., Dew, I., Fasulo, D., Flanigan, M., Florea, L., Halpern,
A., Hannenhalli, S., Kravitz, S., Levy, S., Mobarry, C., Reinert, K., Remington, K.,
Abu-Threideh, J., Beasley, E., Biddick, K., Bonazzi, V., Brandon, R., Cargill, M.,
Chandramouliswaran, I., Charlab, R., Chaturvedi, K., Deng, Z., Francesco, V. D.,
Dunn, P., Eilbeck, K., Evangelista, C., Gabrielian, A. E., Gan, W., Ge, W., Gong, F.,
Gu, Z., Guan, P., Heiman, T. J., Higgins, M. E., Ji, R. R., Ke, Z., Ketchum, K. A.,
Lai, Z., Lei, Y., Li, Z., Li, J., Liang, Y., Lin, X., Lu, F., Merkulov, G. V., Milshina,
N., Moore, H. M., Naik, A. K., Narayan, V. A., Neelam, B., Nusskern, D., Rusch,
D. B., Salzberg, S., Shao, W., Shue, B., Sun, J., Wang, Z., Wang, A., Wang, X.,
Wang, J., Wei, M., Wides, R., Xiao, C., Yan, C., Yao, A., Ye, J., Zhan, M., Zhang, W.,
Zhang, H., Zhao, Q., Zheng, L., Zhong, F., Zhong, W., Zhu, S., Zhao, S., Gilbert,
D., Baumhueter, S., Spier, G., Carter, C., Cravchik, A., Woodage, T., Ali, F., An, H.,
Awe, A., Baldwin, D., Baden, H., Barnstead, M., Barrow, I., Beeson, K., Busam,
D., Carver, A., Center, A., Cheng, M. L., Curry, L., Danaher, S., Davenport, L.,
Desilets, R., Dietz, S., Dodson, K., Doup, L., Ferriera, S., Garg, N., Gluecksmann,
A., Hart, B., Haynes, J., Haynes, C., Heiner, C., Hladun, S., Hostin, D., Houck,
J., Howland, T., Ibegwam, C., Johnson, J., Kalush, F., Kline, L., Koduru, S., Love,
A., Mann, F., May, D., McCawley, S., McIntosh, T., McMullen, I., Moy, M., Moy,
L., Murphy, B., Nelson, K., Pfannkoch, C., Pratts, E., Puri, V., Qureshi, H., Rear-
don, M., Rodriguez, R., Rogers, Y. H., Romblad, D., Ruhfel, B., Scott, R., Sitter, C.,
Smallwood, M., Stewart, E., Strong, R., Suh, E., Thomas, R., Tint, N. N., Tse, S.,
Vech, C., Wang, G., Wetter, J., Williams, S., Williams, M., Windsor, S., Winn-Deen,
E., Wolfe, K., Zaveri, J., Zaveri, K., Abril, J. F., Guigó, R., Campbell, M. J., Sjolan-
der, K. V., Karlak, B., Kejariwal, A., Mi, H., Lazareva, B., Hatton, T., Narechania,
A., Diemer, K., Muruganujan, A., Guo, N., Sato, S., Bafna, V., Istrail, S., Lippert,
R., Schwartz, R., Walenz, B., Yooseph, S., Allen, D., Basu, A., Baxendale, J., Blick,
L., Caminha, M., Carnes-Stine, J., Caulk, P., Chiang, Y. H., Coyne, M., Dahlke, C.,
Mays, A., Dombroski, M., Donnelly, M., Ely, D., Esparham, S., Fosler, C., Gire,
H., Glanowski, S., Glasser, K., Glodek, A., Gorokhov, M., Graham, K., Gropman,
B., Harris, M., Heil, J., Henderson, S., Hoover, J., Jennings, D., Jordan, C., Jordan,
J., Kasha, J., Kagan, L., Kraft, C., Levitsky, A., Lewis, M., Liu, X., Lopez, J., Ma,
D., Majoros, W., McDaniel, J., Murphy, S., Newman, M., Nguyen, T., Nguyen, N.,
Nodell, M., Pan, S., Peck, J., Peterson, M., Rowe, W., Sanders, R., Scott, J., Simp-
son, M., Smith, T., Sprague, A., Stockwell, T., Turner, R., Venter, E., Wang, M.,

Bibliography IX

Wen, M., Wu, D., Wu, M., Xia, A., Zandieh, A., and Zhu, X. (2001). The sequence
of the human genome. Science, 291(5507):1304–1351.

Wilkins, M., Williams, K., and Appel, R. (1997). Proteome Research: New Frontiers
in Functional Genomics. Springer.

Wilkins, M. R., Gasteiger, E., Gooley, A. A., Herbert, B. R., Molloy, M. P., Binz,
P.-A., Ou, K., Sanchez, J.-C., Bairoch, A., Williams, K. L., and Hochstrasser,
D. F. (1999). High-throughput mass spectrometric discovery of protein post-
translational modifications. J. Mol. Biol., 289:645–657.

Yates, J. R., Speicher, S., Griffin, P. R., and Hunkapiller, T. (1993). Peptide mass
maps: a highly informative approach to protein identification. Anal Biochem,
214(2):397–408.

Zhang, W. and Chait, B. T. (2000). Profound: an expert system for protein iden-
tification using mass spectrometric peptide mapping information. Anal Chem,
72(11):2482–2489.

A Reference Data X

A Reference Data

A.1 Proteolytic Enzymes

Table A.1: Proteolytic enzymes included in the current implementation. Each
enzyme is defined by a set of cleavage recognition patterns which are formatted
as comma-separated lists of regular expression–like strings. Letters correspond to
the one-letter amino acid symbols and ’#’ marks the cleavage position.

Name Rules
Trypsin K#[^P],R#[^P]
Arg-C R#P
Asp-N #B,#D
Asp-N_ambic #D,#E
Chymotrypsin F#[^P],Y#[^P],W#[^P],L#[^P]
CNBr M#
Formic_acid D#
Lys-C K#[^P]
Lys-C/P K#
PepsinA F#,L#
Tryp-CNBr K#[^P],R#[^P],M#[^P]
TrypChymo F#[^P],Y#[^P],W#[^P],L#[^P],K#[^P],R#[^P]
Trypsin/P K#,R#
V8-DE B#[^P],D#[^P],E#[^P],Z#[^P]
V8-E E#[^P],Z#[^P]

A Reference Data XI

A.2 Amino Acid Masses

Table A.2: Amino acid masses used in the theoretical digestion procedure.
Monoisotopic and average masses are given in Dalton.

Name 3-Letter 1-Letter Mono. Mass Avg. Mass Composition
Alanine Ala A 71.03712 71.08 C3H5NO
Arginine Arg R 156.10112 156.19 C6H12N4O
Asparagine Asn N 114.04293 114.10 C4H6N2O2
Asparticacid Asp D 115.02695 115.09 C4H5NO3
Cysteine Cys C 103.00919 103.14 C3H5NOS
Glutamicacid Glu E 129.04260 129.12 C5H7NO3
Glutamine Gln Q 128.05858 128.13 C5H8N2O2
Glycine Gly G 57.02147 57.05 C2H3NO
Histidine His H 137.05891 137.14 C6H7N3O
Isoleucine Ile I 113.08407 113.16 C6H11NO
Leucine Leu L 113.08407 113.16 C6H11NO
Lysine Lys K 128.09497 128.17 C6H12N2O
Methionine Met M 131.04049 131.19 C5H9NOS
Phenylalanine Phe F 147.06842 147.18 C9H9NO
Proline Pro P 97.05277 97.12 C5H7NO
Serine Ser S 87.03203 87.08 C3H5NO2
Threonine Thr T 101.04768 101.10 C4H7NO2
Selenocysteine SeC U 150.95364 150.03 C3H5NOSe
Tryptophan Trp W 186.07932 186.21 C11H10N2O
Tyrosine Tyr Y 163.06333 163.18 C9H9NO2
Valine Val V 99.06842 99.13 C5H9NO

A Reference Data XII

A.3 Atomic Masses

Table A.3: Atomic masses used in the theoretical digestion procedure. Monoiso-
topic and average masses are given in Dalton.

Symbol Name Mono. Mass Avg. Mass
H Hydrogen 1.007825035 1.00794
H2 Deuterium 2.014101779 2.014101779
Li Lithium 7.016003 6.941
C Carbon 12 12.0107
C13 Carbon13 13.00335483 13.00335483
N Nitrogen 14.003074 14.0067
N15 Nitrogen15 15.00010897 15.00010897
O Oxygen 15.99491463 15.9994
O18 Oxygen18 17.9991603 17.9991603
F Fluorine 18.99840322 18.9984032
Na Sodium 22.9897677 22.98977
P Phosphorous 30.973762 30.973761
S Sulfur 31.9720707 32.065
Cl Chlorine 34.96885272 35.453
K Potassium 38.9637074 39.0983
Ca Calcium 39.9625906 40.078
Fe Iron 55.9349393 55.845
Ni Nickel 57.9353462 58.6934
Cu Copper 62.9295989 63.546
Zn Zinc 63.9291448 65.409
Br Bromine 78.9183361 79.904
Se Selenium 79.9165196 78.96
Mo Molybdenum 97.9054073 95.94
Ag Silver 106.905092 107.8682
I Iodine 126.904473 126.90447
Au Gold 196.966543 196.96655
Hg Mercury 201.970617 200.59

Affidavit XIII

Affidavit

I hereby declare that the following master thesis "Prediction of Post-translational
Modifications of Proteins from 2-DE/MS Data" has been written only by the under-
signed and without any assistance from third parties.

Furthermore, I confirm that no sources have been used in the preparation of this
thesis other than those indicated in the thesis itself.

Berlin, 24.01.2007

Axel Rack

	Acknowledgments
	Zusammenfassung
	Abstract
	Introduction
	Proteomics
	Classical Approach of Protein Identification
	Two-Dimensional Polyacrylamide Gel Electrophoresis
	Mass Spectrometry

	Peptide Mass Fingerprinting
	Identification of Protein Modifications
	Existing Tools for the Detection of Protein Modifications

	Goals of this study

	Algorithm
	Protein Modification as a Money Changing Problem
	Dynamic Programming for the Money Changing Problem
	Dynamic Programming for the Protein Modification Money Changing Problem
	Constraints on the use of Protein Modifications
	Negative Mass Changes
	Definition of the Algorithm

	Efficient Dynamic Programming
	Ragged Array Storage of the Dynamic Programming Table
	Efficient Construction of the Dynamic Programming Table

	Implementation
	Programming Language and Environment
	External Classes and Class Libraries
	Data Sources
	A Tool for the Detection of Protein Modifications
	Theoretical Digestion
	Precomputation and Identification of Protein Modifications
	Parameterization
	User Interface

	Evaluation
	Testing Environment
	Construction of the Dynamic Programming Table
	Backtracking

	Discussion
	Algorithm
	Assessment of Decompositions
	Outlook

	Summary
	List of Figures
	List of Tables
	Abbreviations
	Bibliography
	Reference Data
	Proteolytic Enzymes
	Amino Acid Masses
	Atomic Masses

	Affidavit

