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A B S T R AC T

Team sports are complex dynamic systems based on the frequent interaction of various players. 
Recently, social network analysis has been introduced to the study of sports dynamics in order to 
quantify the involvement of individual players in the interplay and to characterize the organizational 
processes used by teams. Nonetheless, only a limited set of team sports has been assessed to date, 
and the focus of most studies has been on the application of small sets of network metrics to a 
single sport. Our study aims at comparing the network patterns of different team sports in order 
to contribute to the understanding of their underlying nature. It considers three invasion games, 
namely professional matches from basketball, football and handball. By applying relevant centrality 
measures and minimum spanning trees a first comparison between the nature of interplay in various 
team sports is offered as well as a deeper understanding of the role of different tactical positions in 
each sport. The point guard in basketball, defensive midfielder in football and center in handball 
are identified as the most central tactical positions. Direct interplay is most balanced in football fol-
lowed by basketball and handball. A visualization of the basic structure of interplay for each sport is 
achieved through minimum spanning trees.
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Introduction

Matches, or games, in team sports can be seen as complex 
dynamic systems (Glazier & Davids, 2009). The frequent inter-
action of various players is an integral part of any team sports 
match (Passos, Araújo & Volossovitch, 2016). Hence, a team 
must be regarded as more than the sum of its parts, and the 
secret to successful performance is believed to lie in the coll-
ective action of team members (Grund, 2012). Understanding 
the patterns of play is important to deduce the nature of the 
sport. Moreover, the individual contribution of each player to 
the organizational process is highly relevant to revealing how 

a team functions (Vilar, Araújo, Davids, & Bar-Yam, 2013). The 
complexity of matches and team dynamics makes breaking 
down such patterns difficult, creating an ongoing challenge 
for performance analysis in team sports.
There is an increasing interest in applying Social Network Ana-
lysis (SNA), a method that exploits familiar performance variab-
les such as passes, in order to detect patterns in the interplay of 
teams (Clemente & Martins, 2017). Network approaches focus 
on breaking down the web of interactions in systems of multip-
le agents also referred to as nodes (Passos et al., 2011). Traditio-
nal application areas of this method can be found in biological 
(e.g. spread of diseases) and sociological (e.g. acquaintance net-
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works) contexts. In sports, the frequent interaction between a 
limited set of players, e.g. through the passing of a ball qualifies 
network theory as a powerful performance analysis method.  
Clemente, Martins, Wong, Kalamaras and Mendes (2015b) ana-
lyze professional football matches by applying SNA. On a micro 
level, i.e. focusing on the prominence of individual players in a 
team, the authors identify the position of the central midfiel-
der as the most prominent player in their study, as midfielders 
are responsible for building offensive lines of attack. Pena and 
Touchette (2012) detect certain cliques within football teams 
that interact more frequently than others. This is in line with 
another micro-level study by Gama et al. (2014), who find that 
only a subset of players in football teams is responsible for the 
majority of interaction and thus shaping the pattern of play. On 
both, micro and macro level, i.e. focusing on the collective or-
ganization of a team, Duch, Waitzman and Amaral (2010) iden-
tify a strong connection between several network measures 
and traditional performance indicators whereas Grund (2012) 
connects the distribution of individual networks measures to 
performance outcomes. In his macro-level analysis, the author 
finds that successful teams in football demonstrate a more ba-
lanced interplay.
In basketball, SNA has been applied in professional and ama-
teur settings. Fewell, Armbruster, Ingraham, Petersen and 
Waters (2012) and Clemente, Martins, Kalamaras and Mendes 
(2015a) identify the Point Guard as the dominant player struc-
turing plays for the team.
However, the set of sports that SNA has been applied to has 
been limited so far. Moreover, the focus of most studies has 
been on the application of small sets of network metrics to a 
single sport. Our study aims at comparing the network patterns 
of different team sports in order to contribute to the under-
standing of their underlying nature. It considers three invasion 
games, namely professional matches from basketball, football 
and handball. The overarching task of each team trying to coll-
ectively outperform or -score its opponent unites these popu-
lar team sports. However, as they differ in their environmental 
constraints (e.g. areas, rules), different interaction patterns are 
needed in order to succeed (Araújo & Davids, 2016). 
SNA enables us to investigate the resulting complex webs of 
interaction between the players in the different sports. To en-
sure a thorough analysis, individual and team metrics are ap-
plied alongside the computation of minimum spanning trees, 
a network technique that facilitates an intuitive visualization of 
the strongest relationships in complex networks revealing the 
basic structure of the sports. 
In combination with the macro-level analysis, i.e. applying team 
metrics, this assesses the overall interaction patterns. The micro-
level analysis, i.e. applying individual metrics, is specifically tar-
geted at revealing the dominant tactical positions in terms of 
their involvement in the interplay for each sport and who are re-
sponsible for structuring these patterns. The combined analysis 
enables us to break down the complex organizational processes 
within teams and thus contributing to the understanding of the 
underlying nature of basketball, football and handball.

To our knowledge, this is the first study that attempts a com-
parison of different team sports applying SNA. Furthermore, it 
is the first analysis that takes handball into consideration along 
with football and basketball and applies minimum spanning 
trees in the context of team sports. 
Hence, this study breaks down the underlying complexity of 
team sports by characterizing and quantifying individual and 
team performance through SNA. 

Methods

Samples

For each sport, eight knockout round matches in the men´s 
competition at major professional tournaments are conside-
red for analysis, minimizing the home/away bias (Courneya & 
Carron, 1992). For basketball and handball the knockout sta-
ges at the Rio 2016 Summer Games Olympics tournaments are 
recorded and analyzed. For football, the authors consider the 
last eight matches from the knockout stage of the FIFA World 
Cup 2014 tournament. A total of 16 adjacency matrices for each 
sport are generated, capturing the interaction between players 
of each team. A total of 4059 passes are analyzed in basketball, 
6934 in football and 8054 in handball.

Procedure

In order to apply SNA, adjacency matrices capture the passing 
distribution seen in every analyzed match. The matrices are 
constructed from a set of nodes and edges for every team res-
pectively. Players represent nodes such that the number of pas-
ses between them defines the edge weight. The overall match-
based interaction matrix per team is a result of an aggregation 
of the units of attack defined as the moment from ball recovery 
until possession is lost (Passos et al., 2011).
The tracking process for basketball and handball games was 
executed through video analysis applying the software Dart-
fish®. The passing distribution at the FIFA World Cup 2014 
tournament was provided in the official FIFA match reports on 
their website (www.fifa.com/worldcup/archive/brazil2014). In 
a thorough post-match analysis players were assigned to their 
respective tactical position to ensure the comparability bet-
ween teams and focus on the tactical aspects of each sport. In 
line with O`Donoghue (2009), we acknowledge the increasing 
complexity of tactical roles in team sports, i.e. forwards taking 
on defending tasks in football. Players might temporarily occu-
py different areas on the pitch and fulfill different tasks which 
can be acknowledged as part of the role repertoire of the dif-
ferent tactical positions, especially in football. Eventually, this is 
part of why we see complex webs of interaction in team sports 
and why we expect that this finds its expression in the results of 
our analysis. The definition of tactical roles for the three sports 
is displayed in Table 1. 
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Basketball Football Handball

Center (C) Defensive Midfielder (DM) Offensive Midfielder (OM) Center (C)

Point Guard (PG) Goalkeeper (GK) Right Central Defender (RCD) Left Back (LB)

Power Forward (PF) Left Central Defender (LCD) Right Defender (RD) Left Wing (LW)

Shooting Guard (SG) Left Defender (LD) Right Forward (RF) Pivot (P)

Small Forward (SF) Left Forward (LF) Right Midfielder (RM) Right Back (RB)

Left Midfielder (LM) Right Wing (RW)

Following the codification for each tactical position ensured 
that frequent substitutions of players lead to a reassignment 
of the given tactical positions. Predominantly, substitutions 
lead to a direct replacement for the corresponding tactical po-
sition, meaning the player who was codified to a specific po-
sition was replaced by his substitute. However, substitutions 
occasionally implied the reassignment on multiple positions, 
mostly in basketball and handball. To detect these changes, 
each unit of attack was considered separately. Tracking and 
codification processes were executed by researchers with 
more than ten years of experience in the sports described. In 
order to ensure the reliability of the study, Cohen´s kappa and 
Gwet’s AC1 inter-rater statistic were computed in a two-stage 
process (Gwet, 2001). In a first step, the agreement on the oc-
currence of passes was analyzed using Gwet`s statistics. In a 
second step, the agreement on passer and pass receiver was 
tested applying Cohen’s Kappa. 12.5% of the overall data were 
tested for reliability purposes. The Kappa (Gwet, 2001) values 
were above 0.94 (0.85) respectively for each sport, ensuring 
the reliability of the data. 

Network Metrics

For the 16 adjacency matrices in each sport a set of individu-
al- and team-related centrality network metrics are computed. 
The analysis was carried out using the software Matlab® and 
the visualization of networks was generated by applying Cytos-
cape®. 
Centrality calculations allow a quantification of the influence 
of tactical positions on their team´s interplay as well as the ba-
lance of influence between players overall. To account for the 
nature of the sports, metrics that consider weighted directed 
graphs were applied. This allows for a breakdown of the con-
nection between any two players in both passing directions. 
For individual (or micro-level) analysis weighted in-/out-de-
gree, weighted betweenness and weighted closeness were 
computed. For team (or macro-level) analysis, the correspon-
ding centralization values were calculated. These metrics are 
explained in detail in the following.

Individual Metrics Weighted in-degree (CWID), also referred to as 
Prestige, is the sum of the incoming weighted edge values of a 
node. Hence, these metrics capture the number of successfully 
received passes of a player and a high value is often taken as 
a first indicator for the prominence of a particular player (Cle-
mente et al., 2015b). Team members appear to trust this player, 
when in possession, to positively contribute to the team´s per-
formance and therefore target him more frequently than others.
Weighted out-degree (CWOD), also referred to as Centrality, is 
the sum of outgoing weighted edges of a node. In the context 
of sports, (CWOD) is the number of completed passes of a player 
and a high value is often associated with a high contribution to 
ball circulation (Clemente et al., 2015b). 
We also calculate the ratio CWID/CWOD  to assess a potential de-
viation between the share in pass reception and execution. A 
player with a higher reception than execution share, i.e. a va-
lue above 1, could indicate a player who rather finishes attacks. 
He frequently receives the ball from team members to execute 
shots on target rather than passing on. The opposite, i.e. a value 
below 1, might be a player who initiates attacks. 
Weighted betweenness (CWB) assesses how often a node is on 
the shortest path between two other nodes (Wassermann & 
Faust, 1994). A modified version of the standard computation 
of CWB  according to Newman (2001) is applied, which is more 
suitable for team sports since it favors strong connections 
rather than penalizing them. It measures how often a player 
is in between the most frequent passing connections of any 
other two players, thus functioning as a bridging unit (Pena & 
Touchette, 2012). As this implies a certain level of dependency 
on that particular player to ensure ball circulation it can be con-
sidered as a playmaker indicator. 
Weighted closeness (CWC) addresses how well connected a 
node is to all other nodes, directly or indirectly, within a net-
work following Freeman (1978) and Opsahl, Agneessens and 
Skvoretz (2010). In a nearly complete network, i.e. in which al-
most every node is connected to each other, the metric can be 
seen as a more sophisticated approach to the weighted degree 
computations as the distribution of weights between other 
nodes is taken into account. In team sports, CWC  describes the 

Table 1: List of tactical roles in basketball, football and handball
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As MSTs are only applicable to undirected graphs, the total 
passing intensity between pairs of players is considered in their 
construction. Reducing the amount of edges and thus comple-
xity of the otherwise nearly complete networks, offers an alter-
native perspective on the pattern of interplay of the different 
team sports and hierarchical structure of weighted graphs (Go-
wer & Ross, 1969).

Statistical Procedures

The authors of this paper utilized multiple one-way ANOVA to 
test for statistical differences between the centrality levels of the 
tactical positions within each sport, and between the analyzed 
sports. The assumption of normality for dependent variables 
was tested using Kolmogorov-Smirnov tests (p-value < .05). The 
assumption of homogeneity for groups’ variances was exami-
ned by using Levene’s test. There were no violations of either 
normality or homogeneity. Pairwise comparisons were establis-
hed by running Bonferroni post-hoc tests. The statistical analy-
ses were all conducted at a significance level of p < .05 using 
Matlab®. Following Ferguson (2009) and Clemente and Martins 
(2017), η2 is reported to interpret the effect size according to the 
following criteria: no effect (η2 < .04); small effect (.04 ≤ η2 < .25); 
moderate effect (.25 ≤ η2 < .64); strong effect (η2 ≥ .64).

Results

The tests found statistical differences in the dependent variab-
les for all centrality measures applied for the three team sports 
considered in this study. The η2 values reported in Table 2 al-
most all demonstrate moderate to strong effects sizes for the 
multiple one-way ANOVA in this study.

Individual Parameters

Table 3 shows the descriptive statistics and post-hoc results 
for tactical positions in basketball. The PG position is assigned 
the highest values for all centrality metrics and is significantly 
more central than every other tactical position. For weighted 
betweenness, the normalized value of the PG is 0.87 and thus 
more than ten times higher than the next ranked tactical posi-
tion. There is no value assigned here for the forward positions 
implying that no strongest connection between any two play-
ers on the team runs via those tactical positions. In general, the 
other four tactical positions demonstrate similar values and no 
statistical differences are found between them for the other 
metrics applied in this study.
The CWID/CWOD ratios are shown in Figure 1. Notable in the ra-
tio revealed is the relatively low value for the center position. 
Here, the share in pass completion rate outweighs the share in 
pass reception. 

how well a player directly or indirectly interacts with all other 
team members on the field. Hence, a player with high weigh-
ted degree values but comparatively low weighted closeness 
value might only interact strongly with a subset of his team 
members.
Team Metrics Centralization measures are concerned with the 
distribution of the individual metrics in a network. Following 
Freeman (1978) and Wasserman and Faust (1994), weighted in-
degree centralization (CWIDC ) captures the deviations from all in-
degree values to the highest value in the network adjusted by 
the number of passes and the number of players. This adjust-
ment in the computation allows a comparison between diffe-
rent sports. Weighted out-degree centralization (CWODC ), weigh-
ted betweenness centralization (CWBC ) and weighted closeness 
centralization (CWCC) is calculated accordingly. 
By construction, all centralization values are bounded between 
0 and 1. A network is regarded as highly centralized, i.e. a va-
lue close to 1, when the score of a particular node clearly out-
weighs the scores of all others and rather decentralized, i.e. a 
value close to 0, when the scores are similar among all nodes 
(Grund, 2012). In a sports context, CWIDC  and CWODC  scores can 
be seen as indicators for the balance of direct interplay in a 
team. CWBC  and CWCC  scores signal how balanced the influence 
on the overall interplay is within the team, considering direct 
and indirect connections. In general, high values could imply 
that interplay depends on only a subset of players.
For reasons of comparability between different matches, we 
normalized all centrality values by the total scores of the res-
pective metrics following Leydesdorff (2007). The values them-
selves have no direct relevance. Relative comparisons between 
the different values of a respective metric for the tactical posi-
tions were highly crucial. 

Visualization

A more intuitive visualization of the underlying structure of the 
networks was allowed for by computing minimum spanning 
trees (MSTs) for each sport. MSTs are meant to provide a revelati-
on of the strongest relationships in complex networks (Manteg-
na, 1999). As a visualization method, they reduce the complexity 
of connected graphs of n nodes with up to n(n-1) connections 
to the strongest n-1 edges under the side condition that each 
node is still contained. According to Araújo and Davids (2016), 
sport teams demonstrate a task-specific organization to reach 
a common goal under certain constraints. In past studies, MSTs 
have been applied to visualize how sets of team members orga-
nize themselves to form an effective collective organization for 
a specific task (Lappas, Liu, & Terzi, 2009; Li & Shan, 2010). Hence, 
we apply MSTs to trace how teams consisting of a limited set of 
players organize their interplay in order to achieve group suc-
cess. The method reduces the complex network of passes to the 
most basic structure presenting the most intensive connections 
under the consideration of all players.
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Table 2: Effect size values η2 for multiple one-way ANOVA

Basketball Football Handball All

CWID .59 (moderate) .23 (small) .92 (strong) CWIDC .89 (strong)

CWOD .46 (moderate) .27 (moderate) .92 (strong) CWODC .81 (strong)

CWB .87 (strong) .32 (moderate) .91 (strong) CWBC .89 (strong)

CWC .72 (strong) .44 (moderate) .93 (strong) CWCC .83 (strong)

No effect (η2 < .04); small effect (0.04 ≤ η2 < .25); moderate effect (.25 ≤ η2 <.64); strong effect (η2 ≥ .64)

Table 3: Descriptive statistics and post-hoc results for basketball

  PG SG SF PF C

CWID 0.30 (0.04)all 0.20 (0.03)PG 0.16 (0.03)PG 0.16 (0.02)PG 0.17 (0.02)PG

CWOD 0.28 (0.04)all 0.18 (0.04)PG 0.17 (0.03)PG 0.16 (0.03)PG 0.21 (0.03)PG

CWB 0.87 (0.20)all 0.07 (0.19)PG - - 0.05 (0.10)PG

CWC 0.27 (0.02)all 0.19 (0.03)PG 0.17 (0.02)PG 0.17 (0.02)PG 0.19 (0.02)PG

Subscripts indicate to which tactical positions given value is statistically different for p < .05, e.g. PG: given value is statistically different to the value of the 
point guard; All: value is statistically different to all other tactical positions.

Figure 1: WID/WOD ratios for basketball, football and handball
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For handball, C is significantly more central than all other tacti-
cal positions based on CWID , CWOD  and especially CWB . The CWB  
values indicate that C frequently functions as the bridging 
unit between other tactical positions. Table 5 shows that the 
remaining back positions (LB and RB) have similar values for 
each metric and are significantly different to all other tactical 
positions for CWID , CWOD and CWB . The same applies for the wing 
positions (LW and RW). However, their values fall into the same 
category with the pivot position. The GK values are neglecting 
low and ranked last for the considered metrics.
The CWID/CWOD  ratios in Figure 1 reveal a high value above 1 for 
the point. Its share in pass reception outweighs share in pass 
completion.

The corresponding results for football matches under inves-
tigation can be seen in Table 4. The DM position scores the 
highest CWID and CWOD  values, meaning that this position had 
on-average the highest number of successfully received and 
executed passes. Statistically significant differences can only be 
shown in comparison with the GK position for CWID and certain 
attacking positions for CWOD  additionally. DM is also leading the 
CWB scores followed by the RD and central defender positions. 
Their respective values are significantly different to the values 
of the other tactical positions; whereas the CWC  values are simi-
lar between all tactical roles apart from the GK.
The CWID/CWOD ratios in Figure 1 show values below 1 for de-
fensive positions and above 1 for offensive positions, especially 
strikers.

Table 4: Descriptive statistics and post-hoc results for football

GK LD LCD RCD RD DM LM RM OM LF RF 

CWID 
0.03 
(0.01)all 

0.08 
(0.02)GK

0.09 
(0.02)GK   

0.09 
(0.02)GK     

0.10 
(0.02)GK     

0.12  
(0.03)GK 

0.10 
(0.02)GK     

0.11 
(0.02)GK    

0.11 
(0.02)GK    

0.09 
(0.04)GK    

0.09 
(0.02)GK   

CWOD 
0.06 
(0.02)mult

0.10 
(0.02)mult

0.10 
(0.02)mult 

0.11 
(0.02)mult. 

0.12 
(0.02)mult

0.13  
(0.02)GK,LM,Fs

0.08 
(0.02)mult

0.09 
(0.02)mult

0.10 
(0.02)mult 

0.06 
(0.03)mult

0.06 
(0.02)mult 

CWB 
0.00 
(0.01)mult 

0.08 
(0.09)mult 

0.12 
(0.06)mult 

0.13 
(0.07)mult 

0.18 
(0.14)mult 

0.18  
(0.10)all-CDs,OM,RD

0.05 
(0.05)mult 

0.07 
(0.07)mult

0.11 
(0.09)mult

0.05 
(0.08)mult

0.03 
(0.06)mult

CWC 
0.06 
(0.01)all 

0.09 
(0.01)mult 

0.09 
(0.01)mult 

0.10 
(0.01)mult 

0.10 
(0.01)mult 

0.11  
(0.01)GK,Fs,LD,LF,LM

0.09 
(0.01)mult 

0.10 
(0.01)mult

0.10 
(0.01)mult 

0.08 
(0.02)mult

0.08 
(0.01)mult 

Subscripts indicate to which tactical positions given value is statistically different for p < .05, e.g. GK: given value is statistically different to the 
value of the goalkeeper; All: value is statistically different to all other tactical positions; All-“tactical position(s)”: value is statistically different to all 
other tactical positions except the listed ones; Mult: value is statistically different to various tactical positions that are not part of further analysis in 
this study; Fs includes LF and RF; CDs includes LCD and RCD.

Table 5: Descriptive statistics and post-hoc results for handball

  GK LW LB C RB RW P

CWID - 0.04 (0.02)C,Bs 0.23 (0.02)all-RB 0.36 (0.03)all 0.26 (0.02)all -LB 0.05 (0.02)C,Bs 0.05 (0.02)C,Bs

CWOD 0.01 (0.00)all-LW,P 0.04 (0.02)C,Bs 0.23 (0.02)all-RB 0.38 (0.03)all 0.26 (0.02)all-LB 0.05 (0.02)C,Bs,GK 0.03 (0.01)C,Bs

CWB - 0.03 (0.04)C,Bs 0.23 (0.05)all-RB 0.45 (0.05)all 0.25 (0.10)all-LB 0.02 (0.02)C,Bs 0.02 (0.02)C,Bs

CWC 0.04 (0.01)all 0.14 (0.02)all-P,RW 0.18 (0.01)all-RB 0.18 (0.01)all-Bs 0.18  (0.01)all-C,LB 0.15 (0.01)all-LW 0.13 (0.02)all-LW

Subscripts indicate to which tactical positions given value is statistically different for p < .05, e.g. C: given value is statistically different to the value 
of the center; All: value is statistically different to all other tactical positions; All-“tactical position(s)”: value is statistically different to all other tactical 
positions except the listed ones, e.g. All-C: given value is statistically different to all other values but the one of the center; Bs includes LB and RB.
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calculation, we were able to follow Freeman’s definition in our 
between each sport. As the highest values were unique in eve-
ry computations. The average CWIDC and CWODC values are highest  
for handball, followed by basketball in second place. This order 
for first and second rank switches between these two sports 
for CWBC  and CWCC. Football has the lowest average values for all 
team metrics employed in this study.

Visualization 

Figure 2 displays the aggregated passing distribution of all 
matches in each sport and the corresponding MSTs next to that 
on the right-hand side. As edge weights were unique in each 
network, the resulting MSTs are unique as well (Li, Hou & Sha, 
2005). The tree representing the passing network in basketball 
shows a typical star network topology with the PG as the cen-
tral node to which all other tactical positions are connected. 
The topology of the handball MST has a strong resemblance 
with the tactical formation of the sport. The C position emer-
ges as the centrally located node connected to the pivot and 
back positions who themselves are adjoined to the wings. No 

Team Parameters

The descriptive statistics and post-hoc results for the team 
metrics in Table 6 show that the considered sports have signi-
ficantly different values for almost all centralization measures  
 
Table 6: Descriptive statistics and post-hoc results for team 
metrics

Basketball Football Handball

CWIDC 0.13 (0.05)FB,HB 0.05 (0.02)BB,HB 0.24 (0.04)BB,FB

CWODC 0.10 (0.04)FB,HB 0.05 (0.01)BB,HB 0.25 (0.03)BB,FB

CWBC 0.89 (0.15)FB,HB 0.22 (0.09)BB,HB 0.35 (0.06)BB,FB

CWCC 0.13 (0.03)FB,HB 0.05 (0.01)BB 0.05 (0.01)BB

Subscripts indicate to which team sport given value is statistically 
different for p < .05, e.g. FB: given value is statistically different to the 
value in football.

 

Figure 2: Visualization of aggregated passing distribution and MSTs for basketball, football and handball
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In basketball the central role of the PG becomes obvious loo-
king at the CWB scores. A majority of the strongest connec-
tions between positions run via the PG, identifying him as the 
bridging player between tactical positions in basketball. The 
star network topology of the MST with the PG situated in the 
center visualizes these findings. The dominant role of this tacti-
cal position is also in line with several previous studies (Cle-
mente et al., 2015a; Fewell et al., 2012). 
In handball, the CWB  results suggest a central role of the C po-
sition in facilitating the ball and structuring the interplay in 
that sport. The CWC metric evaluates how closely a player is con-
nected with all other players. The fact that the corresponding 
CWC  share is less than half as high (0.18 to 0.45) suggests that 
C predominantly interacts with a subset of players i.e. the back 
positions. The CWID  and CWOD  scores support the argument that 
the back positions are the dominating players here. 
A deeper role division can be taken from the reported CWID/
CWOD ratios. In football, the ratios indicate a subdivision bet-
ween attacking and defensive roles. The defensive roles show 
higher CWOD  than CWID  values, thus ratios below 1, as they initiate 
plays while attacking roles rather finish them. This observation 
is not made in the other two sports. Solely in the case of hand-
ball, the P has a relatively high CWID/CWOD  ratio as that player is 
mostly targeted to finish attacks rather than initiating them. 
Apart from these indications, a clear division into distinct ro-
les is not visible in either basketball or handball. Although 
we analyzed matches from tournaments at the highest pro-
fessional level, differences in CWID  and CWOD  values might also 
be ascribed to limited technical abilities to a certain extent. 
Whereas in basketball (13.5 turnovers against 253.7 passes for 
a 94.9% passing success rate on average per match for each 
team ) and handball (10.8 turnovers against 503.4 passes for 
a 97.9% passing success rate) this aspect might be considered 
rather negligible, the passing success rate in football for the 
considered matches is only at 76.5%. Therefore, technical limi-
tations might add to the high ratios of CWID to CWOD  in football 
for some players.
The results of the team metrics show that general interplay is 
most balanced between players in football based on the dis-
tribution of all individual metrics among tactical positions. As 
the DM and RD have relatively high CWB scores in comparison 
to the other tactical positions, the corresponding CWBC value is 
slightly higher than for the other team metrics in football. This 
could mean, that although interplay is quite balanced, there is 
a tendency towards a few players having a stronger influence 
on the structuring of the interplay. 
The interplay in basketball was demonstrated to be more un-
balanced than in football. Although pass reception and execu-
tion were equally distributed between most tactical positions, 
the PG leads both categories significantly also resulting in high-
er CWIC  and CWOC  values than in the case of football. The bridging 
player characteristic of the PG also explains the high CWBC  score 
of 0.89. In fact, in 9 of the 16 networks in basketball the CWBC  
score takes on the maximum value of 1. This implies that every 
strongest connection between any two players in these mat-

distinct shape can be taken from the football MST. However, 
defensive positions are centrally located, and the tree displays 
three clusters in the longitudinal direction. Apart from the di-
rect connection between the RD and LF, tactical positions are 
subdivided into left, central and right areas of the pitch and 
were shown as directly connected. 

Discussion

The aim of this study was to characterize and compare the com-
plex interactions visible in team sports. Network properties aid 
in breaking down this complexity and assessing the overall co-
operation or collective organization of players and their indi-
vidual contribution to a team’s interaction. This is known to be 
vital in the analysis of team sports (Vilar et al., 2013).
This research study was conducted using passing data from se-
veral matches of major professional tournaments in basketball, 
football and handball. Of course, team interactions might also 
take other forms than passing events to express the relation-
ship between players, e.g. the communication between the 
players on the field. Although there is no doubt on the impor-
tance of these forms of interaction, we assess direct passes bet-
ween players as the most relevant form of interaction to cha-
racterize collective organization in team sports (Grund, 2012). 
The resulting analysis of our study reveals statistical differences 
in the pattern of play between different sports and the tactical 
positions therein with moderate to strong effect sizes.
The results of the individual metrics identified the DM as the 
most prominent player in football. He and the central defen-
ders who act as the bridging players, as revealed by their lea-
ding CWB  scores, secure the ball circulation. The MST topology 
supports this line of argument, as these positions are centrally 
located within the tree, implying a strong contribution to the 
interaction in the sport. A centrally located player in the MST 
indicates a close connection or interaction with team members 
supporting the argument that he is a vital part in forming the 
collective organization of his team. There are several reasons 
why the RD position is also ascribed a central role to in this stu-
dy according to the network metrics. First, 50% of all attacks 
on average were built via the right wing in comparison to 31% 
via the left wing. Second, the RD was among the top 3 pass 
executers in 10 out of 16 networks confirming the involvement 
of that position in building attacks via the right wing. Third, re-
nowned players such as Philipp Lahm took on the RD position 
during the tournament. He alone produced 10-20 deliveries or 
solo runs into the attacking third per game in comparison to 
2-5 for his counterpart on the LD position. This supports the 
dominant role of the RD and strong connection to forward po-
sitions visualized trough the connection in the MST. However, 
the similar CWC  scores suggest that all players in general are 
equally strongly connected with each other, directly or indi-
rectly, implying that a quick ball circulation from any player to 
another is given in football, in line with previous studies (Pena 
& Touchette, 2010). 
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Moreover, it is important to make two remarks regarding the 
application of weighted closeness in this study. First, one could 
argue that the nearly completeness of the present networks in 
this study, in which almost all players are directly connected 
with each other, mostly account for the similar CWC scores in 
football. However, in basketball, for example, we find statisti-
cal differences especially with regard to the PG while having 
complete networks in every analyzed match exclusively. We 
claim that in weighted networks, in comparison to unweighted 
networks, strong indirect connections might dominate weak 
direct connections and thus weaken the influence of the level 
of completeness in a network to a certain degree.
Second, only 13 of the 16 analyzed networks could be conside-
red in the one-way ANOVA of the CWC  scores in handball, as the 
GK was not involved in any interplay in some matches. Howe-
ver, as the metric analyzes the connection with all players in the 
network and cannot consider disconnected components by 
definition, we had to drop three networks (Opsahl et al., 2010). 
This stresses the low involvement of the GK in building attacks 
in handball. 
Nevertheless, this study contributes to the understanding of 
the nature of team sports and the respective involvement of 
the different tactical positions within each sport. This identifies 
SNA as a powerful tool not only to break down the performance 
of a single sport but also to allow a profound comparison bet-
ween the styles of interaction in team sports. 

Conclusion

The aim of this study was to characterize the nature of team 
sports and the role of their respective tactical positions.
By applying methods from social network analysis it was pos-
sible to break down the complexity of a handful of popular 
sports, by quantifying and intuitively visualizing roles of play-
ers and overall team interaction. Thus, this is the first study 
that compares the network patterns of different team sports. 
Moreover, MSTs are applied for the first time in a team sports 
context which in particular turn out to be effective in breaking 
down the complexity of almost complete networks.
Ultimately, the analysis revealed significant findings, on the 
prominent tactical positions for building attacks in the three 
sports discussed: in basketball, this dominant tactical position 
tended to be the PG, in football the DM and C in handball. The 
general pattern of play appears to be significantly more unba-
lanced in handball than in basketball and football. As a final 
takeaway, the study indicated strong findings that the level 
of fixedness in the basic order of the tactical positions in the 
sports influences the prominence levels of players. 
We chose three popular invasion games in this study to offer 
a first comparison between the network properties of team 
sports. However, as we assess the outlook of this method as 
fruitful, more team sports should be incorporated in future stu-
dies to further examine and characterize the different dynamic 

ches involved the PG confirming the dominant role of this play-
er in facilitating the interplay.
The most unbalanced interplay between tactical positions in 
this study can be seen in handball according to the distributi-
on of the direct interplay captured in the CWIC and CWOC scores. 
However, the low CWCC  score suggest that, similar to football, all 
players in handball, are quite equally strongly connected, di-
rectly or indirectly, with each other. The low direct involvement 
of the GK in the interplay is partly offset by the consideration of 
indirect connections in this metric.
The topology of the MSTs, which reduces the complexity to the 
most intense connections between players, offers a richer in-
sight into certain patterns of play. For handball, the patterns 
in question perfectly resemble the basic order of the tactical 
line-up. This suggests that interplay is quite structured and pre-
defined and therefore that the central role of the three back 
positions is primarily a result of their tactical position in a quite 
static basic order. They are crucial for the ball circulation and 
structure the collective organization of the team in order to 
score. In football, we have similar findings, however, less strong. 
Here a longitudinal clustering, meaning a subdivision into atta-
cking wings, is visible.  The basic order of the tactical positions 
appears to foster a stronger interplay of certain dyads e.g. bet-
ween wing defenders and wing midfielders. 
In basketball, the central role of the PG in structuring the of-
fensive plays outweighs any other potential cluster formation 
of tactical positions, resulting in the star network topology of 
the MST. According to Bonanno, Caldarelli, Lillo and Mantegna 
(2003) this kind of topology is an argument for a clear hierarchi-
cal structure, i.e. that the PG has a strong impact on structuring 
the interplay of his team. Teammates continuously bring the PG 
into possession to initiate and structure plays (Bourbousson, 
Poizat, Saury & Seve, 2010).
The main limitation seen in this research study was related pri-
marily to the sample size of the data utilized. Moreover, mat-
ches from only one major tournament are considered in each 
sport. In order to generalize the results for each sport, a larger 
sample across different occasions would be needed. Besides, 
definitions of tactical positions in football are approximations 
in some instances by combining data on tactical lineups and 
positional data provided by FIFA (www.fifa.com/worldcup/ar-
chive/brazil2014). There is an overall consensus on the defini-
tion of tactical roles in previous studies focusing on basketball 
and especially handball induced by its quite static formation 
(Cardinale, Whiteley, Hosny, & Popovic, 2017; Fewell et al., 2012; 
Karcher & Buchheit, 2014). However, in football, we acknow-
ledge that tactical roles are a more complex factor. Here, we 
believe that temporarily occupying different areas on the pitch 
and fulfilling different tasks, i.e. a striker who takes on defen-
ding tasks, can be acknowledged as part of the role repertoire 
of players in football. Eventually, this is why we are faced with 
such complex webs of interaction in which different tactical 
positions interact with each other and that network analysis is 
able to capture for the purpose of our study. 
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systems present in team sports. Moreover, individual modifica-
tions of traditional network metrics may lead to an even more 
accurate quantification of performance in each sport. 
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