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ABSTRACT 

 

The objectives of this study were to compare physical and functional properties of banana pseudostem flour 

(BPF) with commercial wheat flour (CWF). The texture and microstructure qualities of composite breads 

formulated with partial substitution (10%) of CWF by BPF, as well as the addition of hydrocolloids, i.e. 

xanthan gum or sodium carboxymethyl cellulose (Na CMC), were also investigated. The microstructure of 

the bread crumb was evaluated using scanning electron microscope. When compared to CWF, water and oil 

holding capacities for BPF was significantly (p < 0.05) higher, whereas bulk density, water activity, and 

lightness (CIE L*) value for BPF was significantly (p < 0.05) lower. Bread formulated with BPF without 

addition of hydrocolloids showed harder bread crumb than the bread containing BPF and hydrocolloids. 

However, the addition of Na CMC into the composite bread formulation showed to improve the crumb 

softness, whereby the crumb appeared to have more continuous protein network and larger gas cells. 

Therefore, composite bread with added Na CMC is suitable to be utilized in processing of good quality bread. 

 

Keywords: Banana pseudostem flour, bread, functional properties, texture profile analysis, scanning electron 

microscopy  

 

ABSTRAK  

 

Tujuan kajian ini adalah untuk membandingkan sifat-sifat fizikal dan fungsian tepung batang pisang (BPF) 

dengan tepung gandum komersial (CWF). Kualiti tekstur dan mikrostruktur roti komposit yang diformulasi 

dengan penggantian-separa (10%) CWF oleh BPF, serta penambahan hidrokoloid, iaitu gam xanthan atau 

natrium karboksimetil selulosa (Na CMC), juga telah dikaji. Mikrostruktur isi roti telah dinilai dengan 

menggunakan mikroskop elektron pengimbas. Berbanding dengan CWF, keupayaan menampung air dan 

minyak bagi BPF adalah lebih tinggi secara signifikan (p <0.05), manakala ketumpatan pukal, aktiviti air, 

dan nilai kecerahan (CIE L*) bagi BPF adalah lebih rendah secara signifikan (p <0.05).  Roti diformulasi 

dengan BPF tanpa penambahan hidrokoloid menunjukkan lebih keras isi roti berbanding dengan roti 

mengandungi BPF dan hidrokoloid. Penambahan Na CMC ke dalam formulasi roti komposit meningkatkan 

kelembutan isi roti, di mana isi roti tersebut menampakkan rangkaian protein yang lebih selanjar dan sel-sel 

gas yang lebih besar.  Oleh itu, roti komposit dengan tambahan Na CMC adalah sesuai untuk digunakan 

dalam pemprosesan roti yang berkualiti baik. 

 

Kata Kunci: Tepung batang pisang, roti,  sifat-sifat fungsian, analisis profil tekstur, imbasan mikroskp 

elektron 
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INTRODUCTION 

 

White bread is considered to be a good source of energy required for human body growth (Mastromatteo et 

al., 2013). However, bread might not be able to fulfill all the requirements of macro- and micronutrients, 

which are required for normal functioning of the human body (Nilufer-Erdil et al., 2012). Hence, people who 

continuously consume wheat bread could be prone to malnutrition (Fitzgerald et al., 2014). 

Nowadays, owing to the advancement in technology, the idea of composite flour is being applied in 

innovating novel composite bakery products. According to Dendy (2001), composite flour is a blend of 

wheat flour and non-wheat flour to produce wheat based bakery products. The non-wheat flour can be 

obtained from utilization of locally available agricultural sources, such as: banana, mango pulp, mango peel, 

chickpea, and yam (Juarez-Garcia et al., 2006; Noor Aziah et al., 2011; Rizzello et al., 2014; Amandikwa et 

al., 2015). Many research works have been conducted by bakery technologists on bread making with partial 

substitution of wheat by non-wheat materials to improve the functional, textural, and nutritional properties of 

the baked products (Juarez-Garcia et al., 2006; Noor Aziah et al., 2011; Rizzello et al., 2014; Amandikwa et 

al., 2015).  

Banana is one of the highly consumed fruits in the world, with a global annual production of 114 

million metric tons in 2014 (FAOSTAT, 2017). In Malaysia, annual production of banana in 2014 was 303 

thousand metric tons (FAOSTAT, 2017). The main residues after harvesting bananas are the leaves and 

trunks, which represent approximately 88% by weight of the plant (Elanthikkal et al., 2010). After harvesting 

the fruit, the bare pseudostems are cut and thrown away as waste, which may exceed few hundred metric 

tons in the plantations. Data from FAOSTAT (2012) reported that the world production of banana 

pseudostem is increasing, from 8.60 million metric tons in 2000 to a staggering 13.53 million metric tons in 

2009, a 57% increase over a decade. 

Since banana pseudostem is an underutilized waste material produced abundantly from worldwide 

agricultural sector, it is rationale to process banana pseudostem into flour for utilization as composite flour. 

However, it has been reported that the use of composite flour in bread could cause reduction in the protein 

content and subsequently weaken the gluten structure, which is of utmost importance in maintaining a 

products quality, i.e. dough elasticity (Van Dyck et al., 2013). Fortunately, the addition of hydrocolloids in 

food can improve and modify the texture of the food by influencing the dough rheological performance 

(Angioloni and Collar, 2012).  

In our previous work, we found that banana pseudostem flour (BPF) contains good amount of dietary 

fiber (29.92%) but low in protein (0.89%) (Abdul Aziz et al., 2011). According to Dobraszczyk (2001), the 

quantity of the protein in the form of gluten is important in relation to gas-retention properties of bread 

doughs during baking. This will subsequently influence to the physical properties (i.e., texture) of the end 

products.  However, the effect of using BPF for the partial replacement of commercial wheat flour (CWF) 

for the bread production on its textural is yet to be investigated. It should be noted that texture properties of a 

product are an important parameter that can influence the overall quality of bread. Determination of the 

microstructure of the bread dough and crumb could help to explain the structure in relation to the texture and 

physical appearance of the end products. Hence, the main objective of this work was to evaluate the texture 

and microstructure qualities of composite breads formulated with partial replacement of BPF and 

hydrocolloids.  

 

 

MATERIAL AND METHODS 

 

Flour processing 

 

Outer skin layer of banana (Musa acuminata X balbisiana cv. Awak) pseudostem was peeled manually, 

followed by washing under running tap water. The cleaned pseudostem was dried in a ventilated dryer at 

60 °C for 16 h until moisture content achieved 10 ± 2%. A kitchen blender was used to grind the dried 

pseudostem before being sieved through a 355 µm mesh sieve. The yield of the processed banana 

pseudostem flour (BPF) was calculated by dividing the mass of BPF with the mass of raw banana 

pseudostem. The BPF was than kept in an airtight plastic container and stored at ambient temperature prior to 

analysis.  
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Bread preparation 

 

Formulations for the four types of bread are shown in Table 1. The decision on the level of substitution (at 

10% level) of BPF for wheat flour was according to our preliminary study. A good dough formation and 

bread structures can be achieved through substitution level not more than 10%. The total amount of water 

was computed according to the Farinograph water absorption method (AACC, 2000). A sponge was 

prepared by mixing the ingredients of CWF, sugar, instant yeast, and a portion amount of water. The sponge 

mixture was then further mixed into the main ingredients (CWF, sugar, milk powder, improver, shortening, 

salt, xanthan gum or sodium carboxymethyl cellulose (Na CMC), and water) in a mixer (Spar mixer SP-800, 

Ta-Li City, Taichung Hsien, Taiwan) until a smooth and elastic dough was formed. The prepared dough was 

then fermented in the proofer at a temperature of 37 °C for 40 min. The dough was then molded manually 

and proofed for another 1 h before baked at 180 °C for 20 min in an oven. All loaves were cooled at room 

temperature for 1 h prior to analysis. 

  

Table 1. Formulations of BCtr, B10BPF, B10BPFXG, and B10BPFCMC
a
 

Ingredients Bctr B10BPF B10BPFXG B10BPFCMC 

Sponge preparation 

Icing sugar (g) 15 15 15 15 

Instant yeast (g) 7.6 7.6 7.6 7.6 

Wheat flour (g) 50 50 50 50 

Water (g) 100 100 100 100 

Dough preparation 

Bread flour (g) 350 350 350 350 

BPF (g) - 40 40 40 

Brown sugar (g)  20 20 20 20 

Milk powder (g) 16 16 16 16 

Improver (g) 9 9 9 9 

Salt (g)  5 5 5 5 

Shortening (g)  28 28 28 28 

Water (g)  140 196 193 187 

XG
b
 (%) - - 0.8 - 

Na CMC
b
 (%)  - - - 0.8 

a
BCtr, bread of commercial wheat flour (control); B10BPF, BCtr substituted with 10% banana pseudo-stem 

flour (BPF); B10BPFXG, B10BPF with XG addition; B10BPFCMC, B10BPF with Na CMC addition; XG, 

xanthan gum; Na CMC, sodium carboxymethyl cellulose 
b
Based on total flour weight basis 

Indicates without ingredient 

 

Water holding capacity and oil holding capacity  

 

Dried sample (0.5 g) was weighed into a centrifuge tube containing 30 mL of distilled water (WHC) or 10 

mL of commercial cooking oil (OHC). The suspension was then stirred at room temperature for 24 h (WHC) 

or 30 min (OHC) and centrifuged at 2,000  g for 30 min. The supernatant was then decanted and the residue 

in the centrifuge tube was weighed. The WHC and OHC of the sample were expressed as g of water per g of 

dry sample and g of oil per g of dry sample, respectively (Chau and Huang, 2003). 

 

Bulk density  

 

The flour samples (approximately 2 g) were weighed into a 10 mL graduated cylinder and then the bottom of 

the cylinder was gently tapped on a laboratory bench for several times until there was no further diminution 

of the sample level. The bulk density was expressed as mass of sample per volume of sample (g/mL) (Kaur 

et al., 2007).  
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Water activity (aw)  

 

Water activity of the flour was measured using a Decagon’s Aqualab Series 3 water activity meter (Pullman, 

WA) at 25 °C. About 2 g of flours was evenly placed into plastic cells and the reading was then recorded 

when the equilibration was achieved.   

 

Color analysis 

 

The color of the flours was measured using a Minolta colorimeter (CM-3500d Osaka, Japan). Flour was 

illuminated with D65 artificial daylight (10° standard angle). The spectrophotometer was prior calibrated 

before conduct sample analysis. The values of the color attributes such as L*: Hunter Lightness, b*: 

yellowness (positive value) or blueness (negative value), a*: redness (positive value) or greenness (negative 

value), hue angle (angle 0° to 360°), and chroma were recorded using Spectramagic software version 

V.3.61G (Minolta Co., Ltd, Cyber Chrome, Inc.).  

 

Texture profile analysis  

 

The texture profile of the bread crumb was determined using a texture analyzer TA–XT2i (Model TAHDI, 

Stable Microsystem, Surrey, UK) (AACC, 2000). A cube shaped crumb (2.5 cm × 2.5 cm × 2.5 cm) sample 

was cut from the middle of the bread using bread knife. The cube shaped crumb was then placed centrally 

beneath the cylinder probe [P/36 R cylinder probe (36.0 mm)] to begin the compression. The compression 

test (compressed to 60% of its original height) was selected in the texture analysis using a 5 kg load cell. The 

data was recorded using Texture Expert Version 1.05 Software (Stable Micro System Ltd, Surrey, UK.).  

 

Scanning electron microscope  

 

The microstructure of various types of dough and bread crumbs was recorded using Leo Supra 50vP Field 

Emission scanning electron microscope (SEM) (Carl-Zeiss SMT, Oberkochen, Germany) equipped with 

Oxford INCA 400 energy dispersive x-ray microanalysis system. The lyophilized samples were sliced into 

thin layers and then placed on a round aluminum stub with double sided tape and sputter coated with gold 

(30 nm thick) to prevent electrical discharge during scanning by using polar instrument (Palaron SC515 

sputter coater).   

 

Statistical analyses 

 

Statistical analyses were conducted using Statistical Package for the Social Science (SPSS) 14.0 software 

(SPSS Inc., Chicago, IL, USA). All the results obtained in the present study are represented as mean values 

of three individual replicates (n = 3) ± standard deviation. The significant differences between mean values 

of flour samples were determined by independent t-test at a significance level of p < 0.05. Meanwhile, 

significant differences between the mean values in the bread sample analyses were determined using analysis 

of variance (ANOVA) and Duncan’s multiple range test at a significance level of p < 0.05. 

 

RESULTS AND DISCUSSION 

 

Yield, Water holding capacity and oil holding capacity  

 

The yield of the flour processed from banana pseudostem was 5.83% (Table 2). The low amount of flour 

yield was primarily attributed to the high water content characteristic of banana pseudostem. As reported by 

Feriotti and Iguti (2011), banana pseudostem is made up of approximately 90% of water. 

The water holding capacity (WHC) and oil holding capacity (OHC) of commercial wheat flour 

(CWF) and banana pseudostem flour (BPF) are presented in Table 2. CWF and BPF had WHC of 1.87 and 

10.66 g of water per g of dry matter, respectively. The value of WHC in BPF was higher than the dietary 

fibers of oat bran (2.10 of water per g of dry matter), rice bran (4.89 of water per g of dry matter), wheat bran 

(5.03 g of water per g of dry matter), and yam flour (3.10–3.90 of water per g of dry matter) (Chen et al.,  
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1988; Abdul-Hamid and Luan, 2000; Amandikwa et al., 2015). Thus, the processed BPF was able to bind 

more water than these flours. In contrast, BPF has a similar value of WHC with apple fiber (i.e. 9.36 g of 

water per g of dry matter) as reported by Chen et al. (1988). This could be attributed to the fact that stem and 

fruit fibers have different structure of cell wall components (Chen et al., 1988).  

The OHC is another important functional property in food ingredients. Results showed, BPF to have 

significantly (p < 0.05) higher OHC (i.e. 5.48 g of oil per g of dry matter) as compared to that of CWF (i.e. 

1.35 g of oil per g of dry matter). This could be attributed to the differences in physical and chemical 

properties between CWF and BPF. These results indicated that BPF have higher OHC value than that of 

dietary fiber obtained from rice bran, i.e. 1.29 g of oil per g of dry matter (Abdul-Hamid and Luan, 2000). 

According to Thebaudin et al. (1997), the insoluble dietary fibers can hold oil up to five times of its weight. 

The characteristic of high OHC of the raw material is very important in fried food, especially cooked meat 

products, whereby high OHC can enhance the holding of oil, which is often lost during cooking. Thus, this 

could be beneficial to improve the cooking yield and retention of flavor.  

 

Table 2. Yield of banana pseduo-stem flour, functional properties and physical characteristics of commercial 

wheat flour and banana pseudo-stem flour
a,b,c 

Parameter CWF BPF 

Yield (%) ND 5.83 ± 0.29 

Functional properties 

WHC (g of water/g of dry matter) 1.87 ± 0.13
b
 10.66 ± 0.54

a
 

OHC (g of oil/g of dry matter) 1.35 ± 0.13
b
 5.48 ± 0.07

a
 

Physical properties 

Bulk density (g/mL) 0.79 ± 0.02
a
 0.43 ± 0.01

b
 

Water activity (aw) 0.56 ± 0.01
a
 0.48 ± 0.00

b
 

L* 89.87 ± 0.03
a
 76.67 ± 0.35

b
 

a* 0.25 ± 0.01
b
 3.32 ± 0.09

a
 

b* 8.42 ± 0.02
b
 17.04 ± 0.19

a
 

Chroma 8.42 ± 0.02
b
 17.36 ± 0.20

a
 

Hue angle 88.29 ± 0.10
a
 78.98 ± 0.21

b
 

a
Values with different superscripts within the same row are statistically significant from each other (p < 0.05) 

b
Presented data are mean value of three replications ± standard deviation 

c
 WHC: water holding capacity; OHC: oil holding capacity; L*: lightness; a*: red/ green; b*: yellowness/ 

blue; CWF: commercial wheat flour; BPF: banana pseudo-stem flour; ND: not determined 

 

Bulk density, water activity (aw), and color measurement  

 

According to Giami et al. (2000), bulk density is an important factor that determines the packaging process 

during flour transportation. High bulk density value would facilitate close packing of the flour. Thus, 

improved the handling of large quantities of the flour. However, results of the bulk density measurements 

showed CWF has significantly (p < 0.05) higher bulk density than that of BPF (Table 2). Significantly (p < 

0.05) lower bulk density in BPF could be credited to the heat treatment applied during the flour processing. 

This is in agreement with the findings by Giami et al. (2000), who reported that the heat treatment reduces 

the bulk density of the African breadfruit seed flour.  

Water activity (aw) is a vital parameter required to monitor a food products quality and safety 

(Markova and Wadsö, 1998). In this study, the water activity of CWF was found to be significantly (p < 0.05) 

higher than the BPF (Table 2). The significantly (p < 0.05) lower aw of BPF can be used to indicate slower 

enzymatic activities and growth of microorganisms in BPF as compared to CWF. Thus, BPF could have a 

relatively longer shelf life than that of CWF.  

Visual observation on the color of banana pseudostem flour showed to be brownish in color, whilst 

CWF has a much lighter color (Fig. 1A and B, respectively). The qualitative results are in the accordance to 

the quantitative results obtained from the spectrophotometer (Table 2). The CWF showed significantly (p < 

0.05) higher value for lightness than the BPF. This can be attributed to the heat processing, i.e. boiling and 

drying steps, which was used during the BPF production. According to Guiné and Barroca (2012),  
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pheophytinization could occurred during heating process of flour production, which causes the color of the 

flour to change from light green to brown. 

The BPF produced in the present study was shown to be reddish and yellowish in color (a* = 3.32 

and b* = 17.04), which differ significantly (p < 0.05) with the CWF (a* = 0.25 and b* = 8.42) (Table 2). 

This indicated that CWF presented a much lesser intensity of redness and yellowness than BPF. According to 

Guiné and Barroca (2012), the drying process could result in the change of color of final product, i.e. to pale 

yellow, owing to the nonenzymatic reaction and decomposition of chlorophyll and other pigments. The 

results for chroma and hue angle of BPF showed to be significantly (p < 0.05) higher than CWF (Table 2). 

The hue angle of the flour indicated a shift toward the yellow quadrant.  

The flour color positively influences the crumb color of the end product. The incorporation of BPF 

contributed to the adverse color of the crumb (Fig. 1C–F). Freeze drying could cause a more pronounced 

lightening to the product surface and lesser loss of green color (Guiné and Barroca, 2012). However, the high 

cost of processing using freeze drying make this process unfavorable, unless it involves premium ingredients 

or products. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Visual observation of flours: (A) commerical wheat flour; (B) processed banana pseudostem flour, 

and bread prepared with different formulations: (C) BCtr, (D) B10BPF, (E) B10PBFCMC, and (F) 

B10BPFXG. BCtr, bread prepared with 100% commercial wheat flour (control); B10BPF, BCtr substituted 

with 10% banana pseudostem flour; B10BPFXG, B10BPF with xanthan gum; B10BPFCMC, B10BPF with 

sodium carboxymethyl cellulose. 

 

Texture profile analysis of bread samples 

 

Crumb firmness (expressed as hardness by TPA) was strongly influenced by the composite flour and the type 

of added hydrocolloids. Fresh composite breads prepared with partial replacement of BPF, i.e. B10BPF, and 

with added xanthan gum (XG), i.e. B10BPFXG were significantly (p < 0.05) firmer than the BCtr (Table 3). 

However, the addition of 0.8% sodium carboxymethyl cellulose (Na CMC) into composite bread 

(B10BPFCMC) (p < 0.05) significantly reduced the firmness of bread crumb, making it at par with BCtr. In 

general, crumb firmness is mainly attributed to the presence of amylose and amylopectin matrix in the starch 

remnants that can cause recrystallization and contribute to overall bread texture (Schiraldi and Fessas, 2000). 

According to Noor Aziah et al. (2011), firmness in bread can be attributed to the interactions between fibrous 

materials with gluten. 

 

A B 

C D E F 
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Table 3. Texture profile analysis of BCtr, CWF substituted with 10% BPF and hydrocolloid added breads
a,b, c

 

Parameter BCtr B10BPF B10BPFXG B10BPFCMC 

Hardness (g) 208.88 ± 13.47
b
 460.33 ± 74.28

a
 376.47 ± 52.08

a
 237.78 ± 42.69

b
 

Springiness 0.95 ± 0.01
a
 0.89 ± 0.01

b
 0.87 ± 0.01

c
 0.88 ± 0.00

bc
 

Cohesiveness 0.68 ± 0.02
a
 0.62 ± 0.01

c
 0.64 ± 0.02

bc
 0.65 ± 0.00

b
 

Gumminess 142.36 ± 10.63
b
 285.41 ± 41.05

a
 242.86 ± 40.20

a
 155.27 ± 27.17

b
 

Chewiness 133.38 ± 13.88
b
 254.92 ± 36.29

a
 211.05 ± 32.97

a
 137.10 ± 23.48

b
 

a
Values with different superscripts within the same row are statistically significant from each other (p < 0.05) 

b
Presented data are mean value of three replications ± standard deviation 

c
CWF: commercial wheat flour; BPF: banana pseudo-stem flour; BCtr: white wheat bread (control); B10BPF: 

BCtr substituted with 10% BPF; B10BPFXG: B10BPF with xanthan gum addition; B10BPFCMC: B10BPF 

with sodium carboxymethyl cellulose addition. 

 

Results in Table 3 showed that Na CMC reduced crumb firmness of the composite bread, given 

softer crumb than other BPF incorporated breads. Conversely, the addition of XG increased the firmness of 

the bread crumb. According to Roach and Hoseney (1995), the firmness of the bread crumb is proportional to 

the composite flour viscosity. XG is highly effective in increasing dough viscosity and this was reflected in 

the thickening effect of the XG on the crumb walls (Rosell et al., 2001), hence resulted in firmed and 

compact bread (Fig. 1F). 

Armero and Collar (1996) proposed that hydrocolloids have weakening effect on the starch structure 

due to their water retention and distribution characteristics. Hydrocolloids can cause retardation of amylose 

chain associations and decrease in the crumb resistance. However, Biliaderis et al. (1997) suggested that 

hydrocolloids contribute to the rigidity of the crumb due to its reduction in swelling of the starch granules 

and consequently reduced leaching of the amylose. These effects are dependent on the types of hydrocolloid 

used.  

The springiness of BCtr was significantly (p < 0.05) higher than that of B10BPF, B10BPFXG, and 

B10BPFCMC (Table 3). The significantly lower springiness value in composite breads than the control can 

be attributed to the protein dilution as reduction of CWF in the bread formulation. The reduction in gluten 

structure contributes to decrease the ability of dough to hold gasses, which results low expansion of the 

dough and cause an adverse effect on bread texture, i.e. low springiness (Pyler, 1973). 

The partial replacement of CWF by BPF had significantly (p < 0.05) decreased the cohesiveness of 

the composite breads. However, there was a slight improvement in the cohesiveness of composite breads 

added with hydrocolloids. These results indicate that composite breads have low ability to resist to the force 

between teeth before the bread structure breaks. This was attributed to the substitution of BPF at 10% level 

interferes with the dough structure, and hence weaken the crumb structure.  

Partial substitution of BPF for CWF also resulted in significantly (p < 0.05) higher gumminess and 

chewiness values than those of BCtr. However, no significant differences were found for gumminess and 

chewiness between B10BPFCMC and BCtr. Similar trends were observed by Wang et al. (2002), who 

reported that an increase in crumb chewiness and gumminess parameters on partial replacement of wheat 

flour by other fibers (from carob fiber, inulin, and pea fiber) during bread making. 

 

Scanning electron microscope (SEM) of bread samples 

 

Transformation of bread structure from foam (i.e. dough) into an open sponge (i.e. crumb) was observed in 

the present study (Fig. 1 and 2). During fermentation, the expanded gas cells are embedded in a continuous 

protein matrix surrounding starch granules. The dough phase continues to develop into thin, continuous 

membranes between adjacent cells until there is insufficient material to maintain the continuity of the matrix 

and leaving areas with only thin liquid films (Gan et al., 1995; Mastromatteo et al., 2013; Vanin et al., 2009) 

(Fig. 2A–D). 

The composite dough without added hydrocolloids (Fig. 2B) showed lesser and smaller gas cell size 

than the other bread dough. This can be attributed to the presence of the foreign particles such as fiber from 

banana pseudostem that could have caused interruption in the formation of gas cells. According to Gan et al.  
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(1995), the surface active materials, such as endogenous flour, proteins, polar lipids, and pentosans, will 

dissolved in the dough aqueous phase and play an important role in stabilizing the surface films to enable the 
dough to expand to a larger surface area without rupturing.  

All the fermented dough showed dispersion of gas cells in a continuous protein network surrounding 
starch granules. Qualitative observations at high magnification recorded that the dough of CWF (Fig. 2E) had 
characteristic structure of well-formed protein matrix with abundant protein strands entrapping large starch 
granules. However, BPF incorporated dough (Fig. 2F–H), appeared to have a different binding patterns between 
the protein and starch granules, wherein BPF cell walls appeared to align and form part of the dough structure, 
with irregular and discontinuous matrix around the starch granules. However, formation of a continuity starch-
protein network was disrupted by fiber of banana pseudostem. Thus, it affects the resilience and springiness of 
the dough during oven spring (Correa et al., 2010).  

At low magnification, a cross section of the bread crumb showed characteristic structure of an open 
sponge with interconnected porous inside large gas cells. A small gas cells were observed to appear along bread 
crumb surface as well as the large interconnecting cavity was observed in all the bread samples (Fig. 3A–D). 
When observed into the interior of a gas cell at higher magnification, the continuous protein network, i.e. gluten, 
was observed to be more visible in BCtr (Fig. 3A) than in composite bread without added hydrocolloids (Fig. 3B). 
In the case of B10BPF and B10BPFXG (Fig. 3B and C, respectively), the starch granules surface was stretched 
and rolled up into fibrils and formed a veil-like structure in the composite breads.  

The B10BPFXG crumb appeared to be lacked of matrix development and has very small gas cells 
between the protein matrixes. Hence, this could have resulted in bread with a dense structure. However, it was 
less obvious in the composite bread with added Na CMC (Fig. 3D). The SEM results obtained from the present 
study concluded that not all types of hydrocolloids are able to form a continuous matrix with starch fragments 
and stabilized the gas cells, though it has been known to enhance the rheological and bread quality.  

Microscopic study showed that the structure of bread crumbs appeared to be damaged and the 
deformed granules were observed to be entrapped in the swollen starch. Partly gelatinized starch granules were 
found to be surrounded by the gluten filaments (Fig. 3E–H). This could be attributed to the starch gelatinization 
that occurred during baking. However, some starch granules preserved their integrity although they appeared to 
be highly distorted due to the partial gelatinization (Rojas et al., 2000).  
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Figure 2. Scanning electron microscope microstructure of the cross section of dough at magnification 40×: (A) BCtr, (B) B10BPF, (C) B10BPFXG, and (D) 

B10BPFCMC and at magnification 1,000×: (E) BCtr, (F) B10BPF, (G) B10BPFXG, and (H) B10BPFCMC. BCtr, bread prepared with 100% commercial wheat 

flour (control); B10BPF, BCtr substituted with 10% banana pseudostem flour; B10BPFXG, B10BPF with xanthan gum; B10BPFCMC, B10BPF with sodium 

carboxymethyl cellulose. 
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Figure 3. Scanning electron microscope microstructure of the cross section of bread crumb at magnification 35: (A) BCtr, (B) B10BPF, (C) B10BPFXG, and (D) 

B10BPFCMC and at magnification 1,000: (E) BCtr (E), (F) B10BPF, (G) B10BPFXG, and (H) B10BPFCMC. BCtr, bread prepared with 100% commercial wheat 

flour (control); B10BPF, BCtr substituted with 10% banana pseudostem flour; B10BPFXG, B10BPF with xanthan gum; B10BPFCMC, B10BPF with sodium 

carboxymethyl cellulose. 
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CONCLUSION 

 

Banana pseudostem was suitable to be processed into flour due to its low water activity and could be kept for 

a longer period of time compared to CWF. Physical analyses showed that BPF incorporated breads reduced 

the quality, i.e. softness, of the end products. However, the addition of Na CMC to the composite bread 

improved the loaf texture. The results obtained from physical analyses was supported by the SEM analysis, 

whereby BPF incorporated breads had smaller air cells. Hence, based on the findings in the present study, the 

incorporation of BPF solely was not able to produce a good quality of composite bread due to harder texture. 

However, Na CMC is recommended to be added into the composite bread for texture improvement. The 

obtained results are useful in the determination of the suitability of formulations containing BPF for the 

production of quality composite bread by looking into its microstructure and textural properties. 
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