
Computing and Informatics, Vol. 37, 2018, 1464–1484, doi: 10.4149/cai 2018 6 1464

ACP SEMANTICS FOR PETRI NETS
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1 INTRODUCTION

In formal methods community a widely accepted assertion states that a single formal
method, that will cover all aspects of the system design process in an acceptable
way, will never be developed [26]. That is given by the complexity of the process and
a variety of systems to be designed and analyzed. There have been attempts to in-
tegrate two or more formal methods to cope with that situation. According to [7] it
is particularly fruitful to study combinations of several methods with different char-
acteristics and complementary strengths. A similar approach has been applied at
the authors’ home institution regarding the development of an environment (termed
mFDTE) [21] for the design and analysis of discrete systems based on integration
of three formal description techniques: Petri nets, process algebra and B-method.
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The choice of the techniques mentioned has been driven by their properties that in
a complementary way cover different aspects of the system design and analysis. In
this work we pay attention to two of them: Petri nets and process algebra.

Petri nets, as a widely accepted formalism for design and analysis of discrete
systems [24], have proved their qualities in many situations [15, 33]. Both the states
and the actions of the system are clearly described using a Petri net model. So there
are analysis techniques [10] available for investigation of properties based on states
as well as on the dynamic behavior of a model. Process algebraic specification of
a system usually has no explicit representation of states, and is more focused on
the description of its dynamic behavior. Techniques available in process algebra are
especially useful when comparing the behavioral descriptions of concurrent systems,
like a high-level system specification and a more detailed description of its imple-
mentation [7]. In addition to the differences mentioned above, the de/composition
of specifications in the case of Petri nets is not so natural and fluent as it is in the
case of process algebra. Consequently, it can be assumed that Petri nets and process
algebra meet the property of complementarity in several aspects.

In the recent years an active research has been performed in the matter of two
fundamental models of concurrency – Petri nets and process algebras [5]. In [17]
a CCS-like calculus named as Finite-Net Multi-CCS was introduced. The given
calculus is provided by a labeled transition system and the P/T net semantics. As
a consequence, well-formed Finite-Net Multi-CCS processes are able to represent
finite P/T nets [18]. A simple process calculus (Petri calculus) is defined in [27].
Translation from Petri nets with boundaries to the calculus, and also translation of
Petri calculus terms to Petri nets is introduced. In such a way, the same expressive-
ness of both formalisms is shown. Another interesting work [22] compares a range
of notions for treatment of concurrency, such as Petri nets, Mazurkiewicz trace
languages and Zielonka automata to process algebra and raises several interesting
questions.

Further, a selection of classical but very influential works on the topic is given.
In [25] relations between nets, terms and formulas are treated. Particularly, the
net semantics of terms and the process semantics of nets are defined. In [11] re-
lations between the process algebra PBC (Petri Box Calculus) and a class of P/T
nets are studied. Syntax and semantics of PBC terms are carefully selected to allow
the definition of a transformation yielding the P/T nets preserving structural op-
erational semantics of the source terms. The transformation allows a composition
of P/T nets. A process semantics of elementary nets is defined using concepts of
partial algebra in [13]. In the paper, a partial algebra is proposed, as a suitable
tool for defining the true-concurrency semantics for arbitrary restrictions of the oc-
currence rule. In the work [4] authors treat the issue of partial-order algebras and
their relations to P/T nets based on the theory of BPA and ACP. Authors of [6]
propose an approach to algebraic semantics for hierarchical P/T nets. The PTNA
(Place/Transition Net Algebra) is defined within the paper, based on process alge-
bra ACP and an algebraic semantics for P/T nets is given, such that a P/T net
and the term representation of the net have the same operational behavior. The
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actions of the process algebra correspond to consumption and production of tokens
by transitions respectively. The results achieved are further extended to hierarchical
P/T nets.

The compositional approach to system design and the possibility of investigating
and comparing the system properties by means of algebraic manipulations [27, 17]
are two main sources of motivation for defining the algebraic semantics for Petri
nets. This work aims to contribute to the topic of integrating Petri nets and process
algebra by introducing the algebraic semantics for Petri nets, based on Algebra of
Communicating Process (ACP) [2]. Our previous work on integration of Petri nets
and process algebra includes the definition of algebraic semantics for Petri nets based
on a dedicated process algebra APC (Algebra of Process Components) [30]. While
it has several interesting properties, mainly the ability to model Petri nets processes
in a simple and natural way, it also has one essential drawback, which hampers its
practical utilization. There is currently no available tool supporting the analysis of
APC specifications. This motivated us to define the algebraic semantics for Petri
nets based on process algebra with a reasonable tool support. The available tool
support in this case includes the PSF-Toolkit [14], which is based on the process
algebra ACP.

When comparing the proposed solution with the presented existing solutions,
several differences can be identified. We use a widely-adopted process algebra with-
out defining its special extensions, we can find them in many existing solutions,
which ensures the reasonable tool support out of available tools. Moreover, the
existing implementation of our transformation supports the simpler practical uti-
lization. Most of the solutions, except of those defining their own process language,
are based on process algebras like CCS and CSP. We have chosen the process al-
gebra ACP, as we believe it is beneficial. ACP is based on an equational style
of reasoning, while CCS and CSP are model-based. In the case of ACP, the cen-
tral point is an equational theory, which may have several semantic interpreta-
tions [7, 3].

The paper is organized as follows. Section 1 introduces the topic and the mo-
tivation for the work. Basic notions and definitions for the class of Petri nets used
are given in Section 2. In Section 3, Algebra of Communicating Process is pre-
sented briefly from the syntactic as well as the semantic point of view. Section 4
concentrates on defining the algebraic semantics for given class of Petri nets. The
example presented in Section 5 demonstrates the approach introduced within the
paper. Section 6 concludes the paper and contains the possible directions for future
research.

2 PETRI NETS

In the paper we assume the class of ordinary Petri nets [9] and provide a brief
description of the basic notions and notations in the following paragraphs in style
of [20].
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Definition 1. The Petri net is a 4-tuple N = (P, T, pre, post), where P is a finite
set of places, T is a finite set of transitions (P ∩ T = ∅), pre : P × T → {0, 1} is the
preset function and post : P × T → {0, 1} is the postset function.

The marking of Petri net N = (P, T, pre, post) is a totally defined function
m : P → IN, where IN is the set of natural numbers. We use m to describe a con-
figuration of N . We fix some ordering of places (P = {p1, . . . , pk}), so we can

consider m to be a k-dimensional nonnegative integer vector:
→
m∈ INk. More for-

mally
→
m= (m(p1),m(p2), . . . ,m(pk)), where m(pi) is the value of m in the place pi,

i = 1, 2, . . . , k. Marked net, with the marking m, is denoted by N0 = (N,m0) or
N0 = (P, T, pre, post,m0).

For the sake of simplicity we use the denotation m for both interpretations of
the marking, when it does not cause any problems. Some useful notations can be
further defined, as the sets of pre/post-conditions for given transition t ∈ T and the
sets of pre/post-transitions for given place p ∈ P , respectively:

•t = {p|pre(p, t) 6= 0} the set of preconditions of t,

t• = {p|post(p, t) 6= 0} the set of postconditions of t,

p• = {t|pre(p, t) 6= 0},
•p = {t|post(p, t) 6= 0}.

We say that a transition t is enabled in m (and denote it m
t→), if for every

p ∈ •t,m(p) ≥ pre(p, t). The effect of firing t in m is the creation of the new marking

m′ (m
t→ m′) and m′ is defined in the following way:

m′(p) = m(p)− pre(p, t) + post(p, t), p ∈ P, t ∈ T.

Denotation (N,m)
t→ (N,m′) is alternatively used for expressing a step of com-

putation (m
t→ m′) within the Petri net N . The set of reachable markings for given

Petri net N0 = (P, T, pre, post ,m0) is defined by:

R(N0) = {m|m0
σ→ m}

where σ = t1, t2, . . . , tr stands for an admissible firing sequence in N0. The language
of Petri net N0 can be defined by:

L(N0) = {σ ∈ T ∗|m0
σ→ m}.

3 ACP – ALGEBRA OF COMMUNICATING PROCESSES

Algebra of Communicating Processes (ACP) [2] is an algebraic framework for study-
ing concurrent communicating processes. It is based on Milner’s Calculus of Com-
municating Systems (CCS) [23], historically the first complete theory. ACP more
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emphasizes the algebraic aspect, it is an equational theory with a number of se-
mantical models. In addition, the ACP uses a more general communication scheme
compared to CCS and CSP [3].

3.1 Syntax

The signature of ACP contains a set of constants A, partial communication function
γ on A, which is commutative and associative, a special constant δ (deadlock δ /∈ A)
and operators: + (alternative composition), · (sequential composition), ‖ (parallel
composition), bb (left merge), | (communication merge).

The axiom system of process algebra ACP can be found in Table 1. We also
use axioms for encapsulation (D1–D4) and hiding internal transitions (TI1–TI4).
Within the table x, y, z stand for processes, a, b ∈ A and δ, τ /∈ A are constants.
In [2], where many different process algebras are defined, it can be found with the
denotation ACPτ , but for the sake of simplicity we use the name ACP within the
paper.

x+ y = y + x A1 ∂H(a) = a if a /∈ H D1
(x+ y) + z = x+ (y + z) A2 ∂H(a) = δ if a ∈ H D2
x+ x = x A3 ∂H(x+ y) = ∂H(x) + ∂H(y) D3
(x+ y) · z = xz + yz A4 ∂H(x · y) = ∂H(x) · ∂H(y) D4
(x · y) · z = x · (y · z) A5
x+ δ = x A6 τI(a) = a if a /∈ I TI1
δ · x = δ A7 τI(a) = τ if a ∈ I TI2

τI(x+ y) = τI(x) + τI(y) TI3
a|b = γ(a, b) if γ defined CF1 τI(x · y) = τI(x) · τI(y) TI4
a|b = δ otherwise CF2

xτ = x B1
x‖y = xbby + ybbx+ x|y CM1 x(τ(y + z) + y) = x(y + z) B2
abbx = ax CM2
axbby = a(x‖y) CM3
(x+ y)bbz = xbbz + ybbz CM4
ax|b = (a|b) · x CM5
a|bx = (a|b) · x CM6
ax|by = (a|b) · (x‖y) CM7
(x+ y)|z = x|z + y|z CM8
x|(y + z) = x|y + x|z CM9

Table 1. Axioms of process algebra ACP

3.2 Semantics

The constants in A are called atomic actions, and are considered indivisible actions
(events). The sequential composition of two processes x · y is the process that first
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executes x and after finishing it, it starts executing y. The alternative composition
of two processes x and y is the process x+ y, that either executes x or y.

The parallel composition of two processes x and y in a process algebra without
communication is expressed as x‖y. It is assumed that the atomic actions have no
duration in time, and that two actions cannot happen simultaneously [2]. So the
actions of x are arbitrarily interleaved with those of y. In order to specify the merge
by finite number of equations, the auxiliary operator bb is introduced. The operator
has the same meaning as the merge operator (‖) with the restriction, that the first
step must come from the left process (i.e. the x in case of xbby).

In process algebra ACP however, the meaning of parallel composition is a bit
more complicated. Considering the merge of two processes x‖y, there are three
possibilities to proceed in general (CM1). Either the process starts with a first step
of x (given by xbby), or a first step of y (ybbx) or with a communication between the
two processes (x|y).

The communication merge (x|y) represents the merge of two processes, where
the first step is a communication between x and y. This type of merge is an ex-
tension of communication function on atomic actions (γ : A × A → A). When the
communication function is not defined, the communication merge is equal to δ.

If we want to state that some actions cannot happen and should be blocked, the
actions are renamed to δ by using the unary encapsulation operator ∂H . A process
∂H(p) can execute all the actions of p, except those, which names are in the set H.
An important tool in the analysis of systems is hiding, as the names of internal events
can be hidden and thus the relationship between externally visible events becomes
more clear. The hidden action (τ) cannot be observed directly, or communicate with
other actions [16].

a) a
a−→
√

x+ y
a−→
√

and y + x
a−→
√

b) x
a−→
√
⇒ x · y a−→ y

x‖y a−→ y, y‖x a−→ y and xbby a−→ y

x+ y
a−→ x′ and y + x

a−→ x′

c) x
a−→ x′ ⇒ x · y a−→ x′ · y

x‖y a−→ x′‖y, y‖x a−→ y‖x′, xbby a−→ x′‖y
x

a−→ x′, y
b−→ y′, γ(a, b) = c⇒ x‖y c−→ x′‖y′ and x|y c−→ x′‖y′

d) x
a−→ x′, y

b−→
√

, γ(a, b) = c⇒ x‖y c−→ x′, x|y c−→ x′, y‖x c−→ x′, y|x c−→ x′

x
a−→
√

, y
b−→
√

, γ(a, b) = c⇒ x‖y c−→
√

and x|y c−→
√

Table 2. Transition relations for ACP terms

To assign an operational semantics to process expressions, we determine, which
actions the process can perform. The fact, that process represented by the term t can
execute the action a and turn to the term s is denoted by: t

a−→ s (or alternatively

a is enabled in t). The symbol
√

stands for successful termination and thus t
a−→
√
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denotes the fact that t can terminate by executing a. The definition of action
relations is given in Table 2.

4 ACP SEMANTICS FOR PETRI NETS

In this section the transformation is described in more detail. We start with defining
a special variable for every place in a Petri net to be transformed. We name such
variable as E-variable, and it will be bound to a term representing all possible
computations started in corresponding place of the Petri net N . The value (term)
assigned to the particular variable depends on the structure of the net in a vicinity
of associated place. So, considering the place p, the variable E(p) will be bound to
a term representing all the computations within the Petri net N , which are initiated
in the place p.

a) b) c)

Figure 1. Petri net fragments

The basic configurations are captured in Figure 1. In the case a) a situation is
depicted, where no arcs are connected to the place named p. This situation results in
the assignment of a term representing no computations to the variable corresponding
to such place, i.e. δ (deadlock). The case b) represents the alternative composition
(choice). If a token is present in the place p, a choice is to be made, and only one
of the transitions t1, . . . , tn can fire. The case c) represents a general composition,
where tokens must be present in all the pre-places (p1, . . . , pn) of the transition t
to enable it for firing. Otherwise the firing of the transition is not possible. After
firing of a corresponding transition, however its post-place(s) are marked and the
processes initiated in those places are able to start.

The general composition (the case c) of Figure 1) can be understood as a general-
ization of three basic kinds of composition: sequential, parallel and synchronization
(see Figure 2). The fourth of the basic composition mechanisms being the alterna-
tive composition as it was mentioned above. Let n be the number of pre-places and
m the number of post-places of the transition t, then:

• if n = 1 ∧m = 1 we obtain the sequential composition (Figure 2 a)),

• if n = 1 ∧m > 1 we obtain the parallel composition (Figure 2 b)),
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• if n > 1 ∧m = 1 we obtain the synchronization (Figure 2 c)).

a) b) c)

Figure 2. Basic compositions as a special cases of general composition

Now we can proceed to construction of terms representing the possible compu-
tations for particular types of places. When constructing the algebraic semantics
for a Petri net, the terms will be bound to corresponding E-variables.

Definition 2. According to the structure of a Petri net in the vicinity of a given
place, the bounding of terms to corresponding variables for elementary situations
depicted in Figures 1, 2 and 3 is defined as follows:

1. deadlock (Figure 1 a)): E(p) = δ,

2. alternative composition (Figure 1 b)): E(p) = t1·E(q1)+t2·E(q2)+. . .+tn·E(qn),

3. sequential composition (Figure 2 a)): E(p) = t · E(q),

4. parallel composition (Figure 2 b)): E(p) = t · (E(q1) ‖ . . . ‖ E(qm)),

5. synchronization (Figure 2 c)): E(p1) = tp1, E(p2) = tp2, . . . , E(pn) = tpn,

6. transition without post-place(s) (Figure 3 a)): E(p) = t,

7. transition without pre-place(s) (Figures 3 b) and 3 c)): E(p) = t · (E(p)‖E(q)).

Figure 3. Transitions without input/output
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We further give additional notes to the case 5 (synchronization) and the case 7
(transition without pre-place(s)) of the Definition 2. In the case of synchroniza-
tion [1], the new auxiliary synchronization process is also defined in the following
way:

Synct = (ts1‖ts2‖ . . . ‖tsn) · t · (E(q)‖Synct), (1)

ensuring that the synchronization must precede the execution of the action t. To
achieve the goal, the following communication functions are also defined: ts1|tp1 =
tc1, ts2|tp2 = tc2, . . . , tsn|tpn = tcn. A set of actions to hide (rename to inter-
nal action τ), is defined to make the additional synchronization actions invisible:
I = {tc1, tc2, . . . tcn}. A set of actions to encapsulate (rename to δ) is defined too,
in order to force the communication of processes to synchronize with the Synct pro-
cess (1) introduced above: H = {ts1, tp1, ts2, tp2, . . . , tsn, tpn}. The process is then
composed (using the parallel composition operator of the ACP) with the rest of the
system (2).

Taking into account the case, when a transition without pre-places occurs within
the net structure (Figure 3 b)), the following solution is proposed: for every such
transition t, a new pre-place is created, which is connected to the transition by two
arcs, such that the firing properties of the transition are preserved (Figure 3 c)).
Combining the basic principles explored so far, we are able to construct the terms
for more complicated net structures.

Definition 3. Let the Petri net be given by the N = (P, T, pre, post), m ∈ INk

defines the initial marking and k = |P |. Then the algebraic (ACP) semantics for
the Petri net N and the marking m is given by the formula:

A(N,m) = τI(∂H(E(p1)
(i1)‖ . . . ‖E(pk)

(ik)‖Synct1‖ . . . ‖Syncts)). (2)

Within the Equation (2), E(pi) stands for an ACP-term, defined according to
a Petri net structure in the vicinity of the place pi (see Definition 2). The value ij,
given by ij = m(pj), represents the marking with respect to the place pj, 1 ≤ j ≤ k.
By the E(pj)

(i) we mean the term E(pj)‖ . . . ‖E(pj), representing a multiple (i-
times) parallel composition of a process E(pj). Note that the E(pj)

(0) = δ. The
Syncti (1 ≤ i ≤ s) processes are composed to the rest of the system in the case there
are s synchronizing transitions within the source (Petri net) specification.

The size of a process A(N,m), corresponding to Petri net N with the mark-
ing m, created by the transformation depends on the number of marked places in
the marking m (E(p1)‖ . . . ‖E(pk)), as well as on the number of synchronizing tran-
sitions within the net N (Synct1‖ . . . ‖Syncts). If we suppose the number of tokens
in the marking m is O(k), where the k = |P | and the number of synchronizing
transitions s is O(n), where n = |T |, we can express the number of process variables
in the term A(N,m) by the sum O(k) +O(n). However, the complexity of the term
can vary in the case we start to modify it in order to investigate the behavior of the
system it describes, as it can be observed in an example introduced within the next
section.
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Theorem 1. For given Petri net N = (P, T, pre, post), m,m′ markings of the net N ,
ACP-terms A(N,m) and A(N,m′), representing the algebraic semantics for the
net N , and transition t ∈ T holds:

(N,m)
t→(N,m′)⇒ A(N,m)

t→A(N,m′).

Proof. The proof is constructed by examining all the elementary cases given by
the structure of a Petri net from the point of view of its individual places, as de-
scribed in the Definition 2. If the step in computation of the Petri net N exists

(N,m)
t→(N,m′), so the transition t is enabled in the marking m (∀pi ∈ (•t) :

m(pi) ≥ pre(pi, t)) and after firing it produces the new marking m′ (∀pi ∈ P :
m′(pi) = m(pi)− pre(pi, t) + post(pi, t)), a step should also exist in the correspond-

ing algebraic specificationA(N,m)
t→A(N,m′). As it was defined in the Definition 3,

the algebraic semantics for the Petri net N with the marking m is given by:

A(N,m) = τI(∂H(E(p1)
(i1)‖ . . . ‖E(pk)

(ik)‖Synct1‖ . . . ‖Syncts)). (3)

According to transition relations of ACP (Table 2), a step within the algebraic
specification can be performed either by executing an atomic action of a process, or
by means of communication of two processes, when the corresponding communica-
tion function is defined.

Within the Petri net N , the type of the transition t under consideration can be
classified according to size of the set of its pre-places |•t|. The case |•t| = 1 applies
to all the following elementary situations of the Definition 2, except the case 1 (the
deadlock) and the case 5 (synchronization, where |•t| ≥ 2), which will be treated
in a slightly different way within the proof. Let us suppose •t = {p} (except the
cases 1 and 5) and m(p) ≥ pre(p, t) (where m(p) is the marking of the place p in
the Petri net N), so the transition t is enabled and can fire. Then it also holds that
m′(pi) = m(pi)+ post(pi, t)−pre(pi, t), pi ∈ P is a new marking of N after firing the
transition t. If E(p) represents the corresponding ACP semantics for the process
initiated in the place p (Definition 2), then the step (t) is enabled in the E(p) and
the E(p) is present in the A(N,m) (Definition 3).

In the following lines we will explore the elementary cases in the order given by
the Definition 2.

1. The case represents the situation, where no computation is available, since no
transition is connected to the place p.

E(p) = δ

The corresponding algebraic term (δ), representing a deadlock is generated.

2. The case represents the alternative composition, where the corresponding alge-
braic term is generated in a way:
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E(p) = t1 · E(q1) + t2 · E(q2) + . . .+ tn · E(qn)

According to transition relations of process algebra ACP (Table 2, case c) the
step is possible and one of the alternatives is chosen, given by the transition
under consideration (t ∈ {t1, . . . , tn}).

3. The case represents the sequential composition, where the corresponding alge-
braic term is generated:

E(p) = t · E(q)

According to the transition relations of process algebra ACP (Table 2, case c),
the step t is possible within the corresponding algebraic term.

4. The case represents the parallel composition, where the following algebraic term
is generated:

E(p) = t · (E(q1) ‖ . . . ‖ E(qm))

Again, the realization of action t is possible (Table 2, case c) within the corre-
sponding term, regardless the more complicated nature of the process following
the action.

5. In the case, a firing of the transition t with two (or more) preconditions in Petri
net N occurs (|•t| ≥ 2). The situation is depicted in the figure below, which
essentially represents the synchronization of processes p1, . . . , pn.
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E(p1) = tp1, E(p2) = tp2, . . . , E(pn) = tpn

Synct = (ts1‖ts2‖ . . . ‖tsn) · t · (E(q)‖Synct)

If within the marking m of the Petri net N the places p1, . . . , pn contain enough
tokens (so the conditions hold: m(p1) ≥ pre(p1, t), . . . ,m(pn) ≥ pre(pn, t)), the
transition t can fire. From the definition of ACP semantics for the Petri net N
(Definition 3) and the definition of terms bound to corresponding E-variables
(Definition 2, case 5), there is a step available in A(N,m), too. The step is
represented by the communications (tsi|tpi = tci, 1 ≤ i ≤ n) of atomic ac-
tions (tpi, 1 ≤ i ≤ n) of synchronizing processes with the corresponding actions
(tsi, 1 ≤ i ≤ n) of the Synct process. The actions resulting from the commu-
nications (tci, 1 ≤ i ≤ n) are renamed to internal actions (τ) by means of the
operator τI and must precede the execution of the action t. Attempts to execute
the actions mentioned above (tpi and tsi, 1 ≤ i ≤ n) without communication are
blocked, using the operator ∂H (Definition 3).

6. Within the case, represented by a transition without post-place(s), the corre-
sponding algebraic term is generated:

E(p) = t

In this particular case, the step t is possible within the process E(p) in accor-
dance with the transition relations of process algebra ACP (Table 2, case b) and
the process terminates after executing the action.

7. The case represents a transition without pre-place(s), where the following alge-
braic term is generated:

E(p) = t · (E(p)‖E(q))

By the substitution introduced within the Definition 2, we have a fragment of
Petri net, with the additional place p, which is connected to the transition t by
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two arcs, such that the firing properties of the transition are preserved (i.e. if the
place p is marked, the transition t can fire arbitrary many times). The step t is
possible within the process E(p) in accordance with the transition relations of
process algebra ACP (Table 2, case c) and the action t can be executed arbitrary
many times.

When the step A(N,m)
t→A(N,m′) occurs, the corresponding ACP semantics

of the net (N,m′) will contain a subterm given by the right hand side of the partic-
ular equation for the E(p). The subterm itself represents the particular changes to
marking of post-places of the transition t (t•) of the Petri net N . Disappearing of
the subterm E(p) on the other hand represents the consumption of the token from
the pre-place (p) of the transition t.

We can conclude, that if a step in the Petri net N with the marking m is enabled,
so it is enabled also in the corresponding algebraic representation A(N,m). 2

5 AN EXAMPLE

An example is provided within this section to demonstrate the way of using the
transformation rules proposed above. The Petri net (depicted in Figure 4) repre-
sents a simple system with two processes synchronizing their executions on two
common actions. The synchronizing actions are modeled by the transitions t2
and t3.

Figure 4. Petri net for two processes

At the beginning we assign the ACP-terms to variables constructed for every
place of (source) Petri net N , according to the structure of the net in the neighbor-
hood of the corresponding place.

E(p1) = t1 · (E(p5)‖E(p2)), E(p2) = t2p2, E(p3) = t3p3,

E(p4) = t4 · (E(p6)‖E(p3)), E(p5) = t3p5, E(p6) = t2p6.
(4)



ACP Semantics for Petri Nets 1477

Next, the synchronizing processes are defined (because of the presence of syn-
chronizing transitions t2 and t3):

Synct2 = (t2s2‖t2s6) · t2 · (E(P1)‖Synct2),

Synct3 = (t3s3‖t3s5) · t3 · (E(P4)‖Synct3).
(5)

We also define four communication functions as we proposed in the Definition 2:

t2s2|t2p2 = t2c2, t3s3|t3p3 = t3c3, t2s6|t2p6 = t2c6, t3s5|t3p5 = t3c5. (6)

A set of actions to encapsulate is defined, in order to force the communication
with the Synct2 and the Synct3 processes:

H = {t2s2, t2p2, t2s6, t2p6, t3s3, t3p3, t3s5, t3p5},

as well as a set of actions to abstract away and so hide the internal behavior of the
system:

I = {t2c2, t2c6, t3c3, t3c5}.

Since the initial marking of the Petri net N is given as m0 = (1, 0, 1, 0, 0, 0), only
two places (p1 and p3) hold tokens. Now initially, only the variables corresponding
to these places will be present in an equation describing the algebraic semantics of
the Petri net N , together with the processes Synct2 and Synct3, composed by the
means of parallel composition. Let the name of the whole composition be Sys and
the names of variables E(pi) be Ei (1 ≤ i ≤ 6) for the sake of simplicity within this
example.

A(N,m0) = Sys = τI(∂H(E1‖E3‖Synct2‖Synct3)). (7)

According to Equations (4) and (5), we can substitute for the variables present
in the specification:

Sys = τI(∂H(t1·(E2‖E5)‖t3p3‖(t2s2‖t2s6)·t2·(E1‖Synct2)‖(t3s3‖t3s5)·t3·(E4‖Synct3))).

Since the actions t3p3, t2s2, t2s6, t3s3, t3s5 are encapsulated by ∂H , the only avail-
able action for execution is the t1. We also substitute for the E2 and E5 process
variables and we have (the transition t1 and the variables E2 and E5 are underlined
in the equation above for the sake of lucidity):

Sys = t1 ·τI(∂H(t2p2‖t3p5‖t3p3‖(t2s2‖t2s6)·t2 ·(E1‖Synct2)‖(t3s3‖t3s5)·t3 ·(E4‖Synct3))).

In this situation all the initial actions of the composed processes are blocked by
the ∂H operation, so the communication (according to definition of communication
functions (6)) is the only available action. So we allow to communicate the actions
t3p5 with t3s5 and t3p3 with t3s3:

Sys = t1 · τI(∂H(t2p2‖(t2s2‖t2s6) · t2 · (E1‖Synct2)‖(t3c3‖t3c5) · t3 · (E4‖Synct3))).
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After hiding the products of communications (t3c3 and t3c5) by renaming them
to silent actions τ by means of the abstraction operation (τI), we have:

Sys = t1 · τ · τ · τI(∂H(t2p2‖(t2s2‖t2s6) · t2 · (E1‖Synct2)‖t3 · (E4‖Synct3))).

At this point we have the action t3 which is not affected by the operators τI and
∂H , so it can be placed before them. We also can remove the silent actions (τ) using
the axiom B1 (Table 1) and substitute for the variable E4.

Sys = t1 · t3 · τI(∂H(t2p2‖(t2s2‖t2s6) · t2 · (E1‖Synct2)‖t4 · (E6‖E3)‖Synct3)).

Further, the action t4 can be moved to the position after the t3, since it is not
affected by the operators τI and ∂H . We also substitute the action t2p6 for the
variable E6 within this step.

Sys = t1 · t3 · t4 · τI(∂H(t2p2‖(t2s2‖t2s6) · t2 · (E1‖Synct2)‖t2p6‖E3‖Synct3)).

Communications in this case produce the actions t2c2 and t2c6.

Sys = t1 · t3 · t4 · τI(∂H((t2c2‖t2c6) · t2 · (E1‖Synct2)‖E3‖Synct3)).

These actions are not blocked by ∂H , but are renamed by τI to silent actions τ .

Sys = t1 · t3 · t4 · τ · τ · τI(∂H(t2 · (E1‖Synct2)‖E3‖Synct3)).

The silent actions can be removed using the axiom B1 (Table 1) and the action
t2 is moved out of scope of the operators τI and ∂H .

Sys = t1 · t3 · t4 · t2 · τI(∂H(E1‖Synct2‖E3‖Synct3)).

After exchanging the order of process variables Synct2 and E3 we have the equa-
tion:

Sys = t1 · t3 · t4 · t2 · τI(∂H(E1‖E3‖Synct2‖Synct3)).

Where the term τI(∂H(E1‖E3‖Synct2‖Synct3)) is indeed the one from which we
started the derivation (7), so we have:

Sys = t1 · t3 · t4 · t2 · Sys . (8)

The prefix t1 · t3 · t4 · t2 represents the trace of actions executed by the process
Sys before it starts the execution from the initial state again. Thus finally, the
operation of the system can be described by the following expression, where the
symbol ω expresses the arbitrary number of repetitions.

Sys = (t1 · t3 · t4 · t2)ω. (9)
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Figure 5. PSF-Toolkit simulation environment

For the purpose of practical validation of the results obtained by means of
manual derivation given above, we also performed the simulation using the PSF-
Toolkit [14]. The environment of the PSF-Toolkit, together with (part of) the
specification is depicted in Figure 5.

Figure 6. Simulation of the system using the PSF-Toolkit

The names of processes and actions here differ slightly in some cases (like the
st2 instead of Synct2, or the t2ep6c instead of t2c6), but we hope they are still clear
enough. The simulation itself provides the results, which are in-line with the results
stated above and the trace of actions (Figure 6) acquired by the simulation of the
system corresponds to (9).

Further, we can define a new process (named ReSys in Figure 7), correspond-
ing to the external behavior of the system, as it is stated above (8). Finally,
we can compare the behavior of the two processes (Sys and ReSys), using the
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Figure 7. Process definitions with the ReSys process

equiv tool of the PSF-Toolkit (Figure 8) and find that the processes are bisimi-
lar.

Figure 8. Test of equivalence

6 CONCLUSION

In the paper we presented an approach for constructing an algebraic semantics for
Petri nets, based on Algebra of Communicating Processes (ACP). A variable is
created for every place of the given Petri net and a term is bound to the variable,
which expresses the process initiated in the place. The description of a process
representing the computations of Petri net is given by the parallel composition of all
the variables associated with the places holding tokens within the initial marking.

The ideas presented in the paper were implemented within the Petri2ACP tool.
Similarly, as it was in the case of the Petri2APC tool [31], where the first step
is parsing the PNML specification of a Petri net, the PNML Framework [19] was
used in this case, too. The resulting ACP specification is produced in a format of
the PSF-Toolkit. The tool was implemented using Java platform and is intended
to perform a deeper exploration of properties of the transformation, as well as to
enable its practical utilization.

As it was demonstrated by the example, a manual investigation of system be-
havior is possible, but it can be complicated and error-prone task. So having the
tool support (e.g. the PSF-Toolkit in this case) available to help with this task is
very useful and it was indeed one of the main sources of motivation for this work.
One of our previously developed transformations (Petri2APC [30]), which utilizes
a dedicated process algebra APC (Algebra of Process Components), provides sim-
pler algebraic specifications indeed, but there is currently no tool support for an-
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alyzing such specifications available. The algebraic specifications produced by the
Petri2APC transformation are often simpler, since in the APC special constructs are
available for expressing the synchronization of processes. So a certain price to pay
for the possibility of utilizing powerful tools in the case of ACP is the more compli-
cated modeling of process synchronization based on communication, encapsulation
and abstraction.

Although a reverse transformation to the one presented in this work, i.e. the Petri
net semantics for ACP terms, is not covered by this paper in detail; we published
some results in this respect in the past [28, 29]. An interesting application area
of that transformation and the corresponding tool (ACP2Petri) is the design and
analysis of communication protocols based on integration of the two mentioned
formal methods [32]. It would be very interesting to study the relations between the
two transformations in more details.

In the future, it would also be interesting to relate a high-level Petri nets with
some variant of data-enriched process algebra [8]. Another possible direction of the
future research is connected with the process algebra APC and development of tools
supporting the analysis of APC specifications. It would also be useful to enhance
the implementation of the transformation tool Petri2ACP in order to include the
support for additional tools, like mCRL2 [12].
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[32] Šimoňák, S.: Verification of Communication Protocols Based on Formal Methods
Integration. Acta Polytechnica Hungarica, Vol. 9, 2012, No. 4, pp. 117–128.

[33] Zhang, X.—Yao, S.: Bank Switching Performance Verification with Object-
Oriented Timed Petri Nets. Proceedings of the 2013 IEEE 8th Conference on In-

https://doi.org/10.1007/978-3-319-25527-9_17
https://doi.org/10.1007/978-3-642-13675-7_20
https://doi.org/10.1109/5.24143
https://doi.org/10.1017/cbo9780511526589
https://doi.org/10.1007/978-3-642-15375-4_38
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He is currently Associate Professor at the Department of Com-
puters and Informatics of the Faculty of Electrical Engineering
and Informatics at the Technical University of Košice, Slovakia.
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