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Resumen 
 

La fibrilación auricular (FA) es la arritmia cardíaca más común en todo el mundo. Se asocia 

con una reducción de la calidad de vida y aumenta el riesgo de accidente cerebrovascular 

e infarto de miocardio. Desafortunadamente muchos casos de FA son asintomáticos, lo cual 

aumenta el riesgo para los pacientes. Debido a su naturaleza paroxística, la detección de 

la FA requiere la evaluación, por parte de un cardiologo, de señales ECG de larda duración. 

En Colombia, es difícil dificil tener dianóstico temprano de la FA debido a los costos 

asociados a la detección de la FA y la distribución geográfica de los cardiólogos. Este 

trabajo es parte de un proyecto macro que tiene como objetivo desarrollar un dispositivo 

portátil para pacientes específicos que permita detectar la FA, el cual estará basado en una 

red neuronal convolucional (CNN). Nuestro objetivo es encontrar un modelo CNN 

adecuado, que luego se pueda implementar en hardware. Se aplicaron diversas técnicas 

para mejorar la respuesta con respecto a la exactitud, la sensibilidad, la especificidad y la 

precisión. El modelo final alcanza una exactitud del 97,44%, una especificidad del 97,76%, 

una sensibilidad del 96,97% y una precisión del 96,80%. Durante el desarrollo del modelo, 

el costo computacional y los recursos de memoria se tuvieron en cuenta para obtener un 

modelo de hardware eficiente en una futura  implementación del dispositivo. 

 

Palabras clave: Detección automática; ECG; Fibrilación Auricular; Redes Neuronales 

Convolucionales; Redes Neuronales Profundas. 

 

Abstract 
 

Atrial Fibrillation (AF) is the most common cardiac arrhythmia worldwide. It is associated 

with reduced quality of life and increases the risk of stroke and myocardial infarction. 

Unfortunately, many cases of AF are asymptomatic and undiagnosed, which increases the 

risk for the patients. Due to its paroxysmal nature, the detection of AF requires the 

evaluation, by a cardiologist, of long-term ECG signals. In Colombia, it is difficult to have 

access to an early diagnosis of AF because of the associated costs to the detection and the 

geographical distribution of cardiologists. This work is part of a macro project that aims to 

develop a specific-patient portable device for the detection of AF. This device will be based 

on a Convolutional Neural Network (CNN). We aim to find a suitable CNN model, which later 

could be implemented in hardware. Diverse techniques were applied to improve the answer 

regarding accuracy, sensitivity, specificity, and precision. The final model achieves an 

accuracy of 97.44%, a specificity of 97.76%, a sensitivity of 96.97% and a precision of 

96.80%. During the development of the model, the computational cost and memory 

resources were taking into account in order to obtain an efficient hardware model in a future 

implementation of the device. 

 

Keywords: Atrial Fibrillation; Automatic Detection;  Convolutional Neural Networks; Deep 

Neural Networks; ECG.  



 

 

  

Introduction 

 

Atrial Fibrillation (AF) is the most common cardiac arrhythmia in clinical practice. Its global 

prevalence is around 2% in the community, around 5% in patients older than 60 years and 

10% in people over 80 years old. The AF is associated with reduced quality of life and also 

increases the risk of stroke and myocardial infarction. In Colombia, some studies show 

that the incidence and mortality of AF have increased especially in people over the age of 

70 [1, 2]. 

AF is caused due to various health complications. During an episode of AF, the contraction 

of the atria is asynchronous because of the fast firing of electrical impulses. The main 

characteristics of an episode of AF are: the absence of a sinus P wave, irregular and fast 

ventricular contraction, presence of an abnormal and variable RR interval, atrial heart rate 

oscillates between 350 to 600 beats per minute (bpm) and narrow QRS complexes (<

120𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠) [1]. 

By using electrodes placed on the skin is possible to record the heart’s electrical activity. A 

voltage vs time graph is known as an electrocardiogram (ECG signal). These electrical 

changes are a consequence of cardiac muscle depolarization followed by repolarization 

during each cardiac cycle (heartbeat). The ECG morphology contains important information 

about the conditions of the heart. Thus, the ECG signals are used to detect abnormalities in 

heart activity [3]. 

The ECG signals are interpreted manually by cardiologists in order to detect cardiac 

abnormalities. The detection of AF demands to analyze long recordings because of its 

paroxysmal nature. These analyses are time-consuming, expensive, and some times could 

be subjective. Figure 1 shows typical ECG signals. The blue representation is a normal ECG 

signal and other (red) is an Atrial Fibrillation ECG.  

 

 

Figure 1 : Signals from MIT BIH AF Database. Normal ECG , Atrial Fibrillation ECG. [4] 

Source: Self made. 



 

 

 

Note that the abnormal activity of the atria produces variations in heart rate and a faster 

ventricular response, although there is also the opposite case, where the ventricular 

response becomes slower. 

The FA is generally asymptomatic or shows nonspecific symptoms [5]. However, several 

medical reports call attention to the importance of early diagnosis in order to start an early 

treatment [6, 7]. However, these early diagnostics are quite difficult to do in countries like 

Colombia, where there is an irregular distribution of cardiologists around the country. For 

example, more than 80% of cardiologists are localized only in seven of the main cities in 

Colombia [8]. Thus, the intermediate cities, small towns, and rural zones have not the 

possibility to have access to an early cardiology service. 

Convolution Neural Networks (CNN) have been used to detect cardiac arrhythmias. In [9] a 

1-D CNN approach is used, which classifies the ECG signal for the detection of ventricular 

ectopic beats and supraventricular ectopic beats with a very high accuracy. 

The [10] Georgia Institute of Technology, in Atlanta has developed a CNN approach to 

detect AF. In this work, the cardiac signals are recorded by a Pulsatile 

photoplethysmographic sensor. The approach uses a Wavelet Transform before fed the 

CNN. Finally, a multinomial regression is used to establish the presence or absence of an 

episode of AF. This approach obtained 91.8% of accuracy. In [11] signal quality index SQI 

technique was combined with CNN following by a post-processing feature-based to classify 

AF. The accuracy for the PhysioNet/CinC database was of 80%. 

This work is part of a macro project that seeks to develop a medical device, which is based 

on a CNN. The macro project aims to offer an alternative for diagnosis in areas where there 

is no cardiology service. 

The aim is to find a suitable CNN model, which later could be implemented in hardware. We 

apply diverse techniques regarding batch, learning rate, and optimizer function in order to 

improve the accuracy, sensitivity, specificity, and precision of the network. Our proposed 

model achieves an accuracy of 97.44%, a specificity of 97.76%, a sensitivity of 96.97% and 

a precision of 97.88% for specific patients. We used the MIT BIH Atrial Fibrillation Database 

[4]. Besides the proposed model performs the best sensitivity with a lower computational 

cost. 

The rest of this paper is organized as follows: Section 2 shows a description of the database. 

Section 3 introduces the convolutional neural networks. In Section 4, we develop the training 

methodology and the tests done for different topologies regarding optimization techniques. 

In Section 5 the results are summarized . Finally, the conclusions close the article.  

 

Database 

 

We use ECG signals from a free public arrhythmia database called MIT BIH Atrial Fibrillation 

Database [4]. This database includes 25 long-term ECG recordings, which were sampled at 



 

 

250 samples per second with a 12 bits resolution in a range of ±10[𝑚𝑉]. The recordings 

were made at Beth Israel Hospital in Boston of people with atrial fibrillation (AF), which 

include more than 300 episodes of AF.The database has non-numerical annotations, which 

are given according to a convention. An 𝐴 indicates an AF episode o and a 𝑁 indicates a 

normal episode. The annotations was taken when there was a change of state, either from 

𝐴 to 𝑁 or vice versa. 

A pre-label function was created to label 500-samples segments. Then, each segment was 

normalized from 0 to 1. Finally, the normalized segments were randomized to guarantee the 

performance of the algorithm. The distributions of database was made by the following 

terms: 

 

• 20 patients for training equivalent to 358287 segments (86.93%)   

- 286593 segments for training (80%)  

- 71694 segments for training (20%)  

  

• 3 patients for test equivalent to 53865 segments (13.06%)  

 

 

 

Figure 2: Database Distribution. 

Source: Self made. 

    

Convolutional Neural Networks (CNN) 

 

To the best of our knowledge, Japanese scientist Kunihiko Fukushima published the first 

CNN model in 1980 [12]. Then, the French scientist Yann LeCun improved this first model 

in 1988 [13]. LeCun’s model uses three types of layers: Convolutional, sub-sampling and 



 

 

fully connected layers. Convolutional layers extract features from the input image. Sub-

sampling layers reduce both spatial size and computational complexity. Finally, the Fully 

connected layers classify the data. CNN has been implemented in various applications such 

as: object recognition [14,15], handwriting classification [16,17] and image classification 

[3,18,19], to name a few. 

Recently some works have used the CNNs as a diagnostic tool of diseases such as heart 

attacks [20], colon cancer [18], melanoma [21], Alzheimer [22], cardiac arrhythmia’s [3] and 

hemorrhage detection [19]. 

Figure 3 shows the basic configuration of a convolutional neural network, which is the 

combination of three basic ideas. First the Convolution Layers, which extract features of the 

data and reduce the number of weights. Second, the pooling layers (also known as 

subsampling layers), which reduce the number of connections. Finally, the fully connected 

layers, which develop the classification process. Note that every layer of convolution is 

coupled with a subsampling layer and an activation function, before reach the fully 

connected layers. 

 

 

Figure 3: Basic configuration of CNN 

Source: Self made. 

 



 

 

 

Figure 4: Architecture 1 

Source: Self made. 

 

 

Selecting the CNN architecture: A hardware point of view. 
 

As mentioned, several computational CNN architectures have been developed [3, 10, 11, 

20], which focus on achieving higher accuracy. However, these works do not take into 

account issues regarding hardware and power consumption. We are interested in the 

development of a computational CNN architecture, which achieves the higher accuracy 

using the least number of parameters possible. Reducing the number of parameters allows 

the reduction of the power consumption. 

The possible models for the solution of problem are: 

 Dense Neural Network model (Multilayer Perceptron) 

 Convolutional Neural Network model 
o 1D (Deep Learning) 
o 2D (Machine Learning): FFT / SFT / Wavelet 

 

The kind of architecture selected is the Convolutional Neural Network in 1 dimension (CNN 

1D) because the documentation available prove that present an excellent efficiency for time 

series [REFERENCIA]. Due to the fact that the heartbeat can be interpreted as a time series, 

it’s more feasible to obtain good results. For the architecture selection, we tried with three 

different topologies, therefore, made it a test in a preliminary stage, using a part of the 

database and the same parameters for the optimization process and regularization 



 

 

techniques in the three proposals, to determinate which one could be more efficient in terms 

of accuracy. In resume, the advantages of 1D CNN model are: 

 They perform extraction and reduction of characteristics. 

 They allow to reduce the bidimensionality of the problems. 

 Decrease in pre-processing requirements. 

 The particular signal to be treated for the problem, in its natural form is a linear 
sequence of data 

 It represents fewer parameters and reduces the number of operations 
compared to a 2D network, which is advantageous to reduce the 
computational cost, memory and energy of the project in future 
implementations in FPGA. 

 

We developed three CNN architectures, which were implemented from low complexity to 

high complexity, in order to establish better results with the lowest complexity and number 

of parameters possible. 

 

Figure 4 shows the architecture 1, which consists of 9 layers distributed as follows:   

 

• Convolutional layer, with 3 kernels of size 4.  
• Max-pooling layers of with stride = 2  
• Convolutional layer, with 2 kernels of size 4.  
• Max-pooling layers of with stride = 2  
• Convolutional layer, with 1 kernel of size 4.  
• Max-pooling layers of with stride = 2  
• Flatten layer fully connected  
• Fully connected layer with 10 neurons  
• Fully connected layer with 1 neuron  
• RELU activation function, used for the convolutional layers and middle fully 

connected layer.  
• SIGMOID activation function, used for the output layer.  

 

The architecture 2 consists of 9 layers in total, which are distributed as follows:   

 

• Convolutional layer, with 3 kernels of size 15.  
• Max-pooling layers of with stride = 2  
• Convolutional layer, with 5 kernels of size 10.  
• Max-pooling layers of with stride = 2  
• Convolutional layer, with 10 kernels of size 10.  
• Max-pooling layers of with stride = 2  
• Flatten layer fully connected  
• Fully connected layer with 10 neurons  



 

 

• Fully connected layer with 1 neuron  
• RELU activation function, used for the convolutional layers and middle fully 

connected layer.  
• SIGMOID activation function, used for the output layer.  

 

The the architecture 3. It consists of 11 layers in total, which are distributed as follows:  

  

• Convolutional layer, with 3 kernels of size 27.  
• Max-pooling layers of with stride = 2  
• Convolutional layer, with 10 kernels of size 14.  
• Max-pooling layers of with stride = 2  
• Convolutional layer, with 10 kernels of size 3.  
• Max-pooling layers of with stride = 2  
• Convolutional layer, with 10 kernels of size 4.  
• Max-pooling layers of with stride = 2  
• Flatten layer fully connected  
• Fully connected layer with 30 neurons  
• Fully connected layer with 10 neurons  
• Fully connected layer with 1 neuron  
• RELU activation function, used for the convolutional layers and the two 

middle fully connected layer.  
• SIGMOID activation function, used for the output layer.  

 

Table 1 summarizes the composition of layers and their trainable parameters. This table 

indicates the size of the output feature maps of each layer. Note that, Max-pooling (sub-

sampling) layers do not have trainable parameters. 

 

Table 1: Architectures comparison 

 

 Architecture 1 Architecture 2 Architecture 3 

 Layer type 
Output 

shape 

# 

parameters 
Layer type 

Output 

shape 

# 

parameters 
Layer type 

Output 

shape 

# 

parameters 

 in (500,1) 0 in (500,1) 0 in (500,1) 0 

 convolutional (497,3) 15 convolutional (486,3) 48 convolutional (474,3) 84 

 max pooling (248,3) 0 max pooling (243,3) 0 max pooling (273,3) 0 

 convolutional (245,2) 26 convolutional (234,5) 155 convolutional (224,10) 430 

 max pooling (122,2) 0 max pooling (117,5) 0 max pooling (112,10) 0 

 convolutional (119,1) 9 convolutional (108,10) 510 convolutional (110,10) 310 



 

 

 max pooling (59,1) 0 max pooling (54,10) 0 max pooling (55,10) 0 

 flatten* 59 0 flatten* 540 0 convolutional (52,10) 410 

 dense 10 600 dense 10 5410 max pooling (26,10) 0 

 dense 1 11 dense 1 11 flatten* 60 0 

       dense 30 7830 

       dense 10 310 

       dense 1 11 

 

Source: Self made. 

   

Training the architectures 
 

We trained architecture 1 with the following algorithm:   

• Optimization method: SGD  
• Loss evaluation method: Binary crossentropy  
• Activation function of the middle layers: Relu  
• Activation function of the final layer: Sigmoid  
• Epochs: 40  

 

 

 Figures 5 show the accuracy results for training (orange line) and validation (blue) 

processes of the architectures 1, 2 and 3 respectively. 

 

Figure 5: Training and validation process for a) Architecture 1 b) Architecture 2 c) Architecture 3 

Source: Self made. 

 



 

 

Architecture 1 does not increase accuracy during the training process. The constant 

behavior of the accuracy is due to the few amounts of parameters. Besides, there is a high 

bias and high variance. In the other hand, architecture 2 achieves better accuracy than 

architecture 1. However, during the validation process, a high variance and noise validation 

are observed. Finally, architecture 3 achieves better accuracy levels. However, there is still 

a high variance in this architecture, which demands to apply additional techniques to reduce 

this variance. Table 2 summarizes accuracy results for the three architectures. Besides, this 

table also shows the number of trainable parameters, which are related to the amount of 

memory required during the inference process. 

 

Table 2: Architecture’s trainable parameters VS Train Accuracy 

 

 Architecture 

 1 2 3 

trainable parameters 661 6134 9385 

train accuracy 61.58% 80.58% 83.01% 

 

 Source: Self made. 

   

Testing different batch values 

 

We performed a test with different batch values for architecture 3, which achieved better 

accuracy in the previous test. This test is made to determine a value that improves the 

accuracy level for the training and validation process.  Small batch values imply more 

operations in the calculus of gradient, but great values cause more error, regarding tha 

validation rate. The batch values used were 10, 15, 20, 25, 50, 100 and 200. For each one 

of these batch values, it was performed a training and testing processes with the following 

parameters: 

   

• Optimization method: SGD  
• Loss evaluation method: binary cross entropy  
• Activation function of the middle layers: Relu  
• Activation function of the final layer: Sigmoid  
• Epochs: 40  

 

Figure 6 shows the results for the training accuracy of different batch values. Notice for 

values over 50, the learning process is stable. Due exist multiple values that improve the 

training process, criteria for the selection of value is the tendency of the process with less 



 

 

variance. Table 3 shows the result of the analysis of variance in each one of proves. 

Therefore, regarding the less variance, the batch value selected for the next test are 100. 

 

 

Figure 6: : Accuracy results for different batch values  

Source: Self made. 

   

Table 3: Statistical variance VS Batch size 

  

Batch 10 25 50 100 200 

Variance 0.7498e-03 0.3783e-03 0.2919e-03 0.2213e-03 0.4404e-03 

  

Source: Self made. 

  

Figure 7 shows the results of training and validation accuracy for a batch value of 100. Note 

that there is an improvement in the training process, however, the validation process stops 

the generalization since epoch 10. 

 



 

 

 

Figure 7: : Accuracy for a batch = 100. 

Source: Self made. 

 

 

Testing different learning rate values 

 

For improving the response regarding learning rate values, a test was performed using SGD 

optimizer, and batch value for previous test. For improving the response regarding learning 

rate values, a test was performed using SGD optimizer, and the obtained batch value in the 

previous test.  During the testing process, used several learning rate values, but in this 

section summarize just the range of the better results. The training and testing parameters 

used were: 

   

• Optimization method: SGD  
• Loss evaluation method: binary cross entropy  
• Activation function of the middle layers: Relu  
• Activation function of the final layer: Sigmoid  
• Epochs: 100  

 

Figure 8 shows the training and validation processes for learning rate values of 0.1, 0.2 and 

0.3. Note that, for values of 0.1 and 0.2 the learning process takes more epochs but 

evidences a lower variance. On the other hand, for a learning rate of 0.3, the training process 

takes fewer epochs but a higher variance. Thus, a learning rate value of 0.1 was selected. 

   

 



 

 

 

Figure 8: : Training and validation accuracy for different Learning rate values test. 

Source: Self made. 

   

A new test was performed with the learning rate value selected. This test was 

performed and with the calculated parameters in the previous tests. In this case, we change 

the learning rate epoch by epoch with a constant decay factor. Figure 9 summarizes the 

results of this test. Note that, the accuracy reached is similar to the previous test but it takes 

a few numbers of epochs. However, the variance is increased when the number of epochs 

is over 60.  

 

Figure 9: Accuracy for constant Decay Learning rate. 

Source: Self made. 

 

 

Testing different optimizers 
 

We tested 3 different optimizers. The tests keep the learning rate and batch values as were 

calculated in the previous test. Figure 10 shows the training process using three optimizers, 



 

 

a) SGD, b) RMSPROP and c) ADAM. For SGD optimizer, note that, the training process 

takes a lot of epochs to begin the learning process, which means more computational cost. 

In figure 10, b) shows the training process using a RMSPROP Optimizer. In this case, the 

training process takes fewer epochs, and reaches stability since 10 epochs, with low 

variance (less than 0.36%). In spite of the similarity of the SGD and RMSPROP algorithms, 

In figure 10, b) shows the advantages of the RMSPROP regarding the modification of the 

velocity function produced by the hyperparameter 𝛽. In figure 10, c) shows the training using 

ADAM Optimizer. The training process increases faster than in SGD and RMSPROP, and 

the accuracy that is achieved is similar to RMSPROP. Besides, the trend for both RMSPROP 

and ADAM optimizers are similar. 

 

  

Figure 10: Training and validation process for different optimizers a) SGD b) RMSPROP c) ADAM 

Source: Self made. 

 

 

Table 4: Train and Validation Accuracy Vs Learning Rate 

   

LR 0.1 0.2 0.3 

train 83.91% 83.19% 83.59% 

validation 83.39% 82.35% 82.24% 

  

Source: Self made. 

  

Table 5 summarizes the accuracy achieved by each optimizer, for both train and validation 

processes. Note that both, RMSPROP and ADAM optimizer achieves similar accuracy in 

training process. Regarding the less computational cost in the training process, RMSPROP 

show better efficacy, taking into account that the calculus of sensitivity is less complex. 

 

Table 5: Comparison between the three optimizers 



 

 

  

 optimizer 

 SGD RMSPROP ADAM 

train accuracy 72.97% 97.58% 97.57% 

validation accuracy 69.33% 97.22% 97.43% 

 

Source: Self made 

 

    

Results 
 

For the training process, we use an Intel Core i5 with 2.9 GHz, and 8 Gb of RAM memory. 

The description language used was Python 3.5 in the Jupyter notebook application. Python 

environment was created using Anaconda Navigator with Tensor Flow Back-end and the 

Keras libraries for AI. 

Figure 11 shows the confusion matrix for the RMSPROP-based learning algorithm for a 

specific patient. In this matrix is showed: the normal signal well and wrongly classified, 

fibrillated signals well and wrongly classified, the accuracy, the specificity, the sensitivity, 

true positives, true negatives, false positives, false negatives and precision. 

In this case, the sensitivity is measured when all the input signals are fibrillated (positive 

condition). The value of sensitivity is the rate between the number of fibrillated signals well 

classified over the total of input signals. The specificity is as the sensitivity case but for 

normal signals (negative condition). 

The Positive predicted values (PPV) are the rate between the true positives (True Fibrillated 

signals), and the number of predicted as positives. The negative Predicted Values (NPV) 

are the rate similar to PPV, but with the negative (Normal signals). The False Positives Value 

are the rate between the false positive (Normal signals predicted as Fibrillated) and the 

number of condition negative signals (True normal signals). The false Negative Value is the 

rate between the false negative signals (Fibrillated predicted as normal) and the total of true 

positives conditions. 

 



 

 

      

 

Figure 11: Confusion matrix for the RMSPROP-based learning algorithm for specific patient. 

Source: Self made 

   

We developed two test, one for an specific patient and other for a general group, both using 

k-fold validation, 7 random selection of patients in the dev-set group. Table 6 summarizes 

the main results for the confusion matrix for the three optimizers used. Note that, the ADAM 

reaches the best specificity (negative condition - normal signals). On the other hand, the 

RMSPROP achieves the best values for accuracy, sensitivity, and precision. It is important 

to note that in the case of diseases diagnosis, one of the more important statistical value is 

the sensitivity (positive condition - fibrillated signals).   

 

Table 6:  Matrix of predictive parameters   

 

Positive and negative predictive values 

Parameter SGD RMSPROP ADAM 

Accuracy 66.33% 97.44% 97.22% 

Specificity 64.69% 97.76% 98.13% 

Sensitivity 68.69% 96.97% 95.92% 

Precision 74.73% 97.88% 97.18% 

 

Source: Self made 

 



 

 

Conclusions 
 

We have developed a CNN model to automatically identify AF from 2 seconds ECG-signals 

(500 samples). We tested several batch and learning rate values and three different 

optimizers. Our results suggest that a batch and learning rate of 100 and 0.1 respectively 

improve the validation accuracy. On the other hand, the RMSPROP is the better optimizer 

in this case, because of its matrix confusion results and for its low computational cost. We 

aim to use this model in future work, which will focus on the implementation of a CNN-based 

portable device for automatic detection of AF in Colombia.  
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