
Computing and Informatics, Vol. 38, 2019, 497–524, doi: 10.31577/cai 2019 2 497

MODEL VARIATIONS AND AUTOMATED
REFINEMENT OF DOMAIN-SPECIFIC MODELING
LANGUAGES FOR ROBOT-MOTION CONTROL

Verislav Djukić

Djukic Software GmbH
Nürnberg, Germany
e-mail: info@djukic-soft.com

Aleksandar Popović

Faculty of Science, University of Montenegro
Podgorica, Montenegro
e-mail: aleksandarp@rc.pmf.ac.me

Ivan Luković, Vladimir Ivančević

Faculty of Technical Sciences, University of Novi Sad
Novi Sad, Serbia
e-mail: {ivan, dragoman}@uns.ac.rs

Abstract. This paper presents an approach to handling frequent variations of mod-
eling languages and models. The approach is based on Domain-Specific Modeling
and linking of modeling tools with adaptive Run-Time Systems. The applicabil-
ity of our solution is illustrated on an example of domain-specific languages for
robot control. Special attention was given to the following problems: 1) model-
level debugging; 2) performing fast transformation of models to native code for
various hardware platforms and operating systems; and 3) specification of views
and view-based generation of applications for validation of meta-models, models,
and generated code. The feedback for automated refinement of models and meta-
models is provided by a custom adaptive Run-Time System. For the purpose of
synchronizing models, meta-models, and the target Run-Time System, we introduce
action reports, which allow model-level debugging. In order to simplify handling of
frequent model variations, we have introduced the linguistic concept of a modifier.

498 V. Djukić, A. Popović, I. Luković, V. Ivančević

Keywords: Domain-specific modeling, run-time system, model variations, model
execution, model-level debugging

Mathematics Subject Classification 2010: 68Q60, 68T40

1 INTRODUCTION

In this paper, we communicate our experience concerning the development and
application of Domain-Specific Modeling (DSM) and adaptive Run-Time Systems
(RTS) for robot control. We present typical problems and our solutions related to
the practice of:

1. constructing and applying robot-motion control languages (RMCL);

2. frequent variations of robot control models;

3. model execution and model-level debugging, i.e., incremental updating of control
logic; and

4. parallel refinement of robot control models and modeling languages.

Our approach, which is based on the DSM architecture [1], is named the DVMEx Ap-
proach. In order to verify the approach in practice, we developed run-time systems,
compilers, interpreters, and modeling tools, all of which comprise the DVMEx IDE.
Besides using our components to verify the approach, we also employed MetaEdit+
WB and MetaEdit Modeler [2]. These tools have been successfully used in various
domains, e.g., automation, control and embedded systems.

There is a need for significant improvements of software development in automa-
tion and robot control, especially in the development of tools for:

1. formal specification and execution of control processes, and

2. construction and application of RMCLs.

For each level in the architecture of DSM solution, we specify one of the most
important problems.

The level of the modeling languages. General purpose graphical languages
(e.g., UML) are often used for modeling of specific processes, but they are not
sufficiently understandable to users in a particular application domain.

The level of the model transformations. Transformations are complicated for
an average programmer. Moreover, they are focused, or even limited, to a single
target general purpose programming language (GPL).

The level of the target interpreter or run-time system. The target inter-
preter in most cases does not contain meta-data describing the semantics of
a control process, but only commands concerning the semantics of basic log-
ical and arithmetic operations. A single invalid basic operation may lead to

Model Variations and Automated Refinement of DSM Languages for RMC 499

an unexpected or unresolvable state. Parsers used for reverse construction of
class diagrams or state diagrams are part of most UML tools, but they do not
solve the problem of losing the relationships between the modeling tools and the
target interpreter of specification.

The DVMEx Approach solves these problems in the following manner:

The level of the modeling languages. Instead of GPLs and existing robot-
motion control languages or operating systems, such as Robot Operating System
(ROS [3]), more DSLs are constructed and used. Over the DSL models, three
views are initially defined, one of which is focused on the topological properties
of a robot arm, the other on motion and control logic, and the third on the
real-world environment where the robot performs actions. Due to the usage of
DSLs, all these views are close and comprehensible to end-users, domain spe-
cialists, and software architects. Figure 1 shows the three views on the robot
control model. Three different DSLs, which are integrated at the meta-model
level, are used simultaneously for the modeling robot task. The first language,
which is presented in the left-hand side in Figure 1, is aimed at specification
of topological properties of a robot arm, such as number of joints and fingers,
length of each segment, constraints for rotation and elevation, etc. The second
language, which is presented in the middle of Figure 1, is used for description
of a state machine, i.e., an initial set of actions and states, as well as their re-
lations with signals coming through various sensors, and commands explicitly
issued by end-users. Since the function-block language (IEC 61131-3) is used in
the automation and industry, it is convenient that this DSL uses function-block
diagrams with graphical syntax that is close to users from the concrete appli-
cation domain. The third language and submodel (right-hand side in Figure 1)
are used for description of environment in which a robot performs actions. It
is to the greatest extent specific for the application domain. When it comes to
the drawing of portraits or sketches, this language is used to specify motions,
canvas dimensions, canvas distance, rotation and elevation in 3D space, relative
to the reference point of the robot arm. When there are obstacles between the
canvas and robot arm, then the DSL for motion specification should include
concepts for expressing the effects of obstacles on motion. Figure 1 presents
an example of a motion variation, where curve is shifted upward, and then ro-
tated.

The first and second DSLs are being constructed quickly in practice, and the
validity of the specification can be more easily verified than in the third lan-
guage. A simple construction of language concepts for 3D representation of
motion is not expected from a general purpose DSM tool. Therefore, this spe-
cific problem is solved by using action reports [4] and more advanced libraries
or 3D visualization components, which are not part of DSM tools. Additional
descriptions may be found in the section devoted to the model-level debug-
ging.

500 V. Djukić, A. Popović, I. Luković, V. Ivančević

Figure 1. Views on the DSL for robot control

The level of the code generators. An interpreter of MERL-like specifications
is implemented [2] for M2T (model to text) transformations, to create code and
code generators (generators of generators). Starting from an instance of a model
of certain type, the interpreter of MERL-like specifications generates the code
concerning the control logic, “meta-logic”, and “meta-arithmetic”, as well as ac-
tion reports [4]. Action reports synchronize the state between the model, RTS,
and monitoring application, unless the modeling tool is used for monitoring.
They are the means for model-level debugging and model execution. The code
concerning the “meta-logic” and “meta-arithmetic” is described in Section 5. In
brief, this code serves two basic purposes:

1. it increases reliability of control logic by implementing different strategies
for recovering the system from an invalid state; and

2. it detects atypical states of the control logic and provides feedback to the
modeling tool, which is used to refine the DSL.

The level of the target interpreter or run-time system. The Run-Time
System (RTS) is conceived and implemented as an adaptive component that

1. executes both the instructions belonging to a high level of abstraction and
binary (native) code;

2. receives and links specification increments without interruption; and

3. simultaneously executes the basic control logic and “meta-logic”.

Model Variations and Automated Refinement of DSM Languages for RMC 501

When compared to the similar Programmable Logic Controllers (PLC) used
to execute IEC 61131-3 programs [5], it is extended with the concepts from
IEC 61499 [6] and a set of libraries for various application domains. In this
manner, the modeling of distributed controllers, which is based on finite state
automata, is simplified.

Besides Introduction and Conclusion, this paper has six sections. We first give
a short description of the architecture of our DVMEx solution for robot con-
trol (Section 2). Different approaches to solving the problem of unexpected
system states, frequent model variations and their implications regarding the
construction of modeling languages are described in Section 3. This section
also features a short review of papers related to the RTS-driven approach to
the application refinement and the construction of UML profiles for the pur-
pose of model-driven development of industrial process control applications.
In Section 4, there is an overview on the evolution of modeling languages,
from more general to more domain-specific. We outline different approaches
to language construction, from the classification using subtypes to modifica-
tions, which are a linguistic concept allowing specification of robot actions
at different abstraction levels. In Section 5, we elaborate on ways to specify
the “meta-logic” and “meta-arithmetic” at the level of the model, code gen-
erator, compiler and run-time system. In Section 6, we describe a platform
for model-level debugging, which includes visual tracing. Section 7 contains
related work. In Section 8, we conclude this paper by outlining our generic
model of DSL refinement and listing our theoretical and practical contribu-
tions.

2 THE ARCHITECTURE OF A DVMEX SOLUTION
FOR THE ROBOT CONTROL

The architecture of DVMEx Solution for the robot-motion control (Figure 2) repre-
sents an extension and a concretization of the basic architecture of DSM solutions [1],
which encompasses a DSL, code generator, domain framework, and interpreter or
target system. Special attention is devoted to:

1. extending a target interpreter (run-time system), which, in addition to executing
complex control operations, executes also meta-logic operations and provides
feedback to modeling tools;

2. extending code generators, to which we added action reports, which synchro-
nize the state of the run-time system with tools for modeling and meta-modeling,
and various applications; and

3. using modifiers to construct, slice and merge modeling languages.

The meta-modeler creates DSLs using tools for meta-modeling. These languages
may be created separately for each domain, i.e., each type of the task that the robot
is supposed to execute.

502 V. Djukić, A. Popović, I. Luković, V. Ivančević

Figure 2. The architecture of the DVMEx solution

There are several groups of code generators. The first one includes generators
that generate source code in IEC 61131-3, some GPL, quasi assembly instructions of
higher abstraction level or, directly, native code for a particular processor type. The
second group includes “generators generating generators”, i.e., generators of action
reports. They provide the high-level synchronization between the modeling tools,
target RTS, and monitoring applications. The third group of generators is used
to specify the semantic actions executed during model changes. These generators
define rules concerning the integrity of models and transactions, as well as states
in which there is synchronization between abstract models and code executed in
the RTS. The fourth group includes generators that generate documentation in the
PDF or HTML format, either directly or by using document description DSLs as
intermediaries.

The framework of the DVMEx solution for robot control includes

1. compilers created to support more thorough specifications of control processes;

2. libraries; and

3. web services.

At the framework level, there are also libraries used to implement complex 3D
motions and actions, rules of “meta-logic” and “meta-arithmetic”, which is further
elaborated on in Section 5.

The run-time system interprets or executes specifications created from abstract
models. The available versions support Linux, WinCE and Win XP/7/8/10, from
which they utilize memory and file managers, as well as the TCP/IP protocols. The
RTS features a preemptive adaptive scheduler managing tasks of different types and
priorities, synchronized with the drivers and monitoring applications. Unless the

Model Variations and Automated Refinement of DSM Languages for RMC 503

modeling tool is used for monitoring, client applications are generated using a code
generator. In this manner, the action report interpreters, which also support Linux,
WinCE and Windows platforms, are used as default applications for the model-level
debugging. The visual debugging also uses services of DVDocGen Framework ([7])
to generate PDF or HTML documents. Document scripts, which are specified using
a textual DSL for documents, are dynamically generated during the model debug-
ging, providing PDF and HTML documentation for the verification of test cases.

The mechanism concerning the feedback from the RTS to the other levels that
are part of the DVMEx architecture is implemented by monitoring the model execu-
tion in the RTS and by event triggering. The RTS recognizes predefined (or built-in)
states of the interpretation or execution of control logic: Before variable initializa-
tion; After variable initialization; Before state changed; After state changed, etc.
The monitoring application or modeling tool sets a filter that determines the par-
ticular state changes together with the parameter they produce, which are relevant
and should be considered. Besides the default states of the RTS, the IEC 61131-3
language and compiler are extended with events, similarly to GPLs. The request for
state change is defined as a 4-tuple (Condition, Event ID, Parameters, RTS State).
These requests may originate from the hardware level, drivers, control logic and
meta-logic code.

In addition to these states, which are considered valid, the RTS detects the
invalid variable values or wrongly executed arithmetic and logical operations. The
strategy for resolving these situations is presented in detail in Section 5. Each of the
feedback connections from the lower to the higher abstraction levels provided meta-
data that are sufficient to make a reference to an instance of the object, relationship,
role, model, and code generators that generated certain code portion.

We conclude the overview of the architecture of the DVMEx solution with a re-
mark that it is an extension of DSM architecture. The level of the code generator
is extended with action reports, enabling the visual debugging and model-execution
without additional programming. The RTS is adaptive and supports updating of
the code that is responsible for control logic and meta-logic during run-time.

3 UNEXPECTED STATE OF THE MODELS
AND CODE AND MODEL VARIATIONS

An unexpected state represents a paradigm uncovering problems that are related
to errors in RTS or in models, model variations, the incompleteness of a modeling
language, or the non-adaptivity of the run-time system. There are at least three
environmental causes of unexpected states of a system:

1. the lack of appropriate modeling concepts (an incomplete DSL);

2. the lack of code generators; and

3. insufficient power or flexibility of the target RTS that interprets or executes the
generated code.

504 V. Djukić, A. Popović, I. Luković, V. Ivančević

The software for automation and robot control that handles a large number
of unexpected states is inefficient and expensive, particularly if general purpose
languages or tools are used to create and maintain the software. The appearance of
an unexpected state diverts production activities from the expected workflow and
decreases the level of their automation. The main characteristics of the unexpected
state with respect to the impact on the automation and robot control process are:

• during the execution of a task, an unexpected state cannot be abstracted as any
existing model or pattern, described using the existing DSL concepts;

• the actors of a control process are capable of perceiving unexpected states by
using their own experience, personal creativity, and the level of knowledge of
the modeling framework and language;

• unexpected states are also the ones for which code generators cannot produce
the expected code; and

• the control logic of systems in which unexpected states are frequent is most often
generated or programmed again, and, during the switch to the new code, the
whole control process is temporarily stopped.

A significant amount of research aims at providing support for modeling variant-rich
software systems (Software Product Lines) in general. Patterns play an important
role in solving the problem of specifying variations. There are a lot of references
covering application of patterns in DSM. In [8], the process of creating UML pro-
files for particular domains is presented. In [9], the authors discussed the role of
patterns in the construction of valid DSLs. One of the languages for this purpose is
the Common Variability Language (CVL) [10]. CVL is a generic language for mod-
eling variability in models in any DSL based on the Meta Object Facility (MOF).
Although conceptually quite comprehensive, CVL still does not offer an adequate
support for systematic refinement of models and modeling languages. The following
practical constraints limit the use of CVL for this purpose:

• specifying CVL fragments and their referencing need to be more intuitive and
thus easier for average users;

• specification of a large number of variations at the level of a model significantly
diminishes model understanding and usability;

• specification of variations needs to be provided as a User-Driven Modeling
(UDM) activity or influenced by the run-time system, due to the requirement
of systematic gathering and classification of variations; and

• a specification of variations needs to be provided not only at the level of models,
but also at the level of a target language to which the models are transformed.
In practice, this is motivated by the requirement that the effects of a variation
may be scoped to different abstraction levels. For example, variation effects may
be scoped both to main control logic and monitoring applications.

Model Variations and Automated Refinement of DSM Languages for RMC 505

For the purpose of synchronization we worked out incremental modeling, which
includes reliable “on the fly” validation of as many states as possible at the side of the
running target system, instead of emulators. We propose improving synchronization
that provides:

1. specifications of model variations and synchronization of abstract models, and
executable code at the level of meta-model and code generators;

2. systematic refinement of the DSL by means of an analysis system states; and

3. the introduction of the concept of a modifier, as means to flexible systematic
classification of system states and model variations.

In Figure 3, we present a DSL for modeling of a robot arm. This language, with
minor additions, may be used in practice for modeling different types of grippers
and industrial robots. This model serves as a running example that illustrates how
our approach may alleviate some of the important problems in construction and
refinement of DSLs and models, multilevel modeling, model variations and model
execution.

The robot arm consists of one or more fingers, each further composed of one
or more segments. FingerSegment represents the base object type in the DSL for
arm. By modifying this type, we created additional types: Joint, Phalangs and
DistalPhalangs (see the upper section of Figure 3). Each modification is represented
by modifier object, a modification relationship and the roles of the base object
and the modified object. Furthermore, the arm also includes Carpals, RootJoint
and Underarm. The ArmAction object acts as a provider of position, elevation
and rotation of finger segments. During language testing, it may be convenient
to test only some of its elements or submodels, e.g., only two fingers. The formed
relationships with the ArmAction object determine which of the fingers are included
in model interpretation. The purpose of such an approach to DSL construction is
to modify the metamodel through a model instance. This is achieved by modifying
default values, and introducing (or removing) attributes and relationships in order
to create new types, supertypes, subtypes and object instances. On each model
change, during visual debugging, the following activities are performed:

1. control logic code is generated;

2. a description of the arm’s topology is generated; and

3. the model is executed to serve as a visual debugger [11].

Modifiers may be used to express significantly more complex relationships that
are used for:

1. multilevel modeling, which combines inheritance and instantiation;

2. inheritance of a type from an instance, a type from a type, an instance from
an instance, a type and an instance from the generated code; and

3. specification of a set of allowed model variations.

506 V. Djukić, A. Popović, I. Luković, V. Ivančević

Figure 3. Modifiers as means to DSL refinement

In Figure 3, the modification relationship is represented by a diamond shape
with the M symbol inside. Modified objects are denoted by 〈Mod:modName〉. The
semantic of property modification may be: instance, denoted by the (:); new prop-
erty, denoted by the (+); or inapplicable property, denoted by the (-) symbol. Within
relationships, modifications can change and remove relation and role types. The first
two property roles are intuitively clear as they are available with the same meaning
in the majority of contemporary modeling languages. The inapplicable property is
introduced as a counterpart of the potency concept from the UML extension [12].
However, in our solution it does not require predefining the allowed depth of instan-

Model Variations and Automated Refinement of DSM Languages for RMC 507

tiation and does not restrict any attribute to be applicable again to some subtype
or instance.

The example from Figure 3 shows a portion of the DSL, in which the types of
robot arms are described. At the most general level, the FingerSegment is defined
as a segment for which the elevation and the size are known. For the sake of the
completeness of the RMCL specification, a constraint must be used to explicitly ex-
press the rule that the Elevation depends on the elevation of the previous sequential
segments. The Joint object is a modification of a segment with the default size of
1 cm and the default elevation of 90 degrees that is also extended with the values for
the position of the joint center and the rotation angle (with respect to the X axis
in an XY coordinate plane). Joint is a subtype of FingerSegment. The Phalanges
object has the default size of 3 cm. However, the rotation angle is not applicable
to this object because the corresponding segment may move only along a single
axis. The same is true for the position because Phalanges is linked to a joint. As
it is necessary to know the base joint for each Phalanges, we introduced the Fin-
gerRoot property. Although it may appear that DistalPhalanges is a subtype of
the Phalanges object, that is not the case here. It has the default size of 2 cm and
the FingerRoot property is redundant because there is at least one joint between
Phalanges and DistalPhalanges that is not the root of the finger.

The presented sequence or hierarchy of object modifications is only one possible
case, as variations and their semantics depend on mechanical and topological prop-
erties of the robot arm for which various types of programs have to be generated.
The given example is an illustration of the problem of frequent variations of mod-
els and modeling languages, which may be solved by multilevel modeling, i.e., by
integrating modeling and metamodeling.

In order to illustrate such an approach to language construction, we provide
an examples of textual representation (the so-called DSL script) of robot arm ob-
jects. Each arm specification is a sequence of the DSL scripts given below.

〈Joint.Size:1.5 cm,Position(10,20,10)〉
The joint of size 1.5 cm at the initial position (10, 20, 10)

〈Phalanges〉
The default Phalanges of size 3 cm

〈DistalPhalanges.Size:2.2 cm〉
DistalPhalanges of size 2.2 cm

One expected purpose of the RMCL is to simultaneously express different as-
pects of robot control which may depend on mechanical, thermal, electrical or visual
properties. For the purpose of integrating the languages used to model individual
aspects, it is necessary to provide a sufficiently flexible mechanism for establishing
semantic relationships between language concepts that are related to different as-
pects. The herein introduced modifiers could be the mechanism for this kind of
meta-modeling. The code generators, together with action reports, which act as an
interface between the model and the DSL scripts, allow for different interpretations
of the examples from Figures 3 and 4.

508 V. Djukić, A. Popović, I. Luković, V. Ivančević

4 DSL REFINEMENT ON EXAMPLES

The practical benefits of using DSM and modifiers are illustrated in the development
of software for the robot that paints. We set up a small DSM team consisting of
a software engineer (a DSM specialist), domain expert (a mechanics constructor)
and end-user (a painter). The software engineer constructs the language, trying to
identify domain-specific concepts from the lower to higher level of abstraction. In
this process, the greatest assistance is rapid DSL verification using a set of initial
models and a target interpreter, or run-time system supporting an incremental up-
date. The domain expert knows the problems that his or her robot is capable of
solving, current and potential user requests, and what kind of robot arm can be
made. The greatest assistance is a graphical language and a software tool for quick
functional specification, and verification of the application of existing and planned
robot models in various environments. The end user, or a person in charge of the
application testing, expects to have applications, which without special training, can
be used for a variety of robots, and also to automatically document the ability to
use them for various tasks.

Figure 4 shows several examples of motions of a robot arm that draws por-
traits and sketches using a set of curves. Curve parameters are specified by an end
user or they are obtained automatically by analyzing the image or 3D objects and
recognizing its parts. Figure 4 a) is obtained by combining the basic types of mo-
tion in 2D, such as straight lines, arbitrary jumps, circle, sinusoids, impulses, and
Bezier curves. The DSL concepts for modeling robot motion logic that allows draw-
ing a portrait on a canvas consists of: a canvas, base type “Motion” and subtypes
that match curve types, as well as concepts for describing a robot arm topology.
Target framework may be an existing robot control language, but after the con-
struction of the first DSL for the robot motion control, it is already clear that the
framework should be also improved and simplified. In our case, the DVRobCon
Motion Framework reduces all the motions to the finite set of curves with prop-
erties: the start and end point in space, curve type, amplitude height, number of
impulses or oscillations, rotation angle, and curve offset. With such a framework,
model objects representing motions can be mapped one-to-one into motion frame-
work or library. When a DSL should include concepts such as eye, nose, eyelash,
such instances from a model are transformed into 1..M commands of the motion
framework.

Figure 4 b) shows the motion where a user at the time of motion sends a signal
or a command to the robot to draw the straight line of a certain length, relative
to the current point, and then return and continue the motion. Such a request
is solved by introducing a new language concept named Deviation Point, which
is not a true subtype of the basic motion types, because it also contains an event
(triggering an operation). If a robot arm uses a brush instead of a pencil or pen,
some of the lines can be drawn with different thicknesses – thinner to the ends,
and thicker in the middle (Figure 4 c)). We introduce a new DSL concept named
EyeLash, as a modification of the Bezier curve. Considering the domain expert

Model Variations and Automated Refinement of DSM Languages for RMC 509

Figure 4. Refinement of robot motion control language

experience (painter) the line from Figure 4 c) can be obtained by setting rotation
angle to 70 degrees and line (brush) offset to 5 mm (Figure 4 d)).

Further steps in refinement of the DSL for painting bring a modification of Bezier
curve, which contains impulses (Figure 4 e)). In the electronics terms, this is the
modulation of a Bezier curve with impulses. The curve performing modulation is
called a modulation pattern. Therefore, the DSL is extended with the concept
Motion Modulator. This modulator is a curve that affects one or a group of
curves, and depending on the orientation in the space, it produces new, complex
or composite motions. Although it is mostly clear, from the mathematical point of
view, how to implement such a path, things coalesce when it is necessary to ensure
continuous motion of uniform speed, accelerated, or motions which are re-modulated
at the run time. Such modulators, even the simplest ones, solve the problems of
performing complex 3D operations in CNC machines. These modulations give us the
freedom to decide about the portrait while painting, not in advance. In Figures 4 e)
and 4 f), modulation patterns are shown in the bottom, while in the top it is shown
resulting modulated Bezier curve for EyeLash.

The extension of the DSL for painting from 2D to 3D, i.e., from the DSL for
painting to the DSL for sculpting, is presented in Figure 4 g). A modern artist
desires wired lashes bent in a pulse-like shape. We introduce a new DSL concept
named 3D EyeLashes, whose shape, dimensions, inclination, thickness, etc., are
parameterized.

When it comes to a robot as a painter and Domain-specific Modeling, in the
process of refining DSLs, the goal is to create a set of modeling concepts that express
important characteristics of

1. painting epochs and directions,

510 V. Djukić, A. Popović, I. Luković, V. Ivančević

2. techniques and materials, as well as

3. individual characteristics of the painter.

We are convinced that objectives 1 and 2 can be realized to a significant extent
with at most two levels of modulation, i.e., modification of the base curves at the
time of painting or sculpting. When it comes to the construction of painter-specific
language concepts, modulation patterns should also express the motoric, intellectual
and emotional properties of painters or sculptors. Such patterns are formed both in
advance and at the time of work on a particular painting or sculpture.

Refining the DSL with concepts such as EyeLash that reflects the characteristics
of a painting direction or a painter also affects the objects of the control logic and
painting environment. Figure 5 shows the modifiers for identifying the subtype
of the function block that calculates the points in 3D space (libID), the brush size
(disCarpSize), the position of the canvas, the rotation center, and the set of curves for
drawing EyeLash (motAndPos). All individual modifiers are grouped into EyeLash,
as modification type. Default specifications of user applications are generated in
a human-readable XML format for interpreting under different operating systems
and hardware platforms (Listing 1). The specification contains several parts:

• submodels, or forms and subforms;

• visual properties of form elements in applications;

• commands for communication with the target RTS, and their invocation rules
(cyclic or upon event occurrence);

• commands for the exchanging properties or events between the form elements;
and

• list of modifiers with an identifier of the group they belong to.

ModelModifiers contain object modifications related to control logic, arm topol-
ogy, and objects in the environment, as well as their different layouts. During the
interpretation, an end user can select a group or individual modifier, to select view
and associated layout. The end user is also allowed to change properties in the
execution time. The DSL semantics cannot be changed through user applications,
but some properties, having influence on default values, can be changed. Updated
properties are taken from the modeling tool in run-time, and serve as the basis
for updating default property values or domain definitions. Beside meta-logic and
meta-arithmetic, which are described in the next session, feedback gained from the
target interpreter of applications is also used for automated refinement. The soft-
ware architect and end-users simultaneously “debug” the model and the generated
code. In the scenario of model execution, or visual debugging, after each change in
the model, the increment of program code for the robot controller, user applications
and action reports are regenerated. The time elapsed from the change in a model to
the new start of control logic and user applications is a few seconds. In most cases,
this is also the time spent for demonstrating the code and application validity.

Model Variations and Automated Refinement of DSM Languages for RMC 511

Figure 5. Representing and grouping of modifiers

5 META-LOGIC AND META-ARITHMETIC

By meta-logic and meta-arithmetic we denote a set of operations that provide ad-
ditional information about the context of the execution of logical and arithmetic
operations. In short, meta-logic includes tracking the status of logical operations,
while meta-arithmetic includes tracking the status of arithmetic operations. Both
operation types calculate the logical value regarding the correctness of operations
during execution and, by applying different strategies, may help make the control
process as stable as possible. Herein, both operation types are often referred to as
meta-logic. The DVMEx approach allows for the definition of meta-logic at each of
the levels forming the architecture of the DSM solution:

1. at the level of the meta-model and model, by means of language concepts, by
specifying the semantic domains of attributes and model constraints;

2. at the level of code generator, where code is generated for the rules of meta-logic,
as well as when rules are not explicitly expressed by the model;

512 V. Djukić, A. Popović, I. Luković, V. Ivančević

<Submodels>
<Submodel name=”Control l o g i c ” , . . . >

<SubmodelElems>
<Element name=”l ib ID ” Value=”MotLib 2 ” , . . . / >

</SubmodelElems>
</Submodel>

</Submodels>
<Application>

<Object name=”Canvas” Le f t =”60.0” , . . . />
</Application>
<RTS Commands>

<Events>
<event ob j e c t=”DVRobCon . doMotions” name=”OnSetValue”>

< ! [CDATA[DB SV ”DVRobCon . doMotions ” , ” (()) ”]] >
</event>

</Events>
<Cyc l i c time=”200”>

<cmd cond i t i on=”CycleID=1” ac t i on=”DB GV (varL i s t)”]]></cmd>
</Cycl ic>

<DirectMappings>
<mapping>

< ! [CDATA[: . motionSpeed . SendToRTS(Value) ;]] >
</mapping>

</DirectMappings>
</RTS Commands>
<ModelModifiers>

<ModelModif ier name=”motAndPos” GroupID=”EyeLash”>
<Object name=”Canvas”>

<update prop Items = ” . . . ” />
<update prop Le f t =”55.0” />

</Object>
</ModelModifier>

</ModelModifiers>

Listing 1. Specification of an end-user application

3. at the level of the target language compilers (in this case an IEC 61131-3), by
using properties that define meta-logic for certain types of data and operations;
and

4. at the level of the RTS, by defining filters that determine the detection and
reporting rules about the operation status and unexpected states.

In Figure 6 there is an example of meta-logic that is explicitly specified by the
model. The rounded upper right section of the figure illustrates the meta-model,
i.e., the modifier type, while the central section of the figure is devoted to the
model instance. The instance of the function block div2: DIV, which uses division

Model Variations and Automated Refinement of DSM Languages for RMC 513

i f Type='DIV ' then
'VAR

v a l i d a t e 1 :VALIDATE;
END VAR'
/∗ Code f o r DIV(s l i d e r 1 , s l i d e r 2) ∗/
v a l i d a t e 1 := VALIDATE(div2 .OUT, SDef) ; '

e n d i f

Listing 2. An example of program code for validation

to calculate the length of the robot step based on the distance to some object
(sliders to the left), produces the undefined value. The domain-specific function
block VALIDATE determines the length of the step based on the input value shown
(produced) by the scale Sdef to the left. In order to resolve the unexpected state
of control logic, which is also invalid in this case, function block VALIDATE is
used.

In relation to the discussion of the modeling approaches in the previous section,
the approach is most similar to the modeling using modifiers. This kind of a DSL is
to a great extent an example of a modeling language (RMCL), which is often used in
practice. The textual representation (DSL script) of the model featured in Figure 6
may be of the form 〈DIV.validate〉valRepl Val.

In case the modeling language does not feature VALIDATE, but that kind of
a function block is available in the target language or library, the same meta-logic
may be specified using a code generator as presented in Listing 2.

Figure 6. Meta-logic at the level of the meta-model and model

In case function block VALIDATE is not available, the native code that checks
the input parameters IN1 and IN2 for DIV is generated. When a compiler is used
to implement the meta-logic, it generates additional native code instructions. The
native code checks the processor registers to determine the operation status (e.g.,
overflow, underflow, and divByZero) and assigns the status to a temporary result or

514 V. Djukić, A. Popović, I. Luković, V. Ivančević

variable. Native code for the meta-logic may be of the form shown below. In order
to be more readable, Assembly for Intel x86 processors is given in Listing 3. instead.
The assembly code sets status for a variable named DIV2. If any of variables used
for calculating is invalid, then the variable status will be also invalid.

Irrespective of the level at which the code for meta-logic is provided, we de-
fined several strategies concerning the evaluation of meta-logic expressions (Fig-
ure 7):

1. propagate – where operation statuses are propagated to all subsequent operations
in which some variable or temporary result is used;

2. reset assign – where the status is reset to valid whenever a valid value is assigned
to some variable;

3. reset cycle – where the statuses of variables are reset before each new program
execution cycle; and

4. ignore – where meta-logic is not executed, i.e., operation statuses are not tracked.

In the example in Figure 7, a function block for the data type conversion is
used, from a long to real value, but the input lreal value 5e+38 is greater than the
maximum real value. The type convertor is marked by tc:lreal to real, and the
symbol above which there is only tc is a graphical representation for assigning the
constant, which changes the output variable.

Figure 7. Different strategies concerning the meta-logic

The RTS allows for incremental updating of the code and dynamic change of the
meta-logic strategy. For the reliable functioning of control logic, the most suitable

Model Variations and Automated Refinement of DSM Languages for RMC 515

mov DIV2$status , 1
mov al , SLIDER1$status
cmp al , 0
jne ok3
mov DIV2$status , 0
ok3 :
movsx ebx , WORD PTR SLIDER1
mov al , SLIDER2$status
cmp al , 0
jne ok4
mov DIV2$status , 0
ok4 :
movsx ecx , WORD PTR SLIDER2
cmp ecx , 0
jne ok5
mov DIV2$status , 0
jmp sk ip6
ok5 :
mov eax , ebx
cdq
i d i v ecx
mov ebx , eax
mov DIV2 , bx

Listing 3. An example of generated Assembly code

strategy is reset assign. For the testing of control logic and model-level debugging,
the most suitable strategy is propagate. For the detection of deviations in the status
of control logic between the cycles of program execution, the most suitable strategy
is reset cycle. The ignore strategy is used in well-checked control programs, which
are automatically generated from well-checked models using well-checked modeling
languages.

6 PLATFORM FOR DSL MERGING
AND MODEL-LEVEL DEBUGGING

The efficacy of the construction, testing and application of new DSLs depends on
swift and simple utilization and adaption of existing languages (DSL reusability),
patterns and target systems that execute specifications. In the context of the the-
oretical discussion concerning syntax and semantics merging [13], we present our
practical solution – a platform that supports model merging and model-level debug-
ging which utilizes merged languages.

For the purpose of modeling in robotics and automation we use three DSLs,
which were merged by meta-model integration. In the example from Figure 8, the
first DSL (RMCL) is used to model topological properties of arm, foot or body, their

516 V. Djukić, A. Popović, I. Luković, V. Ivančević

motions and actions. The constructs from this DSL are shown in the form of a blue
hand. The positions of segments, with the exception of RootJoint, are not relevant.
However, relationships between segments do matter, as they determine topological
characteristics of the hand. The particular layout of the segments was chosen for
its more appealing look. For new cases, the construction of a DSL from the group
requires several days.

Figure 8. Platform for model execution and model-level debugging

The second DSL is a language for function blocks diagrams. The elements of
the language (named FBD DSL) are depicted as green rounded rectangles with in-
put and output ports. This language contains constructs of the target framework
according to the IEC 61131-3 specification. It is also extensible and acts as an in-
terface to an auto-adaptive run-time system. Code generators that are specifically
written for FBD DSL are generic and applicable to the merged language. FBD DSL
supports using a model to describe control logic to the greatest detail (the level of
variables and operations), instead of making it part of the code generator. The rela-
tionships between objects of different DLSs are expressed by mapping the properties
of RMCL objects to the ports of function blocks in FBD DSL and vice versa. The
complexity of the model may arise as a result of the presence of objects from differ-
ent DSLs and redefinitions of linguistic concepts in the same instance (Figure 8, left
part). However, this may be resolved through the DSM tool by utilizing different
model views (application, control-logic, topological, domain-specific) and applying
decomposition.

The third DSL features linguistic concepts that describe objects and properties
of the environment in which the robot operates. It is constructed by modifying
a set of general-purpose linguistic concepts, such as analog and digital controllers,
sensors, scales, switches, sliders, displays, etc. In the previous figure, the elements
of this language include sliders in the upper left section and green switches. By
using the objects of this DSL, it is possible to simply construct virtual signals and
generate controller drivers [11]. This method of generating “domain-specific drivers”

Model Variations and Automated Refinement of DSM Languages for RMC 517

from models is beneficial as it leads to better utilization of hardware resources and
faster native code, which is comparable to the optimized code provided by a C++
compiler. This DSL is part of the development environment and, therefore, it does
not require additional time for its construction. Any additional modification requires
at most one day of work.

Visual debugging is a process of executing models that is performed in parallel
with editing “on hot” without stopping the execution of the current program within
the RTS. On model change, the generated code may be forwarded to the parser or
the native code may be directly generated. The target RTS uses a dynamic linker
to receive specification increments and links the control logic code to variables.
Changes are performed within transactions. The completion of a transaction is
reported to the modeling tool by the RTS. Visual tracing is achieved by MERL-like
generators (action reports), which change model state within the DSM Tool based
on the state of interpretation or program execution. The average time between
a model change and the start of the execution of new native code is approximately
200 ms.

7 RELATED WORK

Software engineers demand significantly improved methodologies and tools to de-
velop and maintain reliable robotic applications. Robotic systems are inherently
complex, and developers must integrate various software tools and electronics from
different manufacturers ([14]). Recently significant efforts have been invested into
the research of model-based approaches and tools aimed to facilitate software de-
velopment in robotics ([15, 16, 17, 18, 19]). Also, numerous successful applications
of DSLs are reported in various domains including robotics [20]. Our research is
directed toward further evolution of the DSM approach with model execution and
modifiers. The model-execution concept has recently attracted significant attention
from the academic community. It may be found under different names, such as live
programing [21]. Model execution proved to be a powerful means for the dynamic
validation and verification of models. We implemented this concept using action re-
ports that are extended with a set of commands for communication with the target
RTS [22]. Also, we introduced modifiers and illustrated their use in several exam-
ples. In the context of graphical DSLs, modifiers are means to simple and intuitive
merging and customization of languages, as well as language application to new
problems.

In [23], Hästbacka et al. describe the application of the MDD and DSM ap-
proaches to the development of industrial process control applications. Their ap-
proach is based on the utilization of the UML Automation Profile modeling concepts
(UML AP). Based on our experience, there are several reasons why the application
of this approach to the generation of process control applications is limited. First,
both UML and the construction of UML profiles are complicated and, to the average
user in the domain of automation and process control, they do not offer a faster re-

518 V. Djukić, A. Popović, I. Luković, V. Ivančević

sponse to requests or a better insight into the system being modeled. Second, OPC
interfaces are not abstract in the manner that they could be described using a simple
language. For that reason, the high-level synchronization between the models and
the generated process control applications is limited. Third, the approach described
by Hästbacka et al. does not provide sufficient attention to run-time systems as in-
terpreters of models that solve numerous shortcomings in the generation of code for
GPL compilers, instead of doing that for domain-specific RTSs.

Song et al. [24] introduce an approach for connecting architectural models with
run-time systems with bidirectional transformation and automated changing of ar-
chitectural models according to changes in the run-time system. When compared
to the approach of Song et al., our approach does not use architectural but domain
specific models and, as a result, it may be suited to a wide variety of audiences, not
only software architects. Furthermore, in our approach the implementation and its
connection to models are automatically generated, which adds more reliability to
the implementation of the approach. Moreover, the approach of Sung et al. allows
only changes in the model that can be captured in the architectural language meta-
model, while our approach also allows changes in the metamodel, i.e., introduction
of new concepts for modeling systems. Finally, our approach also enables incremen-
tal changes of models and run-time systems during execution including changes in
which novel modeling elements are introduced.

There is an analogy between the two seemingly unrelated domains of application:
document engineering and robot-motion control. In both domains, the efficacy of
modeling tools depends on their support for merging languages that model different
dimensions/aspects of documents or robot control. A document is a multidimen-
sional entity featuring the following dimensions: content, layout, structure, role in
a real system and states. In some cases, it may not be possible to generate valid
code for control logic, e.g., during robot motion modeling, when a robot step cannot
be related to foot shape and other objects in the environment where the robot is
moving. However, by using solutions for syntax and semantics merging of DSLs,
we may simplify parallel viewing and modeling of different document dimensions
or aspects of robot usage. In [25], the authors present some preconditions, as well
as problems in merging syntax and semantics, and meta-model inheriting and slic-
ing. On the other hand, our discussion and contributions are more of a practical
nature. We introduced modifiers and illustrated their use in several examples. In
the context of graphical DSLs, modifiers are means to simple and intuitive merg-
ing and customization of languages, as well as language application to new prob-
lems.

Another topic of related research is about multilevel modeling. The most recent
advances in this field are related to the concept of deep instantiation, supported
by DeepJava. The authors in [26, 12] propose a way for avoiding the shortcom-
ings of programming languages that result from their two-level architecture, seen
as type–instances paradigm. The proposed concept of deep instantiation is not
applicable to the description of model variations because of the following three rea-
sons:

Model Variations and Automated Refinement of DSM Languages for RMC 519

1. it requires the instantiation depth to be specified in advance;

2. it does not support the relationships in which an attribute from the supertype
may be removed from the subtype; and

3. it does not support meta-data-based inheritance of the type from an instance.

8 CONCLUSIONS

In model-driven software development (MDSD), meta-model refinement is an ac-
tivity which improves the current expressiveness of a language, i.e., improves the
capacity of the language to precisely express the properties of the real system be-
ing modeled. The DVMEx approach provides the means to refine each level of the
DSM solution: the DSL, the code generator, the framework, and the RTS. The
synchronization between the tools used separately for each level may provide good
productivity and validity in the DSL refinement. In most of the existing tools, the
synchronization between the levels is unidirectional.

In Figure 9 we outline the process of refinement. The left column containing
the ellipses denotes standard activities that are related to DSM. In the right col-
umn, there are activities that are specific for the DVMEx approach. At the higher
abstraction level, it is the modifier construction, which acts as means to flexible
evolutionary extension of the language semantics. The second level is the usage of
modifiers. Underneath that level, there is the execution of models or automatically
generated applications. For each model, at least one default client application for
model debugging and monitoring the model execution is generated. Since arbitrary
controls may be used for monitoring by mapping the DSL concepts to user control
properties during execution, model variations may be tested very fast. Modifiers
may also be used at the level of the code generator. In this manner, there is a tem-
porary solution for problems arising from the imprecisely specified hierarchy of DSL
objects or imprecisely described relationships or object roles. During execution, the
RTS detects unexpected states. Some of them may be trivial, such as division by
zero, but they may also include states that cannot be recognized in the predefined
state space of the control logic program.

For the purpose of developing intelligent controllers for robots, we have devised
an approach that is based on the DSM approach. We significantly improved each
of the levels of the DSM architecture. For the purpose of verifying the DVMEx
approach, we created the tools that, together with MetaEdit+, may be used to
verify the reliability, flexibility, speed, and the simplicity of the integration of the
control logic into an arbitrarily complex real system. In the rest of Conclusion, we
list the theoretical and practical contributions, whose application may improve the
development of intelligent robot controllers and the development of measurement
and control systems in general.

Contributions to the theory. The RTS is conceived as an adaptive system with
dynamic scheduling and linking of the code of control logic and meta-logic.

520 V. Djukić, A. Popović, I. Luković, V. Ivančević

Figure 9. A generic model of DSL refinement

Changes in the rules of scheduling of control tasks in run time, as well as dy-
namic mapping of the signals of a real system to the variables of the control code
allow for full flexibility when changing the purpose and behavior of the robot,
even for the states that have not been programmed in advance. The generators
are simultaneously used for code generation, debugging, execution and monitor-
ing of the control processes. At the level of the code generator, modifiers may be
described, as model or submodel variations, whose purpose is systematic collec-
tion and processing of knowledge for the refinement of the DSLs. We extended
the IEC 61131-3 with concepts for the description for finite state machines and
message exchange protocols, which simplifies the implementation of the event-
driven control logic. At the level of DSL construction and usage, we define an
approach of evolutionary refinement with modeling variations. We introduced
the modifier concept, which integrates inheritance, instantiation and supports
multilevel modeling.

Contributions to the practice. We made an auto-adaptive RTS for ARM and
Intel hardware platforms. It is applicable to problems involving simple control
logic in embedded systems, as well as complex problems, such as automatization
of the whole production process or the control of intelligent human, bird or
snake-like robots, in which the RTS interprets complex motion models, models
of energy consumption and models for the recognition of the signal of a real
system.

The IEC 61131-3 compiler with different variants of meta-logic offers a signifi-
cant advantage over the existing GPL compilers, where the logic has to be embedded
into source code. The code generator level provides synchronization of RTS, mod-
eling tools and monitoring applications without the need for programming. This
is achieved using the code generators that generate code generators. Despite the
fact that nesting a language in another language may be bad because of the low-

Model Variations and Automated Refinement of DSM Languages for RMC 521

ered readability, this approach to the generation of monitoring applications provides
good productivity in software development. The issue of the lower readability of the
generators that generate generators is straightforwardly overcome within tools that
support the construction of DSLs (meta-modeling) using a graphical interface. The
semantics of such generators is described at the level of the meta-model. All compo-
nents that are part of the DVMEx solution are simply integrated into various tools
for meta-modeling and modeling.

In addition to software engineering, validity of the approach, devoted to han-
dling variation of products and DSL models describing these products, has been
demonstrated in electronics, and partly mechanics. We made several usable proto-
types of controllers for managing robots with sensors, for which drivers and virtual
signals are also generated from the model. Also, we have developed several variants
of pneumo-mechanical grippers for robots in the textile industry, which perform
complex operations in a confined space. Model-level debugging is not limited to
generating and debugging the control logic and user applications program code, but
it is also applicable to debugging in the electronics and mechanics domain.

Our further research work is aimed at extending the DVMEx approach to the
needs of the development of intelligent robots of various shapes and purposes, but
primarily for those that need to learn the command language during task execution
and provide information about the need to refine these languages.

Acknowledgement

The authors would like to kindly thank Dr. Juha-Pekka Tolvanen from the University
of Jyväskylä for his valuable support and proof reading.

REFERENCES

[1] Kelly, S.—Tolvanen, J.-P.: Domain-Specific Modeling: Enabling Full Code Gen-
eration. Wiley-IEEE Computer Society Press, 2008. ISBN: 978-0-470-03666-2.

[2] MetaEdit+ Workbench, Workbench User’s Guide.

[3] Robot Operating System (ROS). Availaible at: http://wiki.ros.org/.

[4] Djukić, V.—Luković, I.—Popović, A.—Ivančević, V.: Model Execution:
An Approach Based on Extending Domain-Specific Modeling with Action Re-
ports. Computer Science and Information Systems (ComSIS), Vol. 10, 2013, No. 4,
pp. 1585–1620, doi: 10.2298/CSIS121228059D. ISSN: 1820-0214.

[5] International Standard IEC 61131-3: Programmable Controllers – Part 3: Program-
ming Languages. International Electrotechnical Commission, 2003.

[6] International Standard IEC 61499: Function Blocks, Part 1–Part 4. International
Electrotechnical Commission, 2005.

[7] Djukić, V.: DVDocGen Framework, Application Interface. 2009, 88 pp. Availaible
at: http://www.dvdocgen.com/Framework/DVDocFramework.pdf.

http://wiki.ros.org/
https://doi.org/10.2298/CSIS121228059D
http://www.dvdocgen.com/Framework/DVDocFramework.pdf

522 V. Djukić, A. Popović, I. Luković, V. Ivančević

[8] Kim, D.-K.—France, R.—Ghosh, S.: A UML-Based Language for Specifying
Domain-Specific Patterns. Journal of Visual Languages and Computing, Vol. 15, 2004,
No. 3-4, pp. 265–289, doi: 10.1016/j.jvlc.2004.01.004.

[9] Schaefer, C.—Kuhn, T.—Trapp, M.: A Pattern-Based Approach to
DSL Development. SPLASH ’11, Workshop on DSM ’11, 2011, pp. 39-46, doi:
10.1145/2095050.2095058.

[10] Common Variability Language (CVL), CVL 1.2 User Guide. Availaible at: http:

//www.omgwiki.org/variability/doku.php.

[11] Djukić, V.: Various Demos of DSL Construction, Application and Refinement in
Robotics, Automation and Design of Medical Devices. Availaible at: https://www.

youtube.com/channel/UCqyYnYD6J5fEeb6Ni3YLuKg.

[12] Kühne, T.—Schreiber, D.: Can Programming Be Liberated from the Two-Level
Style: Multi-Level Programming with DeepJava. Proceedings of the 22nd Annual
ACM SIGPLAN Conference on Object-Oriented Programming Systems and Appli-
cations (OOPSLA ’07), 2007, pp. 229–244, doi: 10.1145/1297027.1297044.

[13] Degueule, T.—Combemale, B.—Blouin, A.—Barais, O.—Jézéquel, J. M.:
Melange: A Meta-Language for Modular and Reusable Development of DSLs. Pro-
ceedings of the 2015 ACM SIGPLAN International Conference on Software Language
Engineering (SLE 2015), 2015, pp. 25–36, doi: 10.1145/2814251.2814252. ISBN: 978-
1-4503-3686-4.

[14] Djukić, V.—Popović, A.—Tolvanen, J.-P.: Domain-Specific Modeling for
Robotics – from Language Construction to Ready-Made Controllers and End-
User Applications. Proceedings of the 3rd Workshop on Model-Driven Robot Soft-
ware Engineering (MORSE ’16), Leipzig, Germany, ACM, 2016, pp. 47–54, doi:
10.1145/3022099.3022106. ISBN: 978-1-4503-4259-9.

[15] Trojanek, P.: Model-Driven Engineering Approach to Design and Implementation
of Robot Control System. 2nd International Workshop on Domain-Specific Languages
and Models for ROBotic Systems (DSLRob ’11), 2011.

[16] Piechnick, C.—Götz, S.—Schöne, R.—Assmann, U.: Model-Driven Multi-
Quality Auto-Tuning of Robotic Applications. Proceedings of the 2015 Joint
MORSE/VAO Workshop on Model-Driven Robot Software Engineering and
View-Based Software-Engineering, L’Aquila, Italy, ACM, 2015, pp. 35–40, doi:
10.1145/2802059.2802063.

[17] Adam, K.—Butting, A.—Heim, R.—Kautz, O.—Rumpe, B.—
Wortmann, A.: Model-Driven Separation of Concerns for Service Robotics. Pro-
ceedings of the International Workshop on Domain-Specific Modeling (DSM 2016),
Amsterdam, Netherlands, ACM, 2016, pp. 22–27, doi: 10.1145/3023147.3023151.
ISBN: 978-1-4503-4894-2.

[18] Pradhan, S. M.—Dubey, A.—Gokhale, A. S.—Lehofer, M.: CHARIOT:
A Domain Specific Language for Extensible Cyber-Physical Systems. Proceedings of
the Workshop on Domain-Specific Modeling (DSM 2015), SPLASH ’15, Pittsburgh,
USA, ACM, 2015, pp. 9–16, doi: 10.1145/2846696.2846708. ISBN: 978-1-4503-3903-2.

https://doi.org/10.1016/j.jvlc.2004.01.004
https://doi.org/10.1145/2095050.2095058
http://www.omgwiki.org/variability/doku.php
http://www.omgwiki.org/variability/doku.php
https://www.youtube.com/channel/UCqyYnYD6J5fEeb6Ni3YLuKg
https://www.youtube.com/channel/UCqyYnYD6J5fEeb6Ni3YLuKg
https://doi.org/10.1145/1297027.1297044
https://doi.org/10.1145/2814251.2814252
https://doi.org/10.1145/3022099.3022106
https://doi.org/10.1145/2802059.2802063
https://doi.org/10.1145/3023147.3023151
https://doi.org/10.1145/2846696.2846708

Model Variations and Automated Refinement of DSM Languages for RMC 523

[19] Saglietti, F.—Meitner, M.: Model-Driven Structural and Statistical Testing of
Robot Cooperation and Reconfiguration. Proceedings of the 3rd Workshop on Model-
Driven Robot Software Engineering (MORSE ’16), Leipzig, Germany, ACM, 2016,
pp. 17–23, doi: 10.1145/3022099.3022102. ISBN: 978-1-4503-4259-9.

[20] Nordmann, A.—Hochgeschwender, N.—Wrede, S.: A Survey on Domain-
Specific Languages in Robotics, Simulation, Modeling, and Programming for Au-
tonomous Robots. In: Brugali, D., Broenink, J. F., Kroeger, T., MacDonald, B. A.
(Eds.): Simulation, Modeling, and Programming for Autonomous Robots (SIM-
PAR 2014). Springer, Cham, Lecture Notes in Computer Science, Vol. 8810, 2014,
pp. 20–23, doi: 10.1007/978-3-319-11900-7 17.

[21] van Rozen, R.—van der Storm, T.: Model Execution: Toward Live Domain-
Specific Languages: From Text Differencing to Adapting Models at Run Time. Soft-
ware and Systems Modeling, Vol. 18, 2019, No. 1, pp. 195–212, doi: 10.1007/s10270-
017-0608-7. ISSN: 1619-1374.

[22] Djukić, V.—Popović, A.—Lu, Z.: Run-Time Code Generators for Model-Level
Debugging in Domain-Specific Modeling. Proceedings of the International Workshop
on Domain-Specific Modeling (DSM 2016), Amsterdam, Netherlands, ACM, 2016,
pp. 1–7, doi: 10.1145/3023147.3023148. ISBN: 978-1-4503-4894-2.

[23] Hästbacka, D.—Vepsäläinen, T.—Kuikka, S.: Model-Driven Development
of Industrial Process Control Applications. The Journal of Systems and Software,
Vol. 84, 2011, No. 7, pp. 1100–1113, doi: 10.1016/j.jss.2011.01.063.

[24] Song, H.—Huang, G.—Chauvel, F.—Xiong, Y.—Hu, Z.—Sun Y.—Mei, H.:
Supporting Runtime Software Architecture: A Bidirectional-Transformation-Based
Approach. Journal of Systems and Software, Vol. 84, 2011, No. 5, pp. 711–723, doi:
10.1016/j.jss.2010.12.009.

[25] Tolvanen, J.-P.—Kelly, S.: Integrating Models with Domain-Specific Modeling
Languages. Proceedings of the 10th Workshop on Domain-Specific Modeling (SM ’10),
Reno, Nevada, USA, 2010, Art. No. 10, doi: 10.1145/2060329.2060354.

[26] Atkinson, C.—Kühne, T.: The Essence of Multilevel Metamodeling. In:
Gogolla, M., Kobryn, C. (Eds.): UML 2001 – The Unified Modeling Language. Mod-
eling Languages, Concepts, and Tools (UML 2001). Springer, Berlin, Heidelberg,
Lecture Notes in Computer Science, Vol. 2185, 2001, pp. 19–33, doi: 10.1007/3-540-
45441-1 3.

https://doi.org/10.1145/3022099.3022102
https://doi.org/10.1007/978-3-319-11900-7_17
https://doi.org/10.1007/s10270-017-0608-7
https://doi.org/10.1007/s10270-017-0608-7
https://doi.org/10.1145/3023147.3023148
https://doi.org/10.1016/j.jss.2011.01.063
https://doi.org/10.1016/j.jss.2010.12.009
https://doi.org/10.1145/2060329.2060354
https://doi.org/10.1007/3-540-45441-1_3
https://doi.org/10.1007/3-540-45441-1_3

524 V. Djukić, A. Popović, I. Luković, V. Ivančević

Verislav Djuki�c is Software Architect employed in Djukic Soft-
ware GmbH, Germany. He is involved in the development of
modeling tools for robotics and automation and PLC based run-
time systems for the purpose of model execution. He holds his
Ph.D. in software engineering from the University of Novi Sad,
Serbia. His current research interests are related to the handling
of model variations in DSM tools and construction of robot mo-
tion framework in humanoid robot painting.

Aleksandar Popovi�c graduated from the Faculty of Science
at the University of Montenegro. He completed his Master’s
degree (2 year) at the University of Novi Sad, Faculty of Techni-
cal Sciences. He received his Ph.D. in computer science from
the University of Montenegro in 2013. He is Assistant Pro-
fessor at the Computer Science Department of the Faculty of
Science and Mathematics, University of Montenegro. His cur-
rent research interest includes domain-specific languages and
domain-specific modeling. Also, he has been actively involved
in the development of DSLs for embedded and real-time
systems.

Ivan Lukovi�c received his graduate diploma degree (5 years) in
Informatics from the Faculty of Military and Technical Sciences
in Zagreb in 1990. He completed his Masters’s degree (2 year)
at the University of Belgrade, Faculty of Electrical Engineering
in 1993, and his Ph.D. at the University of Novi Sad, Faculty
of Technical Sciences in 1996. Currently, he is Full Professor at
the Faculty of Technical Sciences of the University of Novi Sad,
where he is Lecturer in several Computer Science and Informat-
ics courses. He is the head of B.Sc. and M.Sc. study programs in
Information Engineering – Data Science. His research interests

are related to database systems, business intelligence systems, and software engineering.
He is the author or co-author of over 150 papers, 4 books, and 30 industry projects and
software solutions in the area.

Vladimir Ivan�cevi�c is Assistant Professor in applied computer
science and informatics at the Faculty of Technical Sciences, Uni-
versity of Novi Sad, Serbia. His main research areas include data
science, databases, and information systems. He has partici-
pated in diverse research projects involving application of com-
puter science and informatics in education, public health and
epidemiology, and software engineering.

