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Abstract. The suffix array is a classic full-text index, combining effectiveness with
simplicity. We discuss three approaches aiming to improve its efficiency even more:
changes to the navigation, data layout and adding extra data. In short, we show
that i) the way how we search for the right interval boundary impacts significantly
the overall search speed, ii) a B-tree data layout easily wins over the standard one,
iii) the well-known idea of a lookup table for the prefixes of the suffixes can be
refined with using compression, iv) caching prefixes of the suffixes in a helper array
can pose another practical space-time tradeoff.
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1 INTRODUCTION

Everybody knows the suffix array (SA) [1], a simple full-text index data structure
capable of finding the occ occurrences of a pattern P of length m in O(m log n+occ)
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time, where n is the length of the indexed text. The search mechanism consists
in two binary searches, for the left and the right boundary of the interval of text
suffixes starting with P , in the array of suffix offsets arranged in the lexicographical
order of their text content. The performance of the suffix array can serve as a
measuring stick for more advanced (e.g., compressed) text indexes [2] and at least
for this reason it is important to know how to implement it efficiently and what
space-time tradeoffs are possible.

The suffix array can be perceived as a simplification of the suffix tree (ST) [3],
a tree whose string collection is the set of all the suffixes of a given text, with an ad-
ditional requirement that all non-branching paths of edges are converted into single
edges. Indeed, a suffix array can be obtained from a suffix tree by visiting its leaves
in order (from left to right, obtained by depth-first traversal of the ST). Depending
on the implementation, the pattern search over ST takes either O(m log σ + occ)
or O(m + occ) time (where the latter variant involves perfect hashing). ST can
be built in linear time for integer alphabets [4]; a result that directly translates
to linear-time SA construction (albeit more direct and economical linear-time SA
construction algorithms were found later). The practical performance of ST and SA
is rather comparable, yet implementation details may be important; for example, if
the number of matches is large (which is typical for short patterns), the suffix array
may be even by an order of magnitude faster than the suffix tree [5].

A number of attempts have been made to improve the time complexities of full-
text indexes. For example, the suffix tray by Cole et al. [6], which can be seen
as a cross of the suffix tree and the suffix array, allows to achieve O(m + log σ)
search time, with O(n) worst-case time construction and O(n log n) bits of space.
Later, Fischer and Gawrychowski [7] reduced the search time to (deterministic)
O(m + log log σ), with preserved construction cost complexities. Even better time
complexity, O(m + log logw σ) (where w ≥ log n is the machine word size), for
a compressed (sic!) index and deterministic linear time construction was recently
achieved by Munro et al. [8]. Bille et al. [9] showed how to search for a packed
pattern in a (standard) suffix array in O(m/α+ log n) time, where α is the number
of characters one can pack in a machine word. In the same work, they presented
a more involved construction allowing to search for a packed pattern in O(m/α +
logm+log log σ) time; the index size is still O(n) words (or O(n log n) bits). We are
not aware of any implementations of the algorithms mentioned in this paragraph,
which means that they remain theoretical achievements so far.

The body of research on engineering the suffix array is surprisingly scarce. Al-
though the basic SA idea can be easily grasped even by high-school students, many
design choices from the implementor’s point of view are not obvious. Let us pose
a few questions:

1. Can the binary search strategy be replaced with a faster one, e.g., based on
interpolation search?

2. As occ is usually small, what is practically the best way to find the right interval
boundary once the left boundary is known?
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3. Can we change the data layout of suffixes in order to obtain more local memory
accesses?

4. How can we augment the suffix array with a moderate amount of extra data, to
initially reduce the search interval and/or speed up string comparisons?

The answer to some of them is known, yet in this work we are dealing with the
mentioned issues in a more systematic way.

The contributions of our paper are as follows. We show that the idea of k-ary
heap layout of a sorted array, known from the earlier works [12, 13], makes practical
sense also for the suffix array, due to increased data access locality. We discuss the
impact of the technique for finding the right interval boundary in the suffix array
on the overall performance. It is also noticed that augmenting the suffix array with
extra data boosts the performance; novel techniques presented in this work include
caching prefixes of the suffixes in a helper array and using a lookup table with
Huffman-compressed keys.

2 IDEAS AND INCARNATIONS

The considered ideas are divided into three groups and each of them is described in
a separate subsection. First we discuss non-standard SA traversal strategies. Later
we advocate for alternative data layouts, beneficial for the search speed. In the
last subsection some ways to augment the suffix array with extra data, to make the
pattern search even faster, are proposed.

2.1 Navigating over the Suffix Array

A textbook alternative to binary search is interpolation search, which performs
a number of “guesses” concerning the query’s location based on the query value
and the assumed distribution of keys. It is well-known that interpolation search
over constant-size keys achieves O(log log n) expected time not only for the simplest
case, i.e., uniformly random distribution [10], yet we are not aware of any published
experiments regarding text suffixes. Unfortunately, a straightforward interpretation
of string prefixes (which have a lot of duplicates) as integers and standard linear
interpolation yielded rather disappointing results.

Another question concerning the navigation over the SA is how the right interval
boundary should be found. We examine two methods: a naive one performs the
binary search over the range left . . . n of suffixes, where left is the position of the
least suffix greater or equal to the pattern, and the doubling (galloping) algorithm,
which peeks the locations SA[left + 2i], i = 0, 1, 2, . . ., until it reaches too far and
the search continues in the binary manner over the last considered interval. Note
that the time complexity of the right interval boundary search improves in this way
from O(m log n) to O(m log occ).

We should also mention here using non-standard CPU instructions for binary
search. Wide registers together with single-instruction multiple-data (SIMD) in-
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struction sets are a popular extension of modern CPUs, including Intel’s Pentium 4,
Core 2, Nehalem and more recent architectures, Intel’s Xeon, AMD’s Phenom, Bull-
dozer and Ryzen, and ARM Cortex-A mobile processors. Zhou and Ross [11] pro-
posed a SIMD-ized version of binary search (and other database operations) that is
geared towards small datasets, up to a few hundred keys. Significant speedups were
obtained as a result of the elimination of branch misprediction effects.

searchTree(pat, n, N , step)

(01) node ← 0; beg ← n
(02) while node < N do /* search down the tree from the top */
(03) (c, beg)← searchNode(pat , beg ,node, 0, step)
(04) node ← childNode(node, c)
(05) if isMaxPattern(pat) then /* pattern is lexicographically the greatest */
(06) return (beg , n)
(07) pat ← incPattern(pat)
(08) end ← beg ; i← end ; endNode ← node(end)
(09) while true do /* search up the tree from the current node */
(10) if pat < T [karySA[end ]] then break
(11) i← end + 1; node ← endNode
(12) while true do /* search for previous beg value */
(13) if endNode = 0 then
(14) end ← n; break 2
(15) (endNode, c)← parent(endNode)
(16) if c < k − 1 then break
(17) end ← index (endNode) + c
(18) if end = beg then /* pattern not found */
(19) return (beg , beg)
(20) c← elemOffset(i)
(21) (c, end)← searchNode(pat , end ,node, c, step)
(22) node ← childNode(node, c)
(23) while node < N do /* search down the tree from the current node */
(24) (c, end)← searchNode(pat , end ,node, 0, step)
(25) node ← childNode(node, c)
(26) return (beg , end)

Figure 1. The searchTree(pat , n,N, step) function, returning the first and the last index
in the search tree corresponding to the range of suffixes of the indexed text starting with
the string pat . The parameters n and N (N ≤ n) refer to the number of suffixes and the
number of nodes in the tree, respectively. The parameter step is passed to the searchNode
function.
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2.2 Linearized k-ary Tree Data Layout

Binary search over a sorted array is equivalent to walking down a path in a complete
binary search tree. Schleger et al. [12] noticed that changing the tree layout from
binary to k-ary (k > 2), together with linearization of the search tree, may be
more cache-friendly and also convenient for SIMD processing. In their experiments
(Intel Core i7) it achieved a speedup of as much as 3 up to 4.5 for 32-bit numbers
and 2 to 2.5 for 64-bit numbers, compared to a plain binary search. This data
organization can also be called an (implicit) B-tree layout [13], where the case of
B = 1 (a complete binary tree with the root going first, then followed by its both
children, etc.) is called the Eytzinger layout (dating back to old history) or the
heap-order layout, as this method was proposed by Williams for an implementation
of binary heaps [14]. We apply the presented idea to the suffix array, which, to our
knowledge, has not been tried before. Note that setting the B-tree layout for a suffix
array cannot be comparably successful as for, e.g., integers, as the accesses to the
text are still at “random” areas.

The pseudocodes of algorithms on the non-standard layout are presented in
Figures 1–3. The used notation and primitives (i.e., helper functions) need to be
explained beforehand. The term “index” will refer to the position in a linearized
k-ary tree, while “offset” to the position relative to the beginning of the node (i.e.,
the index relative to the beginning of the node). We use the following symbols and
helper function names:

• n is the number of SA elements, i.e., the text length,

• N is the number of nodes in the tree, i.e., N = dn/Be,
• index (node) returns the index of the first element in the given node,

• node(index ) returns the number of the node containing the given index,

• childNode(node, c) returns the number of the cth child node of the node,

• childNum(node) returns the number of the node among its parent’s children,

• elemOffset(idx ) returns the offset of the element,

• parent(node) returns a pair (p, off ), where p is the parent node number and off
is the smallest offset of an element in the parent node referring to a suffix not
smaller than suffixes in node,

• incPattern(pat) returns the next pattern of the same length in lexicographical
order. In the (very rare) case when pat is the lexicographically greatest pattern,
the lexicographically smallest pattern of the same length is returned (however,
such cases do not occur in our code),

• isMaxPattern(pat) tests if pattern is lexicographically the greatest.

Figure 1 presents a pseudocode of the function searchTree(pat , n,N, step), tra-
versing an n-element B-tree structure comprised of N nodes, in order to return
the pair (beg , end). The value of beg (resp. end) is the index of an element in the
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tree corresponding to the lexicographically smallest suffix not smaller (resp. suffix
greater) than the pattern pat. As the tree element IDs have values in {0, 1, . . . , n−1},
the special case of end set to n means that there are no suffixes lexicographically
greater than pat.

searchNode(pat , idx ,node, startOff , step)

(01) c← startOff + (step − 1); j ← index (node) + c
(02) while c < k − 1 do
(03) if pat < T [karySA[j]] then
(04) idx ← j; break
(05) c← c + step; j ← j + step
(06) guard ← c
(07) if guard > k − 1 then guard ← k − 1
(08) c← c− (step − 1); j ← j − (step − 1)
(09) while c < guard do
(10) if pattern < T [karySA[j]] then
(11) idx ← j; break
(12) c← c + 1; j ← j + 1
(13) return (c, idx )

Figure 2. The searchNode(pat , idx ,node, startOff , step) function for locating the smallest
element in the passed node (the third parameter) referring to a suffix lexicographically
not smaller than the pattern pat

This function makes use of searchNode(pat , idx , node, startOff , step) (Figure 2),
which returns the smallest index of an element in the passed node (the third param-
eter) referring to a suffix not smaller than the pattern pat. The current index, idx,
is updated only if a better candidate is found in the node. The parameter startOff
stores the number of node elements which are skipped (as being lexicographically
smaller than pat). The presented code for searchNode refers to the case of large
nodes (B > 8), when a two-pass node lookup (the first pass with the step given as
the last parameter of the function) is used.

Finally, the function count(beg, end) (Figure 3) returns the number of pattern
occurrences in the range determined by the beg and end indexes. For simplicity, the
presented code deals only with the case of beg < end , and end < n, i.e., when the
beg index is located in a tree layer not lower than the layer of the index end . In the
following paragraph we comment the main phases of this code.

In lines 01–02 we initialize the key variables, where res is the count to be even-
tually returned. The loop in lines 03–07 traverses down the tree until the layer just
below the layer of the end index is reached. After the loop, the helper array bOff
stores the left boundaries of the intervals from all the layers in which the elements
from beg to end (inclusively) belong to. Lines 08–17 add the number of elements
in the bottom layers of the tree, i.e., in the layers below the one to which end be-
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count(beg , end)

(01) res← 0; bOff [0]← beg ; b← beg ; l← 1
(02) bNode ← childNode(node(beg), elemOffset(beg))
(03) while bNode < N do
(04) b← index (bNode) + k − 1
(05) if b > end then break
(06) bOff [l]← b; l← l + 1
(07) bNode ← childNode(node(beg), elemOffset(beg))
/* adding interval widths in tree layers below end index */
(08) e← end
(09) eNode ← childNode(node(end), elemOffset(end))
(10) while eNode < N do
(11) e← index (eNode) + k − 1
(12) if e > n then break
(13) res ← res + e− b
(14) eNode ← childNode(eNode, k − 1)
(15) bNode ← childNode(bNode, k − 1)
(16) b← index (bNode) + k − 1
(17) if bNode ≤ N & b ≤ n then res ← res + n− b
/* adding interval widths in tree layers between beg and end indexes */
(18) e← end ; eNode ← node(end)
(19) while l > 0 do
(20) l← l − 1
(21) res ← res + e− bOff [l]
(22) eChild← childNum(eNode); eNode ← parent(eNode)
(23) e← index (eNode) + eChild
(24) bNode ← node(bOff [0])
/* adding interval widths in tree layers above beg index */
(25) if bNode = 0 then return res
(26) while true do
(27) bChild ← childNum(bNode); bNode ← parent(bNode)
(28) b← index (bNode) + bChild
(29) res ← res + e− b
(30) if bNode = eNode then return res
(31) eChild ← childNum(eNode); eNode ← parent(eNode)
(32) e← index (eNode) + eChild

Figure 3. The function count(beg , end), which returns the number of pattern occurrences
in the range determined by the beg and end indexes of the tree structure. It is assumed in
the presented code that beg < end and end < n (handling the other cases is similar, but
would make the pseudocode much longer).
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longs. The variable b (resp. e) is set to the first element from (resp. beyond) the
considered interval in the current layer. Special care must be taken not to exceed
the last stored element (line 17). In lines 18–24 we handle the layers between the
last considered layer (containing end) and the first considered layer (containing beg).
Finally, an analogous procedure continues up to the top, terminating when b and e
are in the same node (lines 30).

We have also a locate function, which is very similar to count, only instead of
incrementing the counter of matching suffixes it adds them to a returned list.

2.3 Augmenting the Suffix Array

Manber and Myers in their seminal paper [1] presented a nice trick saving several
first steps in the binary search: if we know the SA intervals for all the possible
first k symbols of the pattern, we can immediately start the binary search in a cor-
responding interval. We can set k to logσ n, where σ is the alphabet size, with
O(n log n) extra bits of space and constant expected size of the interval. Unfor-
tunately, real texts are far from random, hence in practice, we can use k up to 3
(assuming that text symbols are bytes), which offers a limited (yet, non-negligible)
benefit. This idea will be referred in our experiments as using a lookup table, and
more specifically we will denote the lookup table on pairs (resp. triples) of symbols
with LUT2 (resp. LUT3).

In the same spirit, Grabowski and Raniszewski [15, 16] use a hash table to store
the intervals for all k-symbol strings occurring in the text. This can significantly
reduce the initial interval for real texts with relatively little extra space.

In this work we first propose a lookup table with keys being concatenations of
Huffman codewords for the starting symbols of the text suffixes (Table 1), truncated
to a specified length of b bits. Pattern search translates to finding the first b bits
of Huffman encoding of the pattern, which is the LUT key, and then following with
binary search over a range of suffixes read from the LUT. A look onto the rows, e.g.,
LUT-Huff-23b and LUT3, reveals that the resulting search intervals to go into are
much narrower on average with the Huffman-based LUT, using the same amount
of extra memory. A correct implementation of this idea, in combination with the
B-tree SA layout, requires a reordering of the suffixes in the SA, to avoid nested
LUT ranges (other options, like replacing Huffman with Hu-Tucker coding, are also
possible, but we have not tried them out). Note also that the Huffman-based LUT
entries store twice more data (both boundaries of the interval) than in the standard
LUTs.

We also propose mixing the LUT or hash table interval narrowing with the
B-tree layout, and also augmenting the search tree with prefixes of the suffixes in
several top levels of the B-tree. Copying these text snippets into a helper array is
beneficial due to more local memory accesses.

The last novelty is varying the parameter k, the length of the hashed strings.
Using a fixed k results in having some intervals too wide (which deteriorates binary
search) while some others are (too) narrow, which does not already help much.
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space (MiB) dna200 english200 proteins200 xml200

LUT-Huff-15b 0.25 14.45± 1.21 15.53± 2.20 12.86± 0.81 17.05± 2.84
LUT-Huff-19b 4.00 11.07± 1.52 13.46± 2.63 9.10± 1.31 15.91± 3.64
LUT-Huff-23b 64.00 7.79± 1.98 11.63± 2.93 5.63± 2.17 14.99± 4.28
LUT2 0.25 23.74± 0.46 19.50± 2.18 19.27± 0.94 18.91± 2.40
LUT3 64.00 21.82± 0.61 16.55± 2.78 15.11± 1.18 16.74± 3.49

Table 1. Average binary logarithms (with their standard deviations) of the search interval
widths for different LUT variants (first three rows: order-0 Huffman encoding with 15–23
bits, next two rows: standard 2-/3-byte LUTs). The averages are taken over all suffixes of
the text. Without a LUT the corresponding binary logarithms would be log2(200 · 220) =
27.64 in all cases.

Varying k is expected to have more balanced interval widths, which in turn may
translate into more preferable space-time tradeoffs.

To this end, we use three parameters, k0 < k1 < k2, corresponding to suffixes’
prefix lengths, and the parameter r as an interval width threshold. The first of
the three parameters, k0, is used in a standard lookup table and was fixed to 2
throughout the experiments. If a pair of successive symbols, c1c2, does not occur
in the text more than r times (i.e., there are at most r suffixes starting with this
prefix), the suffixes starting with c1c2 are not inserted into any other data structure;
if the pattern matches such a prefix, one access to the mentioned LUT reveals that
the range of suffixes to search is of size at most r and the binary search follows.

Those suffixes which do not fall into a narrow range according to their first two
symbols, are then divided into two groups, based on whether their k1-symbol prefix
occurs at most r times in the text. Those for which the answer is positive are inserted
into a hash table in the manner of the SA-hash index (see [16] for more details).
If a k1-long prefix occurs more than r times though, we extend its occurrences to
length k2 and insert such (distinct) strings into the same hash table. Additionally,
a bit array V is maintained, initialized with zeros. For each distinct k1-symbol string
from the text its computed hash value tells the position in V to set a bit if its count
is at most r. Collisions are not handled here, which means that several different
strings may overwrite the same bit in V . Yet, V happens to be (relatively) very
small for real texts, which allows for small load factors (e.g., LF = 0.1) and in turn
translates into rather few collisions.

Now, given a pattern to search, we first check its k1-symbol prefix in V . If the
accessed bit is 1, we assume that the prefix, although relatively short, is specific
enough. We look for it in the hash table and the associated data is the range of
suffixes in which we continue with binary search. If the bit accessed in V is 0 though,
we look for the longer prefix, of length k2, in the hash table and continue in the same
manner.

Let us yet justify the presented idea using a small example. For a given (fixed) k,
we (locally) obtain three adjacent intervals of width 900, 60 and 40, respectively.
The numbers of binary search steps are: 10, 6 and 6, respectively. Yet, the average
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is not 7.333; it is rather 900/1 000 · 10 + 60/1 000 · 6 + 40/1 000 · 6 = 9.6. This
is because entering the widest interval is more likely than any of the remaining
two. Now, we introduce k1 and k2, and it may happen that our considered intervals
are split into three different intervals, of widths: 400, 500, 100, respectively. The
corresponding numbers of binary search steps are now: 9, 9, 7, respectively. The
(weighted) average is thus: 400/1 000 · 9 + 500/1 000 · 9 + 100/1 000 · 7 = 8.8, i.e.,
yields some improvement.

3 EXPERIMENTAL RESULTS

All experiments were run on a machine equipped with a 4-core Intel i7 4790 3.6 GHz
CPU and 32 GB of 1 600 MHz DDR3 RAM (9-9-9-24), hosting Windows Server 2012
R2. One CPU core was used for the computations. All codes (https://bitbucket.
org/kowallus/sa-search-dev/) were written in C++ and compiled with 64-bit
gcc 4.9.3 with -O3.

For each experiments, we took 500K patterns sampled from the text in a uni-
formly random manner, calculated the average time per pattern, repeated this
procedure 11 times and presented the median. The searches were performed over
200 MB datasets from the well-known Pizza & Chili corpus (http://pizzachili.
dcc.uchile.cl/).

In the first experiment we show how the count times are affected by two things:
using lookup tables, including the introduced Huffman-based ones (on 15 or 23 bits)
(Figure 5) and choosing a proper interval’s right boundary search (Figure 4). HT
denotes the idea of combining the suffix array with a hash table [15, 16]; it involves
the parameter k, which is the length of suffixes’ prefixes inserted in the hash table.
In our experiments we (arbitrarily) choose the smallest k for which the overall size
of the index, including the text, exceeds 5.5n.

The doubling trick reduces the times usually by 20–30 % for the standard and
LUT2-boosted suffix array, yet the effect is smaller for short patterns (i.e., small m),
especially for DNA (where short patterns tend to have thousands of occurrences).
This can be explained by the relatively small difference between log n and log occ
in those cases. The Huffman-based LUTs are more efficient than their traditional
counterparts (when about the same amount of memory is sacrificed).

For xml200 (Figure 4) one can observe a different trend than for other datasets:
the time decreases for smaller m. There are at least two factors specific to this
dataset that cause such an effect. The first one is the extremely large (average)
width of resulting intervals. For english200, the average interval width for m = 9
is about 103, while for xml200 it is as much as 105. The difference in xml200 is due to
repetitiveness in the data (long XML tag names, etc.). This dataset is sensitive to m
as long as the character access is involved; in datasets like english200, the average
matching prefix length during the comparisons is not very sensitive to m (grows only
slightly with growing m). The second factor is only a slight reduction of the resulting
interval width with growing m. Note that most methods work faster on narrow

https://bitbucket.org/kowallus/sa-search-dev/
https://bitbucket.org/kowallus/sa-search-dev/
http://pizzachili.dcc.uchile.cl/
http://pizzachili.dcc.uchile.cl/
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Figure 4. Count times for the standard suffix array and the SA augmented with a lookup
table on triples of bytes and a hash table over k symbols (k = 12 for dna200, k = 6
for proteins200 and k = 8 for the other datasets), using the standard and the doubling
search for finding the right interval boundary. The standard SA size is 5n (bytes), the
size with LUT3 is 5.321n and the size with a HT is 5.584n, 5.882n, 6.549n and 5.532n,
respectively, for dna200, english200, proteins200 and xml200.

intervals, due to reduced time for finding the right boundary. Consider extending
the pattern length from m = 9 to 10. For english200, the average interval length
gets reduced to 56 %, while in xml200 case to 83 % (in other words, the average
interval for xml200 shrinks by one sixth only, a really mild improvement). This
effect occurs also in proteins200. Those two factors, taken together, may explain
why for xml200 using a smaller m may yield a shorter overall time, as opposed to
other datasets. A similar reasoning also works for Figure 6.

Figure 5 shows how spending more space (from 215 to 225 array slots) for
Huffman-based LUTs improves the count times. Apart from order-0 (i.e., context-
free) Huffman coding also order-1 and order-2 Huffman models were used, to show
that increasing the context order helps on compressible datasets (english200,
xml200), but not on dna200 and proteins200 (comparable compression and more
space used). Using, e.g., order-2 encoding means that the first input symbol is
order-0 encoded, the second order-1 encoded and all the following ones are order-2
encoded. For dna200, biologically meaningful search patterns do not contain the
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Figure 5. Count times for the standard suffix array, the SA augmented with a lookup table
on pairs or triples of bytes (LUT), and on 15, 19, 23 or 25 bits of Huffman codewords
(a series for a different coding order), and the hash table (HT) on varying k-grams from
the text. The right interval boundary is found with the doubling technique.

N symbol and these should also be avoided in the searches with order-1 or order-2
Huffman-based LUT. The reason is that the N symbols tend to cluster, and N pre-
ceded by one or two Ns has high probability, which results in a one-bit Huffman
codeword. In consequence, one of the inputs of our Huffman-based LUT can be
a relatively long run of N symbols, which also means that the minimum pattern
length should be relatively large (e.g., over 20), which is obviously undesirable.

Figure 6 shows the impact of the node size B in the B-tree layout on the count
times, with varying pattern length. Even B = 1 results in a much faster search than
with a standard SA (by a factor of 1.7–2.0; cf. also Figure 4) and growing B helps
more, up to B = 32 (on all the datasets, B = 64 is slightly slower). Still, the speed
gap between B = 1 and B = 32 rarely exceeds 10 %. This small improvement may
seem disappointing, but is understandable. Using B > 1 improves access locality,
concerning the suffix offsets, yet the accesses to the text are inevitable and those
are generally not cached. This effects flattens all results. Moreover, the top levels
of the tree (disregarding the choice of B) are cached across multiple patterns in the
test collection.

The relative times of count and locate per found item, as a ratio of the respective
results of the SA variant with the B-tree layout and the plain SA, are shown in
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Figure 6. Count times for the standard SA and the SA with the B-tree layout, for selected
node sizes B. The right interval boundary in the standard SA variant is found with the
doubling technique (-dbl).

Figure 7. The locate operations in the B-tree SA variant suffer from the need
to traverse over many layers of the tree, which is relatively more costly when the
number of pattern occurrences tends to be larger (i.e., for small m). When m grows
and occ is often a few (or even one), this overhead is relatively smaller and the
cache-friendliness of the layout more than compensates the extra operations. The
count operation, after the boundary suffixes are found, is also more costly in the
B-tree layout, but the extra cost (logarithmic in N , as opposed to constant for the
standard SA) is computational, without extra accesses (and thus resulting cache
misses) to data.

In Figure 8 we show how augmenting the SA with various structures reducing
the initial search interval affects the query times and the used space. The hash ta-
ble (HT), based on the xxhash function (https://github.com/Cyan4973/xxHash),
stores 8-grams from the text and was tried with two load factors (LF); the solution
is called the SA-hash index in the original works [15, 16]. LUT2 gives a significant
boost in a tiny space, yet it is the hash table (LF = 0.9) that excels here, speeding
up the baseline variant by a factor of 1.5–2.

As our SAs with the B-tree layout can be augmented with prefixes of the suffixes
visited in the first steps of the traversal of the tree (i.e., in the top levels), we test
the impact of the prefix length on the performance and space of the resulting index

https://github.com/Cyan4973/xxHash
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Figure 7. Count and locate relative times for the SA variant with the B-tree layout and
the standard SA, for selected node sizes B

(Figure 9). Adding the prefixes gives a noticeable speedup even if they are limited
in length to 8 characters and are attached to a few tree levels only, while the space
overhead is rather small. Longer prefixes and more levels help less for a much
bigger space penalty. Combinations of all ideas presented in the paper are shown
in Figure 10, where the best option is to combine the B-tree layout with LUT/HT
(adding prefixes on top of it has a negligible effect). In total, the speed of the
standard SA with the standard right interval boundary search was usually improved
by a factor exceeding 3 (from 2.6 for xml200 to 3.9 for dna200, for m = 24).

In the last experiment we used the SA-hash index in a variant with varying
the length of the hashed prefix. Different lines (space-time tradeoffs) are obtained
with varying the parameters k1 and k2 (Figure 11). The key lines to compare
are denoted as “SA-dbl & HT” (which is SA-hash with the doubling technique for
finding the right interval boundary) and “SA-dbl & HT-var-k” (which is the new
variant).

Table 2 presents some details, grouped in pairs of rows. The value of k (prefix
length) used in the SA-hash algorithm is presented in the top rows. The parame-
ters k1 and k2, and r, the interval width threshold, found in a learning procedure, are
presented in the bottom rows. Clearly, r for the given dataset and the parameters
k, k1, k2, is such to make the sizes of the compared structures possibly equal, as the
next column demonstrates. More precisely, we find r in the following way. Let s1
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Figure 8. Augmenting the suffix array. The right interval boundary in the standard SA
variant is found with the doubling technique (-dbl). The four points in each series corre-
spond to: no extra data, LUT on 19 bit and 23 bits, respectively, using order-1 Huffman
coding, and HT with LF = 0.9 and k = 8.

be the size of the SA-hash index for a given k. For fixed (arbitrarily chosen) values
of k1 and k2, such that k1 < k and k2 > k, we binary search for r in a way to obtain
the size of the HT-var-k index not greater than s1, but possibly close to it.

However, we see in Figure 11 that the net result of our efforts is mixed. In
many cases the new variant is able to achieve a slight improvement in speed using
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Figure 9. Index sizes and count times for the SA with the B-tree layout, when several top
levels of the tree store the corresponding suffixes’ prefixes of length {0, 4, 8, 12, 16}
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Figure 10. Index sizes and count times for several SA variants with different layouts and
extra data. Successive points in the series are obtained by changing the LUT or hash table
component and/or using the prefix copies on varying number of levels in the tree.

the same space, with (sometimes) queries faster by more than 10 % for the xml200

dataset. On the proteins200 dataset, however, using k1 and k2 instead of a single
value of k makes the queries slower by more than 10 %.

4 CONCLUSION

Algorithm engineering not once revitalizes old ideas and data structures. In this
work, we attempted to improve the performance of the classic full-text index, the
suffix array. Our work focused on the navigation over the index, changes to its layout
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Figure 11. Index sizes and count times for the SA-hash index with two hashed prefix
lengths (k1 and k2)
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Dataset k k1 k2 r Total Size Filter Size avg log2(ival width)

dna200 12 – – – 5.584 – 5.256± 2.333
– 10 16 964 5.584 0.006 7.601± 2.528

english200 8 – – – 5.882 – 7.045± 3.797
6 12 3726 5.882 0.030 7.115± 3.695

proteins200 6 – – – 6.549 – 4.056± 2.801
4 10 2989 6.549 0.001 7.802± 4.277

xml200 8 – – – 5.532 – 12.102± 5.942
6 12 867 5.528 0.032 10.925± 5.539

Table 2. Index sizes for four 200 MB Pizza & Chili datasets. The used parameters are:
k for the standard SA-hash index and k1, k2 for the SA-hash index with variable prefix
lengths. The parameter r, the interval width threshold, was set in a way to have the two
index sizes possibly close to each other. The rightmost column presents the average binary
logarithms (with their standard deviations) of the search interval widths.

and augmenting the index with extra data. The experiments show that generally
the best option is to combine a B-tree layout of the suffix with a lookup table or
a hash table (reducing the interval of suffixes for further binary or k-ary search),
with a speedup over the standard SA configuration by a factor usually exceeding 3,
for a relatively small penalty in the space.
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