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RESUMEN

Dado un entero positivo n se construye un algoritmo que asocia a cada entero positivo 
m, con 0 ≤ m ≤ n!-1, una permutación en n-1 pasos. De hecho, el algoritmo defi ne una 
función biyectiva que va del conjunto de los naturales al conjunto de las permutaciones. 
Además, para cualquier permutación πL defi nida en el conjunto de los números {0,1, 
…,L-1}, con L múltiplo de 3, ésta puede ser construida a partir de 3 permutaciones 
defi nidas en el conjunto de los números {0,1,…,2/3L-1}. Lo anterior permite defi nir un 
criptosistema de bloques de cadenas de 96 bits de longitud, en el cual se trabaja con 
números de 64! – 1 ≈ 1090 en lugar de 96! – 1 ≈ 10150 con lo que se reduce el tiempo y 
recursos de computo. También se muestra que el conjunto de las llaves crece de ma-
nera factorial, de tal forma que el número de elementos de este conjunto llega a ser del 
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orden de 10150 ≈ 2500 cuando se trabaja con cadenas de 96 bits. También, se ilustra con 
un ejemplo que utiliza la caja de Advanced Encryption Standard (AES) y un procedi-
miento de encriptamiento por bloques de 96 bits de texto claro. Las cajas de AES son 
propuestas porque son altamente no lineales [1]. Se muestra el diseño de una imple-
mentación en hardware de este criptosistema. Por último, se menciona que asociar a 
un entero una permutación permite considerar a las permutaciones como llaves.

Palabras clave. Teorema JV, Teorema Factorial, Criptosistema Factorial, Permutacio-
nes, AES.

ABSTRACT

Given a positive integer n, an algorithm is constructed that associates to each positive 
integer m, with 0 ≤ m ≤ n!-1, a permutation of n different elements in n-1 steps. In fact, 
the algorithm defi nes a bijective function, that is, one-to-one and onto, from the set of 
natural numbers to the set of permutations. Furthermore, for any permutation πL defi ned 
in the set of numbers {0,1, …,L-1}, with L a multiple of 3, this permutation may be cons-
tructed by means of 3 permutations defi ned on the set of numbers {0,1,…,2/3L-1}. The 
former allows to defi ne a cryptosystem on blocks of chains of 96 bits in length where 
one operates on numbers of 64! – 1 ≈ 1090 instead of 96! – 1 ≈ 10150, which reduces 
time and computational resources. It is also shown that the set of keys grows factorially 
in such a way that the amount of elements of the set is of the order of 10150 ≈ 2500 when 
working with chains of 96 bits. An example is given using the box of the Advanced En-
cryption Standard (AES) and an encryption procedure for blocks of 96 bits of clear text. 
The AES box is proposed because it is highly non-linear [1]. A hardware design for this 
cryptosystem is given to be implemented. Finally, we mention that by associating a per-
mutation to an integer the permutations may be variable, that is, the permutations may 
be considered to be keys. 

Keywords: JV theorem, Factorial theorem, Factorial cryptosystem, Permutations, AES.

INTRODUCTION

It is well known that many iterative systems such as DES, Triple-DES, SPN and AES 
employ basically three types of operations: permutations, substitutions and the logic 
exclusive-or function (xor) [1], [2]. The permutations are defi ned by means of tables and 
are considered fi xed. Up to this moment the possibility of representing a permutation 
with a nonnegative integer has not been explored.

Naturally, an algorithm has to be constructed that allows assigning a permutation to a 
natural number. In fact, the construction of said algorithm defi nes a bijective function 
[3]. This bijective function allows the permutation to be considered as a key, since it now 
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may be variable. Hence, the key may be represented in principle by one or several non-
negative integers. By means of this idea iterative cryptosystems of high computational 
complexity may be constructed, being however fast and only moderately complex in 
their implementation [4]. 

In this work a cryptosystem is proposed that uses the AES box, which in turn uses the 
fi eld generated by I(x) = x8 + x4 + x3 + x + 1; that is,  F2

8 = Z2 [x] / I (x), where I (x) is an 
irreducible polynomial of the set of polynomials of coeffi cient modulus 2 [5]. Also, it is 
claimed that the execution time by software of this cryptosystem is of the same order 
of magnitude as compared to DES [1] and, with a complexity of 2500, vastly superior to 
AES [1]. Furthermore, it possesses the whitening property like the more recent iterative 
cryptosystems [1]. The whitening property avoids linear and differential attacks [6], [7].

1.  PRELIMINARIES

In order to illustrate the proofs of the JV and Factorial theorems to be given below, it is 
convenient to fi rst analyze two examples of particular data sets. 

First example: Assume strings of 8 positions are being worked with. A permutation of 
these positions means to represent the numbers 0, 1, 2, 3, 4, 5, 6 and 7 by a particular 
array, for instance, 5,7,6,4,2,0,1 and 3. Now, suppose a nonnegative integer n is given, 
with 0 ≤ n ≤ 8! – 1; say n = 24637. This natural number may be written as follows:

24637 = 4(7!) + 6(6!) + 1(5!) + 1(4!) + 2(3!) + 0(2!) + 1(1!)          (1)

In fact, any integer n in the interval 0 ≤ n ≤ 8! – 1 may be uniquely written as given by the 
expression 1, maintaining fi xed 7!,…1! and using the algorithm of Euclid. Note that the 
arithmetic base used is 7!, 6!, 5!, 4!, 3!, 2! and 1!. Denote the coeffi cients of 7!, 6!, 5!, 4!, 
3!, 2! y 1! by, respectively, C0, C1, C2, C3, C4, C5, C6. In this example, these coeffi cients 
have the values C0 = 4, C1 = 6, C2 = 1, C3 = 1, C4 = 2, C5 = 0 and  C6 = 1.

As may be seen, the values of Ci are the coeffi cients obtained by dividing n by 7!, …1!. 
Furthermore, by the algorithm of Euclid the following applies: C0 < 8,  C1 < 7,… C6 < 2 [3]. 

In this scenario the following algorithm may be constructed: 

Step 0. An array of increasing order is defi ned:
X[0] = 0, X[1] = 1, X[2] = 2, X[3] = 3, X[4] = 4, X[5] = 5, X[6] = 6 y X[7] = 7.

Step 1. The value of X[C0 = 4] = 4 is saved and eliminated from the array defi ned in step 
0. The array is reordered without the value of X[C0]. The result is then:
X[0] = 0, X[1] = 1, X[2] = 2, X[3] = 3, X[4] = 5, X[5] = 6 y X[6] = 7. 
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Step 2. The value of X[C1 = 6] = 7 is saved and eliminated from the array defi ned in step 
1. The array is reordered without the value of X[C1]. The result is:
X[0] = 0, X[1] = 1, X[2] = 2, X[3] = 3, X[4] = 5 y X[5] = 6

Step 3. As in step 2, the value X[C2 = 1] = 1 is saved and eliminated from the array de-
fi ned in step 2. The new array is: X[0] = 0, X[1] = 2, X[2] = 3, X[3] = 5, y X[4]=6.

Step 4. By continuing in the same manner the value X[C3 = 1] = 2 is saved and the re-
sulting array is: X[0] = 0, X[1] = 3, X[2] = 5 y X[3] = 6.

Step 5. Here, X[C4 = 2] = 5 is saved and X[0] = 0, X[1] = 3, X[2] = 6.

Step 6. As above, X[C5 = 0] = 0 is saved and X[0] = 3, X[1] = 6.

Step 7. Finally: X[C6 = 1] = 6 is saved and X[0] = 3.

If the saved values are written in order, that is, X[C0], X[C1], X[C2], X[C3], X[C4], X[C5], 
X[C6] and X[0] one obtains: 4,7,1,2,5,0,6 and 3. It is easy to see that this array is a per-
mutation of the string 0,1,2,3,4,5,6 and 7. In fact, it is the permutation 24637. Please 
note that for this example the number of steps required to assign a permutation to a 
number is 7.

Second example: Now suppose one is working with strings of 18 positions. A particular 
permutation of a string of that length could be: 

9 0 12 2 3 13 1 14 4 5 15 16 6 8 7 17 11 10       (2)

Here, one could ask: Is there a way to apply permutations over strings of lesser length 
than 18 in such a way that the permutation of the expression 2 would result? Fortuna-
tely, the answer is yes. Graphically, the procedure is as follows: 

Figure 1. Application of three permutations of length 12.

0 5 11 17

1th permutation

permutation
2d permutation

third
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Now, is it possible to express any permutation of 18 positions by applying 3 permuta-
tions as shown in fi g. 1.? The answer is yes and will be proved below. In fact, the proof 
will be given for strings of length L, where L is a multiple of 3. Here, the strategy of the 
proof will be shown. 

One begins with an ordered array, that is, 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, 16,17. 
Divide the set of these positions in 2, namely: A = {0,1,2,3,4,5,6,7,8,9,10,11} and B = 
{12,13,14,15,16,17} of, respectively, 12 and 6 positions.

In addition, divide the permutation 9 0 12 2 3 13 1 14 4 5 15 16 6 8 7 17 11 10 into three 
blocks of equal length, as shown in fi gure 2.

Figure 2. Partitioning of the permutation into three blocks.

The fi rst permutation assigns the positions of the set A into the blocks A1 y A2; leaving 
out those positions that correspond to the set B. This is written below:

9 0-- 2 3--1-- 4 5-- --

The values missing from set A are 6, 7, 8, 10 and 11; let’s place them at random in the 
holes. For instance: 10, 6, 7, 8 and 11. Note that because of this there may be more 
than three permutations from which the given permutation may be constructed. The 
result of applying the fi rst permutation is:

9 0 10 2 3 6 1 7 4 5 8 11 12 13 14 15 16 17

It follows that the fi rst permutation applied was: π1(y) = 9 0 10 2 3 6 1 7 4 5 8 11 with 0 ≤ 
y ≤ 11. The second permutation is applied to the positions 6 to 17. However, in order to 
be able to execute it, a displacement function must be defi ned as follows: 
g1(y) = 6 - y with  6 ≤ y ≤ 17. This is shown graphically below: 

Table 1. The displacement function g1(y)

g1(y)=0 1 2 3 4 5 6 7 8 9 10 11
9 0 10 2 3 6 1 7 4 5 8 11 12 13 14 15 16 17

With these ideas the permutation π2(g1(y)) is then constructed as follows: 

A1

9 0 12 2 3 13

A2 A3

1 14   4 5 15  16 6 8 7 17 11 10
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1. The positions that are in their place are not modifi ed. Here, g1(y) = 0, 2, 3. These 
positions correspond to the numbers 1,4 and 5.

2. Assign the positions from blocks A2 and A3 that are elements of the set B, as is the 
case of the numbers 14, 15, 16 y 17, which are assigned to the positions g1(y) = 
1, 4, 5 and 9. In addition, assign the numbers of the form π1(y) with 6 ≤ y ≤ 11 that 
must be in A3, as is the case of the numbers 7, 8, y 11, which are written into the 
positions g1(y) = 8, 7 and 10. Numbers of the form π1(y) with 0 ≤ y ≤ 5 that must be 
in the block A3, can not be assigned in this second step. The remaining positions 
are: g1(y) = 6, 7 which correspond to the numbers 12 and 13 and will be assigned 
at random. Suppose that fi rst the number 13 is written, followed by the 12. At this 
point the positions of the block A2 are in place and the second permutation is: 
π2(g1(y)) = 0 8 2 3 9 10 7 4 1 11 5 6. The result of its application is as follows: 

9 0 10 2 3 6 1 14 4 5 15 16 13 8 7 17 11 12

In order to apply the third permutation, the displacement function, g2(y), is defi ned as 
follows: 

 y-12   for   12 ≤ y ≤ 17
 g2(y)= 
 y+6   for     0 ≤ y ≤ 5

Graphically this function is shown below

Table 2. The displacement function g2(y)

g2(y)=0 1 2 3 4 5

9 0 10 2 3 6 1 14 4 5 15 16 13 8 7 17 11 12

g2(y)=6 7 8 9 10 11

The permutation π3(g2(y)) g2(y) proceeds according to the following steps:

1. Positions that are in place are not modifi ed, here, g2(y) = 1,2,3,4,6,7,9 and 10.

2. Assign the numbers that are elements of the set B to the block A1. This places 12 
and 13 in the positions g2(y) = 8 and g2(y) = 11. Also, assign the positions of the 
form π1(y) with 0 ≤ y ≤ 5 that must be in A3. This places 10, 6 into positions g2(y) = 
5 and g2(y) = 0. It follows that the third permutation is: π3(g2(y))= 11 1 2 3 4 8 6 7 5 
9 10 0. Finally, the result is:

9  0  12  2  3  13  1  14  4  5  15  16  6  8  7  17  11  10

{
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n
(m-1)!

r1

(m-1)!

r1

(m-2)!
r2

(m-2)!

r1 

[m - (i +1)]
ri +1

[m - (i +1)]!

Some comments by the authors. With this kind of procedure one works with numbers 
of 1090 instead of 10150, approximately, when one has strings of 96 positions. In general, 
it may be said that this artifi ce reduces the amount of computation. Another important 
question would be: Is it possible to apply permutations on four strings in order to cons-
truct any permutation on arrays of greater length, like for instance 12 positions, with the 
objective of working with even smaller numbers? The answer is no, since it is not pos-
sible to construct the permutation 3 4 5 1 0 11 10 6 2 7 8 9 based on four permutations 
of 6 elements each following the strategy outlined in fi gure 1.

2.  DEVELOPMENT

The set Nm is defi ned as follows: Nm= {nεN | 0 ≤ n < m!} with m a positive integer. 
For any n ε Nm  the following iterative procedure is applied: 

Step 0.

n = C0(m-1)! + r1 and, by the algorithm of Euclid [3],  0 ≤  r1 < (m-1)!         (3)

By hypothesis, it is known that n < m!                    = Co+   < m
Hence, 0 ≤ C0 < m

Step 1.

r1 = C1 (m-2)! +  r2 and by the same argument of the former step it follows that:

0 ≤  r2< (m-2)!               (4)

According to expression 3  r1 < (m-1)!                     = C1 +                 < m - 1
It follows that 0 ≤ C1 < m - 1

Step i

r1 = Ci [m-(i+1)]! + ri+1  with 0 ≤ ri+1 < [m-(i+1)]!. In the same way as shown in expressions 
3 and 4, in the step (i-1) it must be satisfi ed that : 0 ≤ ri < (m-i)! From this last relation it 
follows that: 
                 = C1 +              < m -i 

Hence, the following applies: 0 ≤ Ci < (m-i). Please note that by the former it is shown 
that for any i with 0 ≤ i ≤ (m – 2): Ci < (m-i).

If one continues with this iterative process, at the end one has: rm - 2= Cm-21! + rm - 1 and 
in this last step  rm - 1 = 0.
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In conclusion, at the end of this iterative process it may be said that since nεNm and, 
furthermore, (m-1)! … 1!; the number n may be uniquely written as shown below: 

n = C0(m-1)! + C1(m-2)! + C2(m-3)! + ….+ Cm-2 1!           (5)

Also: 0 ≤ Ci < (m-i), with 0 ≤ i ≤ (m – 2)             (6)

Now, once the values C0, C1,…, Cm-2 have been obtained, the following algorithm may 
be constructed:

Step 0. An array of increasing order is defi ned as follows: X[0] = 0, X[1] = 1, X[2] =2,... 
X[m-1] = m-1.

Step 1. Using the expression 5 one has C0 < m; hence X[C0] is one of the elements of 
the array obtained in step 0. X[C0] is eliminated from that array and a new array, starting 
at X[0] and up to X[m-2] is constructed.

Step 2. Again, according to expression 6 one has C1 < m-1; hence X[C1] is one of the 
elements of the array obtained in step 1 and, one reorders starting at X[0] up to X[m-3].

Step m-1. If one continues working in this fashion one obtains at the end the following 
array: X[Cm-2] and X[0].

Finally, the result of the eliminated numbers X[C0], X[C1], …, X[Cm-2] y X[0] is a permu-
tation of the array 0,1,2,…, m-1. Hence, to any nεNm a permutation may be associated. 
At this point, the following question arises: given to different elements of the set Nm will 
there be to different permutations associated to them? This question is answered by the 
JV theorem, which is stated below: 

JV theorem. Given two sets Nm y ∏ m = {all possible permutations of the array 0,1,…, 
m-1}. Then, the algorithm given above defi nes a one-to-one function, πm, from the set 
Nm to ∏ m. That is, πm : Nm      ∏m is bijective.

This is proved below. 

Suppose that for n1 ≠ n2 with n1, n2 ε Nm   πm(n1) = πm(n2). From expression 5 it follows 
that n1, n2 may be written as:

n1 = C0,1(m-1)! + C1,1(m-2)! + C2,1(m-3)! + ….+ Cm-2,1 1! y

n2  = C0,2(m-1)! + C1,2(m-2)! + C2,2(m-3)! + ….+ Cm-2,2 1!

Now, if πm(n1) = πm(n2) this would mean that: C0,1 = C0,2, C1,1 = C1,2, …, Cm-2,1 = Cm-2,2. 
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Hence n1  = n2; contradicts the initial hypothesis. One concludes that if n1  ≠ n2 with n1, n2 
ε Nm     πm(n1) ≠ πm(n2). This shows that πm is a one-to-one function.

It is easy to show that the function πm is bijective since the sets Nm, ∏ m have the same 
number of elements.

In what follows the Factorial Theorem will be proved. 

Factorial Theorem. Given a permutation πL on the positions of a string of length L; with 
L an integer multiple of 3. Then, πL may be constructed by means of 3 permutations on 
strings of length 2/3L.

Let a permutation of the positions of a string of length L be as follows: 
  

πL= σ (0) = j0, σ (1) = j1,… σ (L-1) = jL-1            (7)

Divide the set of positions into 2, that is: 

A= {0,1,…, 2/3L-1} y B = {2/3L, 2/3L+1,…, L-1}         (8)

Divide the permutation given by 2.5 into three, that is:

Figure 3. Division of the string into three blocks

The strategy shown in fi gure 3 will be used. The fi rst permutation π1(y) with 0 ≤ y ≤ 2/3L-1 
is obtained as follows:

1. Assign the positions that are elements of the set A to the blocks A1, A2.
2. Positions of set B that must be in the blocks A1, A2, in case there are any, are as-

signed at random by the remaining elements of A.

In order to apply the permutation π2, the displacement function g1(y) = y -1/3L with 1/3 L ≤ 
y ≤ L-1 is used. The permutation π2(g1(y)) proceeds then as follows:

1.  Positions that are in their place, in case there are any, are not modifi ed. 
2.  If there are, assign the positions of the blocks A2 y A3 that are elements of the set 

B. Also, if there are, assign positions of the form π1(y) with 1/3L ≤ y ≤ 2/3L-1 that must 
be in block A3. Positions of the form π1(y) with 0 ≤ y ≤ 1/3L-1 that must be in block A3 

A1 A2 A3

1/3 L 1/3 L 1/3 L
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are not substituted in this step. The remaining positions are assigned at random. 
At this point, the positions of block A2 are in their place.

In order to apply the permutation π3, the displacement function g2(y) is used:

The permutation π3(g2(y)) is obtained by the following steps:

1. Positions that are in their place, in case there are any, are not modifi ed. 
2. If there are, assign the positions of the block A1 that are elements of the set B.

Also, if there are, assign positions of the form π1(y) with 0 ≤ y ≤ 1/3L-1 that must be in 
block A3. It follows that by applying the 3 permutations described above the permutation 
given in 7 is constructed.

3.  PROPOSAL OF A CRYPTOSYSTEM

As mentioned in the abstract, here a cryptosystem is proposed that uses the box of the 
Advanced Encryption Standard [1] y FIPS 197. The execution time in software of this 
cryptosystem is of the same order of magnitude as DES, but it is much more resistant to 
brute force attacks. The proposed system is of iterative nature. A high level description 
follows: 

1. One starts with a string of clear text of 12 bytes, TC, that is, a string of 96 bits. 
Three positive integers n1, n2 y n3, are chose n that have the following property:    0 
≤  ni ≤ 64!-1 for i =1, 2, 3.

2. Based on the JV theorem, to these positive integers ni three permutations over 
strings of 64 positions may be associated. Then, by the factorial theorem it is pos-
sible to construct any permutation of the positions of the 96-bit string of clear text 
based on the positive integers ni, with i =1, 2, 3, that we shall call π96. The applica-
tion of the permutation π96 to the clear text will be designated by π96(TC).

3. Since the string π96(TC) is of 96 bits in length, it may be divided into 2 equal parts, 
that is, a left string of 48 bits in length, and a right string of the same length. Denote 
these substrings as L*

0, R*
0. At this point 8 rounds are executed, of which 7 follow 

the iterative procedure outlined below. Strings Ri and L*
iR*

i are obtained as follows: 
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L* i-1 R* i-1

48 48

g(Ri-1)

L i Ri

48 48

L* i R*
i = π96 (Li Ri)

 For i = 1 to 7 do
                Li = R*

i-1; Ri = L*
i-1    g(R*

i-1); L*
iR*

i = π96(LiRi )
   
Please note that the permutation π96 is applied 8 times. The function g performs as follows: 

The right string R*
i-1 has 48 bits and can be divided into 6 blocks of 8 bits each. These 

blocks constitute inputs to the AES box, whose output is then a substitution. For instan-
ce, suppose that the input is the block 01110011. This string is divided into 2 parts, say 
0111 and 0011. The fi rst part addresses the row of the box, and the second the column, 
which yields 8fh = 10001111. That is, the block 01110011 is exchanged by the block 
10001111. If this procedure is followed for each of the blocks of R*

i-1, a string of 48 bits 
results that will be designated g(R*

i-1). This procedure is shown below:

Figure 4. The i-th round or the proposed algorithm. 

During the 8th round the permutation (π96)-1(R8 L8) is applied which yields the ciphered 
text. Note that (π96)-1 is the inverse permutation of π96 and that the blocks y R8 L8 appear 
in inverted order. Some additional remarks:

1. As may be seen, the integers ni, n2 y n3 act as a key since the permutation π96 may 
be modifi ed by changing one, or several of the numbers, n1, n2 and n3 .

2. Considering that each permutation is a key, it is clear that the amount of possible 
keys is approximately 10150.

3. The proposed cryptosystem has the whitening property [1].
4. If we designate the former encryption cycle by e: Z2

96     Z2
96 it is important to show 

that e is a one-to-one function. This is proved below. 
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Theorem. Given the permutation π96 by means of the JV and Factorial theorems, then 
the encryption algorithm e described above defi nes a one-to-one function. 

The proof is obtained by contradiction. We must show that for any two different clear 
texts, TC1, TC2 ε Z2

96 => e(TC1) ≠ e(TC2). Now, assume that there exist at least two 
different clear texts TC*1, TC*2 ε Z2

96 such that e(TC*1) = e(TC*2). Let L8
*1 and R8

*1 be, 
respectively, the left and right block of the 8th round corresponding to the clear text TC1

*, 
and, similarly, let L8

*2 and R8
*2 be the left and right blocks corresponding to the clear text 

TC*2. Then, if e(TC*1) = e(TC*2) => L8
*1 = L8

*2 and R8
*1 = R8

*2. However, if this is true, then 
L7

*1 = L7
*2  and R7

*1 = R7
*2, where L7

*1,  L7
*2 and R7

*1,  R7
*2 are defi ned similarly as L8

*1, L8
*2 

and R8
*1,  R8

*2. It is easy to see that if one continues in this fashion, one concludes that 
TC*1= TC*2. This is in contradiction to TC*1 ≠ TC*2, and hence it follows that for any two 
different clear texts TC1,  TC2 ε Z2

96 => e(TC1) ≠ e(TC2). 

It is important to mention that up to this writing it has not been shown that the DES and Triple-
DES algorithms defi ne one-to-one functions. The deciphering process is shown in fi gure 5. 

To conclude this section, the authors propose to designate by “Factorial Cryptosystems” 
all cryptosystems that make use of the JV and Factorial Theorems. 

Figure 5. The i-th round of the deciphering algorithm.

4.  RESULTS OF THE PROPOSED ALGORITHM

In what follows, an example shows the working of the algorithm described above. As-
sume the following clear text: MiguelLindig and, take for n1, n2 y n3 the following values:

Li Ri

48 48

g(Li)

L*
i-1

48 48

(π96)-1 (L*
i R*

i)

R*
i-1
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n1= 899154456457901212645790121264788888888888999995645790121899117 
      9999 

n2= 99999999999999998888888888887777777774641064598798888888889797
      97 9789877879

n3= 14136546768494654687987987988888888889789465465465413212315646
      549 87948654135159

These numbers satisfy that 2 ≤ ni ≤ 64!-1. The permutations associated to these num-
bers are as follows: 

π1= 0,1,2,3,4,5,6,7,8,9,10,11,17,53,44,57,48,41,16,51,32,34,35,38,19,26,37,52,39,
      58,63,21,13,15,28,29,55,27,42,20,56,45,25,43,22,18,14,23,60,61,40,36,54,12,
      30,47, 31,33,50,62,59,49,46,24.

π2= 0,1,2,3,4,5,6,7,15,57,19,33,60,30,43,45,21,29,11,9,63,12,50,18,58,23,42,17,1
      3,44,27,26,46,25,55,62,59,37,20,22,10, 31,40,34,49,14,53,54,39,8,61,38,24,3
      5,48,41,52,32, 47,51,28,16,56,36.

π3= 0,1,2,3,4,5,40,57,20,59,53,7,14,18,27,50,34,13,28,54,51,44,24,49,19,23,36,52,
      8,15,55,47,41,43,31,6,62,45,61,26,33, 30,60,58,42,21,38,22,35,11,25,48,29,6
      3,37,56,39,16,12,32,17,46,16.

The permutation π96 is obtained as outlined in fi gure 3, with the following result:

π96= 9,11,68,54,63,53,58,79,1,88,39,37,10,67,6,80,3,66,64,48,60,21,24,5,19,7,71,
       81,0,56,44,72,13,15,28,29,55,27,42,20, 23,89,36,65,92,46,75,77,12,49,43,45,
       95,22,82,40,90,47,74,61,18,76,62,50,78,33,87,94,91,69,8,26,31,52,34,30,85,
       93,83, 16,2,14,59,35,51,17,84,41,70,73,4,32,25,86,38,57.

The inverse permutation of π96 is shown below:

π96
–1= 28,8,80,16,90,23,14,25,70,0,12,1,48,32,81,33,79,85,60,24,39,21,53,40,22,9

          2,71,37,34,35,75,72,91,65,74,83,42,11, 94,10,55,87,38,50,30,51,45,57,19,4
          9,63,84,73,5,3,36,29,95,6,82,20,59,62,4,18,43,17,13,2,69,88,26,31,89,58,4
          6,61,47,64,7,15,27,54,78,86,76,93,66,9,41,56,68,44,77,67,52.

The result of the encryption process in hexadecimal format is as follows:

523E903E05A1A6C492E991D9.
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0 1 2 3 4

4

1

3

3

2
Figure 6. A permutation obtained by means of a crossbar switch

5.  AN IMPLEMENTATION IN HARDWARE
 
As opposed to the DES and Triple-DES systems where the permutations are fi xed, the 
cryptosystem proposed here is based on variable permutations that, when implemented 
in hardware, require signifi cant amounts of gates as well as execution times. In what fo-
llows, conventional circuit complexity concepts will be used [8], [9]. That is, gates (exclu-
ding inputs) possess either one or two inputs and unlimited fan-out. In order to simplify 
the analysis, only integer powers of 2, that is, numbers of the form N = 2n are considered.

It is clear that the propagation delay of the algorithm, excluding the permutation process, 
has a depth of O(log2 m), where m = 8 is the length of the bit input string to the AES box 
[4]. Hence, it is the permutations that contribute most signifi cantly to the execution time, 
and the discussion will be limited to their implementation.

5.1. PERMUTATIONS BY MEANS OF A CROSSBAR SWITCH

Consider an implementation based on a crossbar switch as shown below. The input is 
applied to the columns, and the output is obtained from the rows. Here, the permutation 
is as follows: 
                                   0      3,   1      0,   2        4,   3      2 and 4      1

 

This solution requires N2 switches. Associated to each switch is a decoder of log2N in-
puts that closes the switch if so required. All the outputs of the switches of a given row 
are summed together by an OR – array of N inputs. The size and depth of the circuit are 
given as shown below: 

Switches: N2 AND gates, depth:1
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Decoders: N NOT gates, plus N2(N-1) AND gates. The depth of the decoders is 
(log2N)+1. 

OR arrays: N (N –1) gates, depth: (log2 N)

The total size of the circuit is N3 + N2 – N, and the total depth is 2[(log2N)+1]. For N = 
64, a total of 266,144 gates are required and the total gate delay is 14. Even though 
this is clearly the fastest possible solution, it is also impractical because of the amounts 
of gates required. Recall that the algorithm requires the execution of 3 permutations on 
64 bits for each of 8 rounds and, furthermore, the execution time of the displacement 
function has to be considered. A direct implementation on strings of 96 bits is not feasi-
ble by state-of –the art FPGA’s due to the resulting circuit size. 

5.2. PERMUTATIONS BY MEANS OF MULTISTAGE SWITCHES

The circuit size may be considerably reduced if the permutations are executed by multis-
tage switches. Here, we consider an implementation by means of a butterfl y network.

It is well known that an N-input butterfl y network may perform any permutation on N/2 
inputs by means of two passes through the network [10]. For an N – bit array, 2 sub-
arrays are generated by means of even – odd separation. Each sub-array is then pro-
cessed separately by the network by two successive passes. By virtue of the delta nota-
tion, the destination of each input bit defi nes the setting of the switches at each stage of 
the network, that is, no routing algorithm is required. Furthermore, there are no internal 
collisions possible and the total delay for any input is a function of the number of stages 
of the network. The fi gure below shows an example for N=8.

  

Figure 7. Two 8-input concatenated Butterfl y networks

Consider the permutation:  
0 1 2 3 4 5 6     7
5 4 0 6 1 7 2 5
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Separating even and odd terms, the following permutations are obtained:

0 2 4 6 and 1 3 5 7
5 0 1 2  4 6 7 5

Now, if inputs 1 to 3 constitute the lower group, and 4 to 7 the upper group, than a suffi cient 
condition for a permutation to not cause any internal collision in the network is that the 
inputs are directed to outputs in an alternating fashion, that is, output 0 receives an input 
from the upper group, output 1 from an input in the lower group, and so on. For the even 
permutation, output 5 receives correctly an input from the lower group (input 0), as well as 
outputs 0 and 2 from inputs in the upper group. However, output 1 receives the input 4, 
which could cause a collision. Hence, the fi rst butterfl y redirects input 4 to output 6, and the 
second butterfl y correctly routes input 6 to output 1. Note that this re-direction is obtained 
by negating the original address (001 is negated to obtain 110). Also, the switch settings 
are defi ned by the destination address, where the most signifi cant bit sets the switch of the 
leftmost column, the second the intermediate column and the third the rightmost column. 
For example, the assignment 4       6 produces a switch setting of 1, 1 and 0. The odd permu-
tation is handled in similar fashion, except that the odd inputs of the network are now used.

This implementation requires (N/2)log2N switches, where each switch is a 2x2 crossbar. 
For N=27, 448 switches are thus necessary. Even though the size of the circuit is rea-
sonable in terms of the resources found in FPGA’s or ASIC’s, it entails however a large 
amount of interconnections. Without considering inputs and outputs, N[(log2N)-1] busses 
are used to interconnect the stages of the network. Each bus consists of log2N wires that 
convey the destination address, plus 1 wire of data. This results in 6144 wires for N=27. 
We propose here an iterative, single stage implementation of the butterfl y network that 
reduces this amount to 1024, as shown in fi gure 8.

In fi gure 8, the blocks designated as m are three-to-one multiplexors (AND-OR arrays), 
and the blocks sw are the switches of the butterfl y network. Obviously, the outputs of the 
switches must be registered and the multiplexors are controlled by an iteration counter 
(a ring counter, control inputs I0, I1 and I2). 

Given:

1. A destination address Aj, 0 ≤ j ≤ N-1, coded in  log2  N    bits
2. A group identifi cation g, such that g = 0 for inputs i < N/2 and g = 1 otherwise
3.  An iteration number Ik, coded as bit string of length   log2 N    such that Ij=0 for any  j 

≠.k, and Ij = 1 for j = k, where 0 ≠  j, k ≠ N-1.

Then, the input to any switch as a function of Ik may be obtained by an AND-OR array of 
depth  log2n  +1, where n = log2N. The switch setting as a function of Ik and destination 
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address Aj may be similarly obtained and determined in parallel to the input selection. 
Given the switch setting, the propagation delay of the switch is constant and equal to 3 
gate delays. Finally, the decision to negate, or not, the destination address in the fi rst 
iteration is a function of the input group, g, and the least signifi cant address bit, Aj(0) and 
may be determined by an exclusive-NOR gate as shown in the truth table below:

 g Aj(0) y
 0 0 1
 1 0 0
 0 1 0
 1 1 1

Where y = 1 stands for the negation of the address. Again, this decision delay is masked 
by the input determination. The negation of the address bits may be accomplished by 
an exclusive-OR gate for each address bit and introduces a gate delay of 1.

Figure 8. An 8-input, single stage Butterfl y implementation
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In view of the above, the total depth of the circuit is  log2n  + 5. For N =128, n = 7,  log2n  
= 3 and the total depth is 8. Now, 7 iterations are required to route N/2 inputs to the 
outputs of the network, and this procedure has to be repeated twice for both even and 
odd inputs. Hence, a permutation of 128 bits requires 4(7)(8) = 224 gate delays. Note 
that this amount can be reduced to (224/2) +1=113 if two networks are used, one for 
even, and one for odd inputs.

Circuit size. In terms of the blocks shown in fi gure 8, we have:

N AND-OR arrays, of (n+1)(2n-1) = 2n2+n-1 gates each (input selection of n address 
and one data bit)

N/2 AND-OR arrays, of 2n-1 gates each (switch setting)
N arrays of 1 excl-NOR gate and n excl.-OR gates (address negation)
N/2 switches of 6(n+1) + 1 gates each

That is, a total of N[2n2+6n+3] gates are required. For N =128, this amounts to 18304 
gates, a value well within the resources available in an FPGA [11].

As formerly mentioned, a permutation executed as described above requires 224 gate 
delays if one network is used. It is interesting to compare this value to the time required 
by a sequential implementation. Assume that at any given time a data bit and its co-
rresponding destination address is an input of an N-bit register array, where the register 
array is composed of N D-type fl ip-fl ops. At any given time, a fl ip-fl op either stores a 
data bit, or retains its former output value. The input selection thus requires 3 gate de-
lays and is a function of the output of an address decoder of  depth   log2n  + 1, where n 
= log2N  . Here, N = 96, log2N  and  log27  + 1 = 4. Hence, the total circuit delay is 7. It 
follows that the sequential solution executes the permutation in 96(7) = 672 gate delays. 
That is, the here proposed solution is 3 times faster than the sequential solution, or 6 
times if two networks are used.

Some fi nal remarks. The former analysis is, of course, very simplistic in terms of actual 
circuit implementation. While the results given may accurately refl ect order of magnitu-
de values, a more precise analysis must take into consideration factors such as limited 
fan-out, fan-in values greater than two, the availability of building blocks that implement 
more complex Boolean functions than the functions here considered (NOT, AND, OR, 
excl. NOR and excl. OR) and, of course, wiring delays that vary with circuit geometry. 
The here proposed solution has been simulated in an FPGA from Actel [11]. Clock fre-
quencies in excess of 200 MHz were obtained. A complete encryption is computed in 
less than 300 cycles, or 1.5 us. That is, a bandwidth of 64 Mb/s is possible, that may be 
increased to 100 Mb/s with faster versions of the device we used. Of course, this value 
may be doubled using two butterfl y networks, at the expense of greater circuit size. 
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6.  CONCLUSIONS

The example given in section 5 shows that the procedure based on permutations on 
strings, may be applied to many cryptosystems. On the other hand, the factorial function 
grows faster than the exponential function, which means that the number of keys may 
be made to grow to extraordinary values which, in the former case, is approximately 
2500 (10150) [12]. It should be mentioned that the cryptosystem described in the former 
example has an undesirable characteristic, in the sense that one should avoid the string 
of clear text RRRRRRRRRRRR, since the AES box substitutes this string with a string 
composed of only 0’s. For very small values of n1, n2 and n3 this means that the ciphered 
string could be equal to the clear text, like, for instance, if TC = RRRRRRRRRRRR and 
n1, n2, n3 = 5. However, we have in our favor the fact that this is possible for only one 
out of 296 possible strings and for very small numbers, a situation that does not happen 
in practice. Furthermore, the factorial theorem reduces considerably the amount of bit 
operations [13].

Finally, we have shown that the implementation of the algorithm described above is 
feasible, both in hardware and in software. In terms of hardware, several solutions of 
different circuit size and execution speed have been considered. With the exception of 
the crossbar switch, the proposed hardware solutions may be implemented by FPGA´s, 
or ASIC´s (application-specifi c integrated circuits) if the production volume justifi es the 
cost of the required masks. 

As formerly mentioned, if the algorithm is implemented by software, the importance of the 
Factorial Theorem should not be underestimated, since a data format of 64 bits is more 
practical in terms of modern processors than the otherwise required 96 bits format. 
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