
Computing and Informatics, Vol. 38, 2019, 343–366, doi: 10.31577/cai 2019 2 343

MULTI-CARRIER STEGANOGRAPHIC ALGORITHM
USING FILE FRAGMENTATION OF FAT FS

Liberios Vokorokos, Branislav Madoš, Norbert Ádám
Anton Baláž, Jaroslav Porubän, Eva Chovancová

Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics
Technical University of Košice
Letná 9, 042 00 Košice, Slovak Republic
e-mail: {liberios.vokorokos, branislav.mados, norbert.adam,

anton.balaz, jaroslav.poruban, eva.chovancova}@tuke.sk

Abstract. Steganography is considered to be not only a science, but also a craft
of concealing ongoing communication by hiding messages in unsuspicious cover do-
cuments, such as texts, digital images, audio and video sequences. Its essential
feature is the constant search for – often exceptionally creative – possibilities of
concealing information. In computers, steganography often uses secondary memory
and exchangeable memory media utilising file systems. This paper deals with the
current state of the issues related to information hiding by means of hard disks,
being the most important source of forensic data. This paper focuses on information
hiding using the File Allocation Table (FAT) file system. It also proposes a novel
multi-carrier algorithm of hiding information in file fragmentation. The algorithm
provides flexibility of encoding the information to be hidden and makes steps toward
optimization that allows reduction of interference with the current state of the file
system, represented by the statistical values of the file fragmentation parameters.

Keywords: Steganography, file system, file allocation table, FAT, fragmentation

Mathematics Subject Classification 2010: 68-R10

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computing and Informatics (E-Journal - Institute of Informatics,...

https://core.ac.uk/display/267942563?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

344 L. Vokorokos, B. Madoš, N. Ádám, A. Baláž, J. Porubän, E. Chovancová

1 INTRODUCTION

Currently, computer system security and telecommunications’ specialists are strong-
ly focusing on encryption. This method of protection, if used as the sole solution,
is considered to be insufficient in certain cases. Encrypted information attracts
attention, and sometimes the existence of encrypted communication may even re-
present a piece of very valuable information. A solution to this problem may be
the use of steganography. Steganography can be defined as the art of hiding the
presence of communication by embedding secret messages into innocent, innocuos
looking cover documents, such as texts, digital images, sound and video files [1].

Steganography has seen a significant development with the advent of compu-
ters, computer networks and especially the Internet; this development includes also
the introduction of specific steganographic procedures, connected exclusively to the
use of computers. Digital steganography employs traditional digital media, such as
text, bitmap or vector graphic images, audio and video files. Excellent carriers of
concealed messages are graphic image files, most frequently using the following tech-
niques: Least Significant Bit (LSB) modification, frequency domain techniques [2, 3]
and spread spectrum techniques. An overview of these techniques may be found
in [4]. However, steganography is constantly seeking new, yet unused media and
communication channel types, providing a possibility to expand to further territo-
ries. An example of this is the appearance of mobile phones, especially smartphones
equipped with modern operating systems, such as Android or iOS. An overview on
the use of steganography in smartphones is available in [5]. Very useful general
overview of the development of steganography is available in [6, 7].

This paper focuses on the use of secondary storage devices and especially file
systems to hide confidential information into file fragmentation. It also describes
a multi-carrier algorithm which, unlike the other available algorithms, uses a set of
files to conceal the information. On the contrary to the existing solutions – such
as the steganographic file system proposed in [8], which adds further files to the
file system and increases the fragmentation of files – the algorithm presented in this
paper aims to minimize the interference with the fragmentation of files and allows to
make steps to keep the statistical data concerning file fragmentation untouched, both
in the whole file system and in the subset of files used to encode the information. It
does not require placing fragments of two or more files into relative positions (i.e.
as interlaced files) in the same part of the file system, as the solution proposed by
Morkevičius et al. in [9].

In spite of the fact that the FAT file system is not a default file system in modern
operating systems anymore, they still support it. Moreover, the FAT file system is
still widely used on diskettes, pen drives, various memory media using flash memory
chips, as well as solid-state disks (SSD). It is also utilised in numerous types of
mobile devices, including mobile phones, MP3 players, cameras, embedded devices
and consumer electronics devices, such as set-top boxes and multimedia players. In
industry and research and development area software solutions along with specialized
hardware are used with secondary storage [10, 11, 12] that often implements FAT

Multi-Carrier Steganographic Algorithm Using File Fragmentation of FAT FS 345

as file system because of relatively easy implementation. Therefore we selected the
FAT32 variant of the file system to verify the possibilities of implementation of the
algorithm proposed in this paper.

The rest of this paper is organised as follows:

• Section 2 includes the works related to the usage of hard disks and file systems
for the purposes of steganography and cryptography, focusing on the algorithms
utilising the FAT table and file fragmentation to conceal the information.

• Section 3 contains the proposal of the algorithm developed within this research,
allowing hiding information into the file allocation table of the FAT file system.
The algorithm encodes the information in the fragmentation of a set of files
stored in the file system.

• Section 4 discusses the possibilities of making steps toward optimisation of the
encoding of the confidential message with the goal to minimise changes in the file
fragment parameters, as well as the possibilities of compensating these changes
while keeping the original statistical values of the file fragmentation parameters
after the encoding of the confidential message as much as possible.

• Finally, Section 5 lists the achieved results and shows the future research per-
spectives within this field.

2 RELATED WORKS

Storage devices utilising file systems – especially hard disks – are still the most im-
portant storage media used both in enterprise-grade and consumer-grade equipment.
Significant amounts of confidential data – both private data and also strategically
and financially valuable data of businesses and the state administration – are stored
on hard disks [13]. Thus, hard disks belong to the most important sources of foren-
sic analysis. Both the physical and logical structure of hard disks and the methods
of storing information on the disk allow relatively many ways of concealing infor-
mation. These approaches allow hiding the existence of the hidden data from the
operating system or the users employing conventional file managers and other soft-
ware working with folders and files of the file system. Therefore, special software
is needed for this purpose. Some of these methods allow fully transparent disk us-
age, i.e. avoiding random destruction of the hidden information due to conventional
usage of the media. On the other hand, other approaches may be vulnerable to
random destruction of the concealed data by standard use.

Hard disk drives (HDD) and solid-state drives (SSD) may contain a so-called
Host Protected Area (HPA), commonly referred to as “Hidden Protected Area”.
This part of the disk is not available to the user, to the BIOS, the operating system
(OS) or any not-HPA-aware standard software. Therefore, the content of this area
may not be read or modified using standard methods. Computer manufacturers may
use the HPA to store data protected from the interference of normal users, such as
diagnostic software or software used to restore the standard software installation to

346 L. Vokorokos, B. Madoš, N. Ádám, A. Baláž, J. Porubän, E. Chovancová

its factory-state. It is possible to create software allowing access to the disk sectors
of the aforementioned area, storing information in these and reading information
from them. Steganography makes a good use of this [14, 15].

A further possibility of using hard disks in steganography is dividing physical
storage space used to store data on the disk – i.e. sectors and clusters – into con-
tiguous regions called partitions. By not including a set of sectors in any partition,
these sectors may be used to store data, invisible to the standard access methods of
the operating system. This unallocated space is called the disk slack or the volume
slack. The related issues are described in detail in [16].

Since the sectors belonging to the partition may be addressed only by whole
clusters and the size of the partition may be defined in such a way that when dividing
the number of sectors of the partition by the number of sectors in the cluster the
remainder is not an integer, there may remain some sectors at the end of the partition
not addressable using standard file system methods, thus, this remaining area may
be used to store the confidential information. These sectors are then commonly
referred to as the partition slack [17].

Figure 1. A volume with two partitions, showing the existence of a partition slack and
disk slack and/or volume slack

Figure 1 shows a volume having two partitions. The first of them does not
occupy the whole last cluster in the volume, so it cannot use it. The allocated but
unusable part of the cluster is the partition slack. A further part of the disk not
allocated to any of the partitions is the disk slack/volume slack.

If there are clusters in the partition not used for the storage of regular data –
i.e. “empty clusters” – these are not accessible by standard means and thus may
be used to store confidential information. Even if this area is large, allowing the
storage of huge amounts of data – potentially up to hundreds of GB – any unused
cluster may be used anytime to store regular file content and so the hidden data
may be overwritten, leading to their loss.

The DOS/Windows operating system reserves the first sector of the hard disk
for the Master Boot Record (MBR), which stores the information required to load
the operating system and also the disk partitioning information. Even if the size of
the MBR itself is small and it takes up only a single sector, the whole track, on which
it is stored, is reserved and the sector containing the track cannot be addressed and
used by the file system. This allows the existence of an eventually large space on the
disk, usually amounting to tens of sectors, which may be used to store the concealed
information [18].

Multi-Carrier Steganographic Algorithm Using File Fragmentation of FAT FS 347

Analogous to the MBR is the case of the Extended Master Boot Record (EMBR)
of the extended partition. This space is commonly referred to as the MBR slack and
the EMBR slack, respectively. The hidden data, stored in the MBR are protected
not only from formatting, but also from the change of partition count and size on
the disk.

In the file systems used by the Windows operating system, the size of a cluster
may range from 512 B to 64 kB, while each file written into the file system may use
one or more clusters. Since the remainder of the division of the length of the stored
files in bytes and the size of the cluster is not necessarily 0, the last cluster used to
store the file is being used only partly. Therefore, it may happen that one or more
sectors in the last cluster are unused and so this space may be used to store the
hidden information. This space is called the file slack.

Last sector used in the cluster to store the regular data of the file need not
be fully used; also this unused space may be used to store hidden information.
This space is commonly referred to as the RAM slack. The term RAM slack is
a historical term – in the past, upon writing the last part of the file from the
operating memory to the sector on the disk, 512 B of operating memory was copied
to this space, even though some bytes had nothing in common with the content of
the file. When using the file slack or the RAM slack, it is very probable that the
concealed data shall be overwritten any time the size of the regular file occupying
the cluster changes.

Figure 2 shows the FILE.EXT file occupying two clusters (each consisting of
four sectors), while the last cluster of the file is not being fully occupied. Its first
sector is not completely filled with file data and so the empty part is the RAM
slack. The following three sectors of the cluster are fully unused – these are the file
slack.

Figure 2. A file occupying two clusters, with the RAM slack and the file slack depicted

In [19], Aycock and de Castro proposed to utilise the fact that the order of files
and directories displayed to the user does not correspond to their order of storage
in the directories of the File Allocation Table (FAT). Permutations of their storage
order allow concealing information.

As a feature of the FAT file system, the FAT table allows marking clusters in
the damaged parts of the storage media as bad clusters, indicating their inappropri-
ateness for data storage. By falsely marking fully functional clusters as bad clusters
one may ensure that these will not be used by the file system. However, these are

348 L. Vokorokos, B. Madoš, N. Ádám, A. Baláž, J. Porubän, E. Chovancová

fully functional and one may hide information in these, using a special software
tool [19, 20].

A multi-carrier steganographic algorithm, storing information in file fragmenta-
tion and the relative location of these fragments in the file system was proposed by
Morkevičius et al. in [9].

The utilisation of the file system as a carrier to hide information is being used
not only in steganography, but also in cryptography. There are numerous imple-
mentations of cryptographic file systems available, such as the Cryptographic File
System (CFS) for the UNIX operating system [21], the Transparent Cryptographic
File System (TCFS) for the Linux operating system [22], the Encrypting File Sys-
tem (EFS) for the Microsoft Windows 2000/XP operating systems [23] or the Secure
File System (SFS) for the same [24, 25]. Further cryptographic file systems include
the E4M [26] and PGPDisk [27] systems.

Cryptographic file systems encode individual files and whole disk partitions,
protecting user data from unwanted recovery of their content. On the other hand,
the use of cryptographic functionality tells the eventual attacker that the data pro-
tected are truly confidential and important. Such a situation draws attention of the
potential attackers and may inspire them to try to crack the encryption or to force
the authorised user to decrypt the data under pressure. A solution to this problem
may be the use of steganography, which allows masking the existence of concealed
files from unauthorised users. This allows also the use of plausible deniability con-
cept, i.e. allowing the authorised user to deny the existence of confidential data or,
eventually, disclose only the existence of less important data. The attacker might
not be sure and cannot prove, whether there are any further, more important data,
remaining concealed.

Anderson et al. proposed in [28] a steganographic file system. In this, the user
may access the requested file only by knowing its name and the appropriate pass-
word. The proposed file system inspired Van Schaik and Schmeddle to implement
such a steganographic file system for the LINUX operating system [25]. In [29],
Hand and Roscoe proposed an enhancement to this scheme for peer-to-peer plat-
forms by replacing simple file replication with the Information Dispersal Algorithm
(IDA).

A further implementation of a steganographic file system based on [28] was
StegFS, proposed in [30]. This was an extension of the standard file system of
the LINUX operating system by encryption functions allowing plausible deniability.
An implementation of the steganographic file system for the Windows environment
is ScramDisk, presented in [31].

A steganographic file system based on JPEG files was proposed in [32, 33].
It allowed the creation of a virtual disk, a Virtual File System (VFS), hidden in
multiple cover media – images in JPEG format. The hidden content is available
only to the user knowing the correct key.

The following section describes the proposed algorithm, aimed at hiding infor-
mation in the FAT file system by using file fragmentation.

Multi-Carrier Steganographic Algorithm Using File Fragmentation of FAT FS 349

3 NEW MULTI-CARRIER FILE FRAGMENTATION
BASED STEGANOGRAPHIC ALGORITHM

For the purposes of the algorithm, the information stored in the FAT system (files)
form the set V . The total file count is x, thus x = |V | (cardinality). So, the following
applies:

V = {Fo, F1, . . . , Fx−1}. (1)

On hard disks of real-life personal computers (with an installed operating system,
software and user data files), the size of this set amounts to hundreds of thousands.

The files stored in the FAT are separated into fragments. A fragment consists
of data of a specific file stored in a contiguous sequence of clusters allocated so that
in the FAT table the record of the cluster at the address n points to the next cluster
at the address n + 1. An exception to this rule is the last cluster of the fragment
at the address n, pointing to the first cluster of the next fragment, which must not
be located at the address n + 1. A fragment may be limited from above and from
below by unallocated clusters or clusters allocated by another fragment. It may be
limited also by other fragments of the same file, while the fragment is not a subset
of another fragment. Thus, we may define the set A, formed by all fragments of all
files stored in the file system.

A = {fo, f1, . . . , fy−1}. (2)

Obviously, y = |A|, while the value depends on the current file fragmentation
and is variable. From below, it is limited by the value of x – the number of files
stored in the file system – because if a file is not fragmented, we may assume that it
consists of a single fragment. If all files were unfragmented, the number of fragments
in the file system would be equal to the number of files. In theory, the upper limit
of the total fragment count is the sum of clusters allocated to the individual files
of the set V , being an extreme state, when each fragment of each file consists of
a single cluster. A limiting factor is also the maximum amount of clusters available
to the file system. Each fragment may be part only of a single file.

In the proposed algorithm, each fz ∈ A : z ∈ 〈0, y − 1〉, z ∈ N0 fragment is
an ordered set of fragment parameters:

fz = {α1, α2, α3, α4, α5} (3)

where

• α1 is the address of the first cluster of the fragment in the FAT table,

• α2 is the length of the fragment in clusters,

• α3 is the address of the last cluster of the fragment in the FAT table,

• α4 is the length to the next fragment of the file in clusters,

• α5 is the address of the first cluster of the next fragment of the file.

350 L. Vokorokos, B. Madoš, N. Ádám, A. Baláž, J. Porubän, E. Chovancová

In case of the last fragment in the sequence of fragments of the given file, the
parameters α4 and α5 are set to 0. The set of fragment parameters is not complete,
currently it is only a proof of concept.

The algorithm defines the O set of operations

O = {β1(x), β2(x), β3(x), β4(x), β5(x), β6(x)} (4)

where

• β1(x) is writing (reading) 0, if x is even and 1 if x is odd,

• β2(x) is writing (reading) 1, if x is even and 0 if x is odd,

• β3(x) is a shift to the next file in the file set, if x is even and to the previous file
in the file set, if x is odd,

• β4(x) is a shift to the previous file in the file set, if x is even and to the next file
in the file set, if x is odd,

• β5(x) is a shift ahead in the file by 1 fragment, if x is even and by 2 fragments,
if x is odd,

• β6(x) is a shift ahead in the file by 2 fragments, if x is even and by 1 fragment,
if x is odd.

Some of the operations are aimed at writing/reading bits of the concealed in-
formation into/from the fragment parameters. Other operations serve the purpose
of determining the position shifts between the files and fragments at the time of
performing the respective steps of the algorithm for the purpose of writing and/or
reading confidential information. The set of operations – similarly to the set of
fragment parameters – is not complete and currently still a proof of concept.

For the purposes of the proposed algorithm, the Carthesian product of the sets
O × fz where z ∈ 〈0, y − 1〉, z ∈ N0 allows the creation of the R set of encoding
rules. Since neither the set of operations, nor the set of fragment parameters are
not fully defined, similarly, the set R is not final either and currently still the proof
of concept:

R = {β1(α1), β1(α2), β1(α3), . . . , β6(α3), β6(α4), β6(α5)}. (5)

The encoding rule β1(α1) may be then interpreted as the application of the
operation β1(x) ∈ O, where x is the α1 ∈ fz : z ∈ 〈0, y − 1〉, z ∈ N0.

The interpretation of the encoding rules is different when hiding and extracting
confidential information. For example, to the encoding rule β1(α1) the following
applies:

When writing confidential information, this encoding rule must ensure that
the 0 bit is written – after the application of the encoding rule – by setting
the address of the first cluster of the fragment used for writing the bit even,
and that the 1 bit is written – after the application of the encoding rule – by

Multi-Carrier Steganographic Algorithm Using File Fragmentation of FAT FS 351

setting the address of the first cluster of the fragment used for writing the bit
to an odd value.

If the current value of this fragment parameter does not correspond to the value
required by the rule, the value of this fragment parameter shall be changed to the
appropriate value.

When reading the hidden information, the application of this encoding rule does
not change the value of the given fragment parameter. Depending on whether the
fragment parameter is even/odd, a 0/1 value is read as the part of the hidden
message.

3.1 Information Hiding

To apply the algorithm hiding the confidential message M represented by a final
stream of bits into the fragmentation of the files stored in the file system, we have
to know the sets V , A, ∀Fn ∈ V and ∀fz ∈ A, characterising the current state of
the specific file system, into which the information shall be hidden. Moreover, also
the above sets O and R have to be known and the input parameters of information
hiding have to be known as the ordered set H:

H = {V ′, R′, f(s)} (6)

where

• V ′ is an ordered set of files and V ′ ⊂ V ,

• R′ is an ordered set of encoding rules and R′ ⊂ R,

• fs is a fragment of a file, for which ∃Fn ∈ V ′ : fs ∈ Fn.

Thus, from the V set of files we have to select certain files and create the
subset V ′, into which the hidden information shall be encoded and order them
according to the required order. Then, the R′ subset of information encoding rules
has to be selected from the R set of rules; this subset has to be ordered, too.
Finally, the fs starting fragment has to be selected, from which the encoding shall be
performed. This fragment must belong to one of the selected files, though it need not
be the first fragment of the given file. The information hiding parameters included
in the set H form a steganographic key, used to store the concealed message – it has
to be known also to extract the hidden information.

The information hiding algorithm consists of the following steps:

Step 1. Files of the set V ′, into which the confidential information shall be hidden,
have to be ordered by their selected feature or by any permutation of their order;
this order is one of the elements of the steganographic key. After ordering the
files, each file shall be assigned an identifier: fi ∈ 〈0;x′ − 1〉, where x′ = |V ′|.

Step 2. For ∀Fn ∈ V ′, its file fragments have to be ordered in the order of accessing
them when reading the file. Fragment fn is the successor of fragment fm, if

352 L. Vokorokos, B. Madoš, N. Ádám, A. Baláž, J. Porubän, E. Chovancová

∃α5 ∈ fm ∧ ∃α1 ∈ fn : α5 = α1. Next, to each fragment, an ordinal number
has to be assigned: fr ∈ 〈0; d − 1〉, where d is the number of fragments of the
file Fn.

Step 3. In this step, the identifier fi of the file containing the starting fragment fs
and the fr ordinal number of the fragment in the corresponding file is found;
these are registered as fia and fra, if fia = fi and fra = fr of starting frag-
ment fs. The variables fia and fra will later serve as pointers to the location
of the currently processed fragment.

Step 4. In this step, the pointer ma pointing at the current bit of the string M to
be encoded is set to 0. Thus, it points to the first bit of the string M .

Step 5. To the current fragment, i.e. the one, to which the pointers fia and fra
point to, we apply all encoding rules of the set R′ – being part of the key – one
by one, in the specified order (this order is important, because one can encode
multiple bits of the concealed information using multiple rules into a single frag-
ment, therefore the order of their encoding into the fragment must be known).
If the specific rule serves for writing a bit into the corresponding fragment fea-
ture, the bit shall be written and the pointer ma shall be incremented by 1. If,
upon application of any of the rules, the last bit of the confidential message is
encoded, the execution of the algorithm ends.

Step 6. The application of rules in Step 5, leading to the change of some fragment
parameters requires an additional compensation of this change in some other
fragment of the particular file to make sure that the information stored in the
file is not corrupted and to prevent the corruption of the part of the hidden
message M , already encoded in the set V ′. An example may be a change of the
length of the specific fragment – a lengthening by one cluster requires a short-
ening of another fragment of the same file by a cluster. Subsequently, ∀fz ∈ A
which is representing changed fragment must be updated to store all changes of
the file fragment parameters.

Step 7. If no rule applied in Step 5 contains information as to what shift of the
current file pointer – fia – has to be performed, this pointer shall be incremented
by 1 (shift to the next file in the set V ′). If the current file pointer is set to
the last file, the execution continues with the first file, thus if fia = x′ − 1 then
fia = 0 shall apply and vice versa: if fia = 0 and a shift backwards by a file is
required, fia = x′ − 1 shall be set. (This principle is applied also to the shifts
within the files, performed by applying the rules specified in Step 5).

Step 8. If no rule applied in Step 5 contains any information as to what shift of
the pointer to the current fragment – fra – has to be performed, this pointer
shall be incremented by 1 (shift to the next fragment).

Step 9. Continue with Step 5.

The application of the rule storing the value of the bit of the confidential message
into the corresponding fragment parameter requires setting the appropriate value

Multi-Carrier Steganographic Algorithm Using File Fragmentation of FAT FS 353

of the parameter. For example, if it is the address of the first cluster of the given
fragment and it should be even but it is not, the fragment has to be shifted by
a cluster towards the lower address or a higher address, depending on which is
better, considering the current situation in the file system. The advantage of this
approach is that – in up to 50 % of the cases – the specific fragment parameter
contains the appropriate value in the given state of the file system, so it need not
be changed at all.

Upon the application of the rules determining the file containing the fragment,
in which the encoding performed in the next application of Step 5 of the algorithm
shall happen, i.e. the rules modifying the pointer fia and upon the application of
the rules determining the fragments count of the shift, i.e. the rules modifying the
pointer fra, there are two alternatives. The first is to accept the current setting
of the fragment of the parameter used by the specific encoding rule (i.e., leave the
parameter unchanged); the second alternative is to change it (from even to odd and
vice versa). The choice of accepting or modifying the parameter shall then modify
the further execution of the encoding procedure. This freedom is the strength of the
proposed algorithm – as far as information hiding is concerned – and it also provides
sufficient flexibility to perform the least possible intervention into the current state
file fragmentation during the encoding.

3.1.1 Usage Example

The following example shows a FAT file system containing four files, that are forming
set V :

V = {F0, F1, F2, F3}.

The file system contains 16 file fragments

A = {f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15}.

The structure of the four respective files, which are constructed by the use of
fragments from the set A, is defined by the sets F0 to F3:

F0 = {f0, f1, f2, f3},

F1 = {f4, f5, f6, f7},

F2 = {f8, f9, f10, f11},

F3 = {f12, f13, f14, f15}.

354 L. Vokorokos, B. Madoš, N. Ádám, A. Baláž, J. Porubän, E. Chovancová

The parameters of the respective fragments are defined by the sets f0 to f15

f0 = {2, 4, 5, 1, 7}, f8 = {55, 3, 57, 1, 59},
f1 = {7, 3, 9, 1, 11}, f9 = {59, 2, 60, 2, 63},
f2 = {11, 2, 12, 5, 18}, f10 = {63, 1, 63, 3, 67},
f3 = {18, 4, 21, 0, 0}, f11 = {67, 4, 70, 0, 0},
f4 = {28, 3, 30, 1, 32}, f12 = {48, 2, 49, 1, 51},
f5 = {32, 4, 35, 2, 38}, f13 = {51, 3, 53, 24, 78},
f6 = {38, 2, 39, 3, 43}, f14 = {78, 4, 81, 3, 85},
f7 = {43, 5, 47, 0, 0}, f15 = {85, 2, 86, 0, 0}.

The binary string to be stored consists of three bits: M = ”011”. Next, the
set V ′, R′ and the fragment f(s) have to be selected. The V ′ set of files, used
to store the hidden information, was selected as F0, F1, F2 in the aforementioned
order:

V ′ = {F0, F1, F2}.

Two encoding rules – β1(α1) and β3(α2) – were selected, forming the set R′ in
the aforementioned order:

R′ = {β1(α1), β3(α2)}.

The selected encoding rule β1(α1) ensures that the bits of the confidential mes-
sage shall be written to the position of the starting cluster of the fragment as follows:
will it be stored at an even address in the FAT table, the bit of the encoded message
shall be set to 0; will the starting cluster of the fragment be stored at an odd address
in the FAT table, the bit of the encoded message shall be set to 1. According to
rule β3(α2), if the length of the fragment is even, the next fragment should be in
the file being at the next position in the V ′ set of files; if the length of the fragment
is odd, the next fragment should be stored in the file being at the previous position
in the V ′ set of files. No rule of the set R′ specifies how many fragments should the
algorithm jump when shifting after the encoding step, therefore we will select the
basic shift as a shift by one fragment ahead.

As the starting fragment fs we selected fragment f5, being the second fragment
in file F1.

Figure 3 shows the current state of the file system. It contains four files – F0

to F3 – while each of the files is fragmented into four fragments. Each line contains
fragments belonging to the particular file in the order of appearance in the file. The
length of the rectangle representing the fragment shows its length in clusters, with
the value printed just below it. Within the fragment, the figure shows its first cluster
with its address in the file allocation table (FAT).

Figure 4 shows the situation after encoding the confidential message. The frag-
ments affected by encoding – either the confidential message was encoded in their

Multi-Carrier Steganographic Algorithm Using File Fragmentation of FAT FS 355

Figure 3. The current state of file fragmentation in the file system, before encoding the
confidential message

Figure 4. The confidential message M = ”011” stored in the fragmentation of files forming
set V ′

parameters, their position or their length was changed in the file system – have been
set in grey.

Encoding started in fragment f5, its first cluster is stored as an even address
and the application of rule β1(α1) in Step 5 of the algorithm encoded the first bit
of the message – bit 0 – into the fragment. The parameter of the fragment was set
correctly (i.e. even), no change was needed. The following parameter of fragment f5,
used for the purpose of encoding, was the fragment length. The current fragment
length is even, and the decision was taken not to change it. By applying rule β3(α2),
the next fragment to be used for encoding was fragment f10, due to the shift to the
next file and next fragment.

The application of Step 5 of the algorithm to fragment f10 required the applica-
tion of rule β1(α1), which encoded a further bit of the confidential message – bit 1.
So it was necessary to start the fragment on an odd address in the FAT. The current
setting of the parameter met the requirement, no change was necessary. We also
applied rule β3(α2) and decided that the current value of the parameter shall be
modified from odd to even. So a shift to the subsequent file was coded, however,
this caused that in the next step, file F0 became the current file (containing frag-
ment f3), since file F2 was the last in the list of files in set V ′. Since fragment f10

356 L. Vokorokos, B. Madoš, N. Ádám, A. Baláž, J. Porubän, E. Chovancová

was prolonged by one cluster, fragment f11 of file F2 had to be shortened by one
cluster to maintain the file length in clusters.

The application of Step 5 of the algorithm to fragment f3 required the application
of rule β1(α1). This stored another bit of the message into the fragment. This was
bit 1. This required a change of the address of the first cluster of fragment f3 to
an odd value and to shift the whole fragment by a cluster. Since the last bit of the
confidential message was written, the execution of the algorithm ended.

Figure 5. The confidential message M = ”011” stored in the fragmentation of files forming
set V ′

Figure 5 shows an alternative encoding of the confidential message into the
fragments of files forming set V ′. The length of fragment f5 was modified to be able
to continue with fragment f2, the parameters of which were left unchanged. The
next fragment, into which the information was encoded, was fragment f7.

Its parameters were left unchanged due to the encoding of the confidential mes-
sage; however, it had to be shortened by a cluster to maintain the length of file F4,
since its fragment f5 became longer by a cluster.

3.2 Information Extraction

Information extraction is analogous to information hiding. However, one needs not
know the total current state of the file system, i.e. the sets V , A, ∀Fn ∈ V and
∀fz ∈ A. It is enough to know the steganographic key H, i.e. the sets V ′, R′, fs
and also ∀Fn ∈ V ′ a ∀fz ∈ Fn : Fn ∈ V ′. So it is necessary to know the set of files,
into which the confidential information was hidden, the fragments forming these files
and their specific order. We also need to know the set of rules used to encode the
information and also their order; moreover, one has to know the starting fragment,
used to implement the encoding.

When extracting the hidden information, an algorithm with steps identical to
the steps of the information hiding algorithm shall be used. When applying the rules
of Step 5, we only read the bits of the message M by applying the corresponding
rules and performing jumps to their respective files and fragments by applying the
correct rules, without performing any changes to the file system. When reading the

Multi-Carrier Steganographic Algorithm Using File Fragmentation of FAT FS 357

message, Step 6 is not being performed. We repeatedly apply Steps 5, 7, 8 and 9,
until the last bit of the hidden message M is read.

4 RESULTS AND DISCUSSION

One of the goals connected with the algorithm was to provide a flexible way of en-
coding the information into the parameters of the fragments of files stored in the
file system. As the example in Section 3.1.1 shows, the algorithm met this require-
ment when it allowed encoding alternatives. Two of these are depicted in Figures 4
and 5. This allows comparison of the individual encoding alternatives, consider-
ing the number of changes of the respective fragment parameters and finding the
optimum encoding, which would modify the least possible individual file fragment
parameters in the current state of the file system, the specified steganographic key
and the confidential message M, i.e., perform only minimal file fragmentation pa-
rameter changes.

In the example in Section 3.1.1, a single rule β3(α2), allowing modification of
the encoding before each application in Step 5 of the proposed algorithm, was used.
Each application of this rule allows the existence of two alternatives of the follow-
ing encoding procedure – in case of a message of n bits it means 2n−1 encoding
alternatives (n − 1, since the last iteration of the application of the steps ends in
Step 5, by encoding the last bit of the message, before the last application of the
rule β3(α2). In the specific example, the number of alternative encodings is 22, i.e. 4,
since message M is 3 bits long.

If the complete steganographic key is not specified – such as the V ′ set of files,
on which the encoding should be implemented, is missing – during the search for
the optimum encoding, the search for this set may be included in the search for
the optimum encoding. In the example specified in Section 3.1.1 we may search
for an appropriate permutation of the three files selected from the overall total file
count (four) stored in the file system. The total number of applicable alternatives
is then (x).(x − 1).(x − 2), where x = |V |. Thus, the specified example allows
24 alternatives.

The use of rule β3(α2) without specifying set V ′ allows – in the example of
Section 3.1.1 – a total of (x).(x−1).(x−2).2n−1, i.e. 24.4 = 96 encoding alternatives.
To each of these alternatives, a natural number representing the number of changes
to be made to the file fragment parameters to encode the specified string into the set
of files using the given alternative may be assigned. Subsequently, the alternative
with the lowest change count may be selected. Alternative in Figure 4 required three
fragment parameter changes – in two cases, the fragment length in clusters changed
and in one case, the fragment position shifted by a cluster. The alternative specified
in Figure 5 required two parameter changes, with two fragment length modifications.
The alternative specified in Figure 5 involved fewer file fragmentation parameter
changes, so its use may be considered more advantageous.

358 L. Vokorokos, B. Madoš, N. Ádám, A. Baláž, J. Porubän, E. Chovancová

If, during the search for the optimum encoding alternative, not even the starting
fragment of the encoding is specified, the total count of encoding alternatives Nalt

amounts to the following:

Nalt =
x!

(x− x′)!
.2m(n−1)

.y (7)

where

• x = |V | is the number of files in the file system,

• x′ = |V ′| is the number of files, into which the information shall be encoded,

• n is the bit count of the M confidential message,

• m is the number of rules used to modify the encoding procedure,

• y is the number of fragments of set V ′, where the message encoding may start.

From the above it is evident that for real-life file systems containing tens or
hundreds of thousands of files and the minimum length of the confidential message
being tens of bits, the search for the optimum encoding alternative is an excep-
tionally computing-intensive task, so it is rather a theoretical concept than a useful
procedure.

However, one may search effectively for suboptimal solutions, e.g. when en-
coding the confidential information into the specific fragment, alternatives for de-
fined number of applications of Steps 5 to 9 of the algorithm shall be searched for
selecting the optimum encoding alternative for the given fragment and only this
search window is considered. This limits the computing requirements of the pro-
cedure and allows controlling it by setting the size of the aforementioned search
window.

A further design ambition related to the algorithm was to allow the least possible
interference with the statistical parameters of file fragmentation in the file system
and thus lower the chances of recognition of the use of this algorithm by using ste-
ganalytic methods. When encoding confidential information in the specific example
set out in Section 3.1.1, we used fragment parameters α1 and α2, i.e. the position of
the first cluster of the fragment and fragment length, checking them for being even
or odd. We may also monitor the statistical values of these parameters for the set V
of all files, as well as the set of files used to store the confidential information, i.e.
set V ′. Table 1 summarises these parameters for the situation before the encoding
(Original state) of the confidential information, following the encoding by the alter-
native specified in Figure 4 and following the encoding by the alternative specified
in Figure 5, respectively.

As it is evident from Table 1, following the encoding of the confidential informa-
tion using the alternative specified in Figure 4, the statistical values of parameter α1

change in comparison to the original state, when the number of even settings of the
parameter decreases by 6.25 % (from 43.75 % to 37.50 %), and the number of odd
settings of the parameter increases by 6.25 % (from 56.25 % to 62.50 %) in the set V.

Multi-Carrier Steganographic Algorithm Using File Fragmentation of FAT FS 359

Parameter α1 Parameter α2

Even Odd Even Odd
No. % No. % No. % No. %

Original state V 7 43.75 9 56.25 10 62.50 6 37.50
V ′ 5 41.67 7 58.33 7 58.33 5 41.67

Encoding I V 6 37.50 10 62.50 10 62.50 6 37.50
(Figure 4) V ′ 4 33.33 8 66.67 7 58.33 5 41.67

Encoding II V 7 43.75 9 56.25 10 62.50 6 37.50
(Figure 5) V ′ 5 41.67 7 58.33 7 58.33 5 41.67

Table 1. Statistical values of parameters α1 and α2 for the sets V and V ′ before encoding
confidential information and after the encoding using the two alternatives

The number of even settings of the parameter decreased by 8.34 % (from 41.67 %
to 33.3 %), and the number of odd settings of the parameter increased by 8.34 %
(from 58.33 % to 66.67 %) in the set V ′.

The statistical values of parameter α2 remained unchanged, both in set V and
also in set V ′. In this aspect, the alternative specified in Figure 5 is more advan-
tageous, since the statistical values of parameter α1 and parameter α2 remained
unchanged, both in the case of set V as well as in the case of set V ′.

Analogous to the previous case of searching the optimum encoding considering
the minimum amount of fragment parameter changes, in this case we could assign
each of the alternatives a value showing the degree of equality of the statistical
values of the monitored parameters before and after the encoding and select the
optimum alternative, thus the one with the highest degree of equality. However,
the amount of encoding alternatives is identical to the previous case of searching for
the optimum encoding, thus also the computing requirements of this procedure are
beyond the limits of practical use.

Nevertheless, we may introduce a procedure allowing the compensation of chan-
ges to the respective fragment parameters during their execution in Step 5 of the
proposed algorithm. If in the current Step 5 of the encoding a fragment with the
identifiers fia and fra is selected, i.e., the fragment belonging to the file fia, being
the at position fra in the file, and some of its parameters have to be changed, e.g.
the parameter α2 – its length – has to be changed from even to odd (for instance),
this change may be compensated by changing the parameter from odd to even in
any other fragment, to which it applies that its fr > fra and fi may be of any
permissible value, so the fragment may be part of any file of the set V ′. If we add
the condition of fi = fia, thus the compensating fragment (the parameter change
of which serves as the compensation of the change of the fragment parameter, into
which the information is encoded) and the fragment used for encoding must be from
the same file, the changes of statistical values of the respective parameters shall be
compensated in each individual file from the set V ′.

When evaluating the statistical values of the fragment parameters, we may also
consider their absolute length in clusters. The state before encoding the confiden-

360 L. Vokorokos, B. Madoš, N. Ádám, A. Baláž, J. Porubän, E. Chovancová

Figure 6. Distribution of fragments by their length values before encoding the confidential
information and after the encoding using the first and the second alternative

tial message and after its encoding using the example in Section 3.1.1 is shown in
Figure 6.

It is evident that following the encoding depicted in Figure 5, the lengths of the
individual fragments are compensated to make them identical with the values they
had before the encoding of the confidential information (original state). One could
design an algorithm taking also the distribution of fragment lengths into account and
perform compensations of these fragment parameter changes during the encoding of
the information. However, practical testing performed on real-life secondary memory
devices using the FAT32 file system showed that the fragment lengths were from
a quite large interval – 〈1; 1 862〉 – and it was not always possible to compensate
change of length of one fragment by changing the length of another fragment in the
way that statistical values of the set of fragments stays unchanged. Fragment length
changes amounting to a single cluster do not represent significant changes in the file
system as a whole, therefore we refrained from the effort to compensate the changes
of this parameter.

5 CONCLUSIONS

In the introductory part, this paper analysed the current state of using secondary
data storage devices, especially hard disks and the FAT file system in steganography.

Multi-Carrier Steganographic Algorithm Using File Fragmentation of FAT FS 361

Then, an algorithm using the fragmentation of a set of files stored in the FAT file
system as a carrier of storing confidential information was proposed. As a proof of
the concept, a set of fragment parameters, a set of available operations and a set
of encoding rules were specified in the algorithm. As part of further research, these
sets shall be completed with the aim to find the optimum elements. The paper also
included a usage example for the information hiding algorithm and it also evaluated
the computation requirements of finding the optimum encoding of the confidential
information, as well as the compensation possibilities of the algorithm, considering
the changes of the respective fragment parameters of the files stored within the file
system.

The advantage of this algorithm is the flexibility of encoding information into
a set of files, which significantly increases the complexity of extracting the confi-
dential information using brute force attacks and allows the application of plausible
deniability. The algorithm does not store any additional information on the disk
and allows finding alternative encodings of the confidential information, which de-
creases the number of fragment parameter changes during the encoding procedure
and simultaneously allows compensation of these changes to minimise the changes
to the statistical values of the file fragment parameters.

A disadvantage of the algorithm is, similarly to all algorithms aiming at storing
information in the fragmentation of files, the loss of information upon defragmenting
the file system. This risk is limited by multiple factors. First of all, the user may
forbid the process of defragmenting. The advantage of using the FAT32 file system
is the possibility to use it on secondary memory media, such as pen drives, various
kinds of memory cards and SSD devices, where defragmenting is suppressed due to
the technology of the memory chips used. Many devices, such as mobile multimedia
players, digital cameras, set-top boxes and other devices – using even traditional
hard disks – often use firmware incapable of defragmenting.

Future research should focus on the development of methods allowing search of
suboptimal solutions of encoding confidential information minimising the amount of
interference with the file fragment parameters and procedures allowing the compen-
sation of these changes with acceptable algorithmic complexity.

Acknowledgements

This work was supported by the Slovak Research and Development Agency under
the contract No. APVV-0008-10 and KEGA 008TUKE-4/2013 Microlearning envi-
ronment for education of information security specialists. The projects are being
solved at the Department of Computers and Informatics, Faculty of Electrical Engi-
neering and Informatics, Technical University of Košice. This work was supported
by KEGA Agency of the Ministry of Education, Science, Research and Sport of the
Slovak Republic under Grant No. 077TUKE-4/2015 “Promoting the interconnec-
tion of Computer and Software Engineering using the KPIkit”. This support is very
gratefully acknowledged.

362 L. Vokorokos, B. Madoš, N. Ádám, A. Baláž, J. Porubän, E. Chovancová

REFERENCES

[1] Nag, A.—Singh, J. P.—Khan, S.—Ghosh, S.—Biswas, S.—Sarkar, D.—
Sarkar, P. P.: A Weighted Location Based LSB Image Steganography Tech-
nique. In: Abraham, A., Lloret Mauri, J., Buford, J. F., Suzuki, J., Thampi, S. M.
(Eds.): Advances in Computing and Communications (ACC 2011). Springer, Berlin,
Heidelberg, Comunications in Computer and Information Science, Vol. 191, 2011,
pp. 620–627, doi: 10.1007/978-3-642-22714-1 64. ISBN: 978-3-642-22713-4 (print),
ISBN: 978-3-642-22714-1 (online).

[2] Katzenbeisser, S.—Petitcolas, F. A. P.: Information Hiding Techniques for
Steganography and Digital Watermarking. Artech House Publishers, Norwood, Mas-
sachusetts, USA, 2000. ISBN: 1-58053-035-4.

[3] Nag, A.—Biswas, S.—Sarkar, D.—Sarkar, P. P.: A Novel Technique for Im-
age Steganography Based on Block-DCT and Huffman Encoding. International Jour-
nal of Computer Science and Information Technology, Vol. 2, 2010, No. 3, pp. 103–112,
doi: 10.5121/ijcsit.2010.2308.

[4] Zielińska, E.—Mazurczyk, W.—Szczypiorski, K.: Trends in Steganog-
raphy. Communications of the ACM, Vol. 57, 2014, No. 3, pp. 86–95, doi:
10.1145/2566590.2566610.

[5] Nag, A.—Biswas, S.—Sarkar, D.—Sarkar, P. P.: A Novel Technique for Im-
age Steganography Based on DWT and Huffman Encoding. International Journal of
Computer Science and Security, Vol. 4, 2011, No. 6, pp. 561–570.

[6] Mazurczyk, W.—Caviglione, L.: Steganography in Modern Smartphones and
Mitigation Techniques. IEEE Communications Surveys and Tutorials, Vol. 17, 2015,
No. 1, pp. 334–357, doi: 10.1109/COMST.2014.2350994.

[7] Petitcolas, F. A. P.—Anderson, R. J.—Kuhn, M. G.: Information Hiding –
A Survey. Proceedings of the IEEE, Vol. 87, 1999, No. 7, pp. 1062–1078, doi:
10.1109/5.771065.

[8] Anderson, R.—Needham, R.—Shamir, A.: The Steganographic File System.
In: Aucsmith, D. (Ed.): Information Hiding (IH 1998). Springer, Berlin, Heidelberg,
Lecture Notes in Computer Science, Vol. 1525, 1998, pp. 73–82, doi: 10.1007/3-540-
49380-8 6.

[9] Morkevičius, N.—Petraitis, G.—Venčkauskas, A.—Čeponis, J.: Covert
Channel for Cluster-Based File Systems Using Multiple Cover Files. Infor-
mation Technology and Control, Vol. 42, 2013, No. 3, pp. 260–267, doi:
10.5755/j01.itc.42.3.3328. ISSN: 1392-124X (print), ISSN: 2335–884X (online).

[10] Kainz, O.—Jakab, F.—Michalko, M.—Feciľak, P.: Detection of Persons and
Height Estimation in Video Sequence. International Journal of Engineering Scien-
ces and Research Technology, Vol. 5, 2016, No. 3, pp. 603–609, doi: 10.5281/zen-
odo.48321. ISSN: 2277-9655.

[11] Ševč́ık, J.—Kainz, O.—Feciľak, P.—Jakab, F.: System for EKG Monitor-
ing: Solution Based on Arduino Microcontroller. International Journal of Advanced
Research in Artificial Intelligence (IJARAI), Vol. 4, 2015, No. 9, pp. 22–25. ISSN:
2165-4069.

https://doi.org/10.1007/978-3-642-22714-1_64
https://doi.org/10.5121/ijcsit.2010.2308
https://doi.org/10.1145/2566590.2566610
https://doi.org/10.1109/COMST.2014.2350994
https://doi.org/10.1109/5.771065
https://doi.org/10.1007/3-540-49380-8_6
https://doi.org/10.1007/3-540-49380-8_6
https://doi.org/10.5755/j01.itc.42.3.3328
https://doi.org/10.5281/zenodo.48321
https://doi.org/10.5281/zenodo.48321

Multi-Carrier Steganographic Algorithm Using File Fragmentation of FAT FS 363

[12] Kovalč́ık, M.—Feciľak, P.—Jakab, F.—Dudiak, J.—Kolcun, M.: Cost-
Effective Smart Metering System for the Power Consumption Analysis of Household.
International Journal of Advanced Computer Science and Applications (IJACSA),
Vol. 5, 2014, No. 8, pp. 135–144, doi: 10.14569/IJACSA.2014.050821. ISSN: 2156-
5570.

[13] Cheddad, A.—Condell, J.—Curran, K.—McKevitt, P.: Digital Image
Steganography: Survey and Analysis of Current Methods. Signal Processing, Vol. 90,
2010, No. 3, pp. 727–752, doi: 10.1016/j.sigpro.2009.08.010.

[14] Sutherland, I.—Davies, G.—Blyth, A.: Malware and Steganography in Hard
Disk Firmware. Journal in Computer Virology, Vol. 7, 2011, No. 3, pp. 215–219, doi:
10.1007/s11416-010-0149-x.

[15] Sutherland, I.—Davies, G.—Pringle, N.—Blyth, A.: The Impact of Hard
Disk Firmware Steganography on Computer Forensics. Journal of Digital Forensics,
Security and Law, Vol. 4, 2009, No. 2, pp. 73–84, doi: 10.15394/jdfsl.2009.1059. ISSN:
1558-7215 (print), ISSN: 1558-7223 (online).

[16] Gupta, M. R.—Hoeschele, M. D.—Rogers, M. K.: Hidden Disk Areas: HPA
and DCO. International Journal of Digital Evidence, Vol. 5, 2006, No. 1, pp. 1–8.

[17] Carrier, B.: File System Forensic Analysis. Addison Wesley Professional, 2005,
600 pp., ISBN: 0-32-126817-2.

[18] Balan, C.—Vidyadharan, D. S.—Dija, S.—Thomas, K. L.: Combating Infor-
mation Hiding Using Forensic Methodology. Proceedings of the Sixth International
Workshop on Digital Forensics and Incident Analysis (WDFIA 2011), 2011, Kingston
University, London, UK, pp. 69–75. ISBN: 978-1-84102-285-7.

[19] Aycock, J.—de Castro, D. M. N.: Permutation Steganography in FAT Filesys-
tems. In: Shi, Y. (Ed.): Transactions on Data Hiding and Multimedia Security X.
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 8948, 2015,
pp. 92–105, doi: 10.1007/978-3-662-46739-8 6.

[20] Liu, S.-F.—Pei, S.—Huang, X.-Y.—Tian, L.: File Hiding Based on FAT
File System. Proceedings of the 2009 IEEE International Symposium on IT
in Medicine and Education, Jinan, China, Vol. 1, 2009, pp. 1198–1201, doi:
10.1109/ITIME.2009.5236280.

[21] Sheetz, M.: Computer Forensics: An Essential Guide for Accountants, Lawyers,
and Managers. John Wiley and Sons, New Jersey, USA, 2015, 176 pp., ISBN: 978-0-
471-78932-1.

[22] Blaze, M.: A Cryptographic File System for Unix. Proceedings of the 1st ACM
Conference on Computer and Communications Security (CCS ’93), 1993, pp. 9–16,
doi: 10.1145/168588.168590.

[23] Persiano, G. et al.: TCFS – Transparent Cryptographic File System. DIA, Univer-
sità Degli Studi Di Salerno, Italy.

[24] Encrypting File System for Windows 2000, Microsoft Windows 2000 White Paper,
Microsoft Corporation, 1998.

[25] Gutmann, P.: University of Auckland, New Zealand. The secure FileSystem
(SFS) for DOS/Windows. http://www.cs.auckland.ac.nz/pgut001/sfs/index.

html, September 1996.

https://doi.org/10.14569/IJACSA.2014.050821
https://doi.org/10.1016/j.sigpro.2009.08.010
https://doi.org/10.1007/s11416-010-0149-x
https://doi.org/10.15394/jdfsl.2009.1059
https://doi.org/10.1007/978-3-662-46739-8_6
https://doi.org/10.1109/ITIME.2009.5236280
https://doi.org/10.1145/168588.168590
http://www.cs.auckland.ac.nz/pgut001/sfs/index.html
http://www.cs.auckland.ac.nz/pgut001/sfs/index.html

364 L. Vokorokos, B. Madoš, N. Ádám, A. Baláž, J. Porubän, E. Chovancová

[26] E4M Disk Encryption, online: http://www.e4m.net.

[27] PGPDisk, online: http://www.pgpi.org/products/pgpdisk/.

[28] Hughes, J. P.—Feist, C. J.: Architecture of the Secure File System. 2001 Eigh-
teenth IEEE Symposium on Mass Storage Systems and Technologies, San Diego, CA,
USA, 2001, pp. 277–290, doi: 10.1109/MSS.2001.10020.

[29] Hand, S.—Roscoe, T.: Mnemosyne: Peer-to-Peer Steganographic Storage. In:
Druschel, P., Kaashoek, F., Rowstron, A. (Eds.): Peer-to-Peer Systems (IPTPS ’02).
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 2429, 2002,
pp. 130–140, doi: 10.1007/3-540-45748-8 13.

[30] Van Schaik, C.—Schmeddle, P.: A Steganographic File System Implementation
for Linux. University of Cape Town, South Africa, October 1998.

[31] McDonald, A. D.—Kuhn, M. G.: StegFS: A Steganographic File System for
Linux. In: Pfitzmann, A. (Ed.): Information Hiding (IH 1999). Springer, Berlin,
Heidelberg, Lecture Notes in Computer Science, Vol. 1768, 2000, pp. 463–477, doi:
10.1007/10719724 32.

[32] Jókay, M.—Košdy, M.: Steganographic File System Based on JPEG Files.
Tatra Mountains Mathematical Publications, Vol. 57, 2013, No. 1, pp. 65–83, doi:
10.2478/tmmp-2013-0036. ISSN: 1210-3195.

[33] Jókay, M.—Košdy, M.—Čavoj, M.: Steganographic File System Embedded in
Static Images. Central European Conference on Cryptology 2013, Telč, Czech Re-
public, 2013, pp. 76.

http://www.e4m.net
http://www.pgpi.org/products/pgpdisk/
https://doi.org/10.1109/MSS.2001.10020
https://doi.org/10.1007/3-540-45748-8_13
https://doi.org/10.1007/10719724_32
https://doi.org/10.2478/tmmp-2013-0036

Multi-Carrier Steganographic Algorithm Using File Fragmentation of FAT FS 365

Liberios Vokorokos graduated (M.Sc.) with honours at the
Department of Computers and Informatics of the Faculty of
Electrical Engineering and Informatics at Technical University
in Košice in 1991. He defended his Ph.D. in the field of program-
ming device and systems in 2000, his thesis title was “Diagnosis
of Compound Systems Using the Data Flow Applications”. He
was appointed Professor for computer science and informatics
in 2005. Since 1995 he has been working as an educationist at
the Department of Computers and Informatics. His scientific
research is focused on parallel computers of the data flow type.

In addition, he also investigates the questions related to the diagnostics of complex sys-
tems. Currently he is Dean of the Faculty of Electrical Engineering and Informatics at the
Technical University of Košice. His other professional interests include the membership in
the Advisory Committee for Informatization at the Faculty and Advisory Board for the
Development and Informatization at the Technical University of Košice.

Branislav Mado�s graduated (Ing.) at the Department of Com-
puters and Informatics at the Faculty of Electrical Engineering
and Informatics of the Technical University of Košice in 2006.
He defended his Ph.D. in the field of computers and computer
systems in 2009, his thesis title was “Specialized Architecture of
Data Flow Computer”. Since 2010 he has been working as Assis-
tant Professor at the Department of Computers and Informatics.
His scientific research is focused on the parallel computer archi-
tectures and architectures of computers with data driven compu-
tational model and computer security using cryptographic and
steganographic methods.

Norbert �Ad�am graduated (M.Sc.) with distinction at the De-
partment of Computers and Informatics at the Faculty of Elec-
trical Engineering and Informatics of the Technical University of
Košice in 2003. He defended his Ph.D. in the field of computers
and computer systems in 2007, his thesis title was “Contribu-
tion to Simulation of Feed-Forward Neural Networks on Parallel
Computer Architectures”. Since 2006 he has been working as
Professor Assistant at the Department of Computers and Infor-
matics. Since 2008 he is the Head of the Computer Architectures
and Security Laboratory at the Department of Computers and

Informatics. His scientific research is focused on the parallel computers architectures.

366 L. Vokorokos, B. Madoš, N. Ádám, A. Baláž, J. Porubän, E. Chovancová

Anton Bal�a�z received his Master’s degree in informatics in
2004 from the Faculty of Electrical Engineering and Informatics,
Technical University of Košice. In 2008 he received his Ph.D. in
the area of computer security. Since 2007 he has been working as
Professor Assistant at the Department of Computers and Infor-
matics at the Faculty of Electrical Engineering and Informatics,
Technical University of Košice.

Jaroslav Porub�an received his M.Sc. in 2000 and his Ph.D. in
computer science in 2004. Since 2013 he is the Head of the De-
partment of Computers and Informatics at Technical University
of Košice. His research is focused on the fields of empirical soft-
ware engineering, domain-specific and programming languages,
and human-computer interaction. He was involved in the re-
search projects dealing with implementation of domain-specific
and programming languages, language evolution and composi-
tion, and software engineering. In 2018 he established open
laboratory OpenLab for evaluation of next generation human-

computer interaction concepts.

Eva Chovancov�a graduated (Ing.) at the Department of Com-
puters and Informatics at the Faculty of Electrical Engineering
and Informatics of the Technical University of Košice in 2009.
She defended her Ph.D. in the field of computers and computer
systems in 2012, her thesis title was “Specialized Processor for
Computing Acceleration in the Field of Computer Vision”. Since
2012 she has been working as Assistant Professor at the Depart-
ment of Computers and Informatics. Her scientific research is
focused on the multicore computer architectures.

