
Computing and Informatics, Vol. 37, 2018, 1293–1312, doi: 10.4149/cai 2018 6 1293

NEW METHODS OF UNCHEATABLE GRID
COMPUTING

Jianhua Yu

School of Mathematical Sciences, South China Normal University
Guangzhou, P.R. China
e-mail: yujianhuascnu@126.com

Yuan Li

Department of Mathematics, Winston-Salem State University
NC 27110, USA
e-mail: liyu@wssu.edu

Abstract. Grid computing is the collection of computer resources from multiple
locations to reach a common goal. According to the task publisher’s computing
power, we will classify the deceptive detection schemes into two categories, and
then analyze the security of deceptive detection schemes based on the character-
istics of computational task function. On the basis of double check, we proposed
an improved scheme at the cost of time sacrifice called the secondary allocation
scheme of double check. In our scheme, the security of double check has been
greatly strengthened. Finally, we analyzed the common problem of High-Value
Rare Events, improved the deceptive detection scheme due to [1], and then put
forward a new deceptive detection scheme with better security and efficiency. This
paper is revised and expanded version of a paper entitled “Deceptive Detection and
Security Reinforcement in Grid Computing” [2] presented at 2013 5th International
Conference on Intelligent Networking and Collaborative Systems, Xi’an city, Shanxi
province, China, September 9–11, 2013.

Keywords: Distributed, deceptive detection, ringers, grid computing

Mathematics Subject Classification 2010: 68Q85

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computing and Informatics (E-Journal - Institute of Informatics,...

https://core.ac.uk/display/267942522?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1294 J. Yu, Y. Li

1 INTRODUCTION

The grid can be thought of as a distributed system with non-interactive workloads
that involve a large number of files. Grids are a form of distributed computing
whereby a “super virtual computer” is composed of many networked loosely cou-
pled computers acting together to perform large tasks. Grid computing combines
computers from multiple administrative domains to reach a common goal to solve
a single task, and may then disappear just as quickly. By grid computing, we can
use the computer’s idle capacity of tens of thousands of volunteers from all over
the world through the Internet and analyze the electrical signal from outer space
and find the hidden black holes, at the same time, explore the possible existence of
alien wisdom life; still, we can look for more than 10 million digital mason prime
numbers; and we can also search for and find more effective drugs to against HIV
and to complete the project which needs surprisingly large amount of calculation.

Past few years have seen a tremendous growth in grid computing with its effect
being felt in the biotechnology industry, entertainment industry and financial indus-
try, etc. [3, 4, 5, 6, 7, 8, 9]. For example, the Search for Extra-Terrestrial Intelligence
(SETI@home) project [6], which distributes to thousands of users the task of analyz-
ing radio transmissions from space, has a collective performance of tens of teraflops.
Another Internet computation, the GIMPS project directed by Entropia.com, has
discovered world-record prime numbers. Future projects include global climate mod-
eling and fluid dynamics simulation. There are also cryptographic protocols which
allow to implement provably optimal systems in theory [10, 11, 12, 13, 14]. However,
these algorithms are often computationally expensive in practice.

With the number of participants who join the grid computing increases, in-
evitably, there will be a lot of cheating. To gain more profits, some people may
provide some false certificates to prove that he/she himself/herself has provided
a lot of resources, including the computing time or the computing power, etc.; and
there are also some people who will directly return some false results. In addition,
some people can get more useful information from the calculated target. For exam-
ple, in the search for an effective approach of grid computing, a participant finds
an effective treatment in the grid computing. However, he does not provide it to
the supervisor of the grid computing, but sell it to another hospital, in order to gain
more profits. Therefore, we need to deal with two things in the grid computing:

1. How to detect the participant cheating;

2. In certain cases, how to hide the results which the task publisher really needs.

2 RELATED WORK

With the rapid development of grid computing, the cheating behavior in the grid
computing received more and more attention, and there exists many research achie-
vements [1, 11, 15, 16, 17, 18]. In order to detect the behavior of fraud in the

New Methods of Uncheatable Grid Computing 1295

grid computing, Golle and Mironov proposed ringers scheme [15], which can pro-
tect against coalitions of lazy cheaters provided that the computational tasks all
involve the Inversion of a One-Way Function (IOWF) f for a given value y, as in
the distributed.net attacks on cryptographic functions. In the ringer scheme, during
the initialization stage for each participant, the supervisor randomly selects several
inputs xi that will be assigned to that participant and computes f(xi) for each one.
Then, in addition to the value y that the supervisor wishes to invert, the super-
visor also sends to that participant all the “ringers” the supervisor has computed
for him. The participant must report the pre-images of all the ringers (as well as
the pre-image of y if he was lucky enough to discover it). That is, the participant
needs to compute f on x for all x in his input domain D and return the pre-image
of y if found, and he also has to return all the ringer pre-images he finds. By re-
membering the ringers for each participant, the supervisor can easily verify whether
each participant has found all his ringers or not. If he has, then the supervisor is
assured with reasonable probability that the participant has indeed conducted all
his computations. In the ringers scheme, the supervisor mixes some previous com-
putation results with the corresponding input and sends them to the participant.
Golle and Mironov have confirmed that in Ringers scheme, the participant’s cheat-
ing success opportunity is very small, but the use of computational task function
must be one-way. If participants collaborate with each other, they will know the
number of the ringers in the scheme. Therefore, Golle and Mironov proposed the
subsequent Hybrid Scheme.

Szajda et al. extend the ringers scheme [17] to deal with other general classes of
computations, including optimization and Monte Carlo simulations. They propose
effective ways to choose ringers for those computations. To find wrong results cre-
ated by lazy participants or cheaters, today many systems simply replicate the work
units and use the majority rules to decide the correctness of results [20]. However,
this approach often implies a waste of CPU cycles. For tasks where the verifica-
tion is less expensive than redoing the computations, alternative approaches are
preferable.

Golle and Mironov [15] propose a solution where a server secretly precom-
puted the results for a set of input values, the so called ringers. These ringers
are then interspersed among the ordinary input values of a work-unit. If a lazy
client does not compute the entire unit, it is likely to miss a ringer which can eas-
ily be detected by the server. The disadvantages of this approach are the need
for precomputation, the redundant computation that inherently occurs, and the
fact that a cheater is still likely to be undetected when cheating on a very small
fraction of input values only. Szajda et al. have generalized this approach
in [17].

Du et al. [18] present a commitment-based sampling scheme for cheater detection
in grid computations based on Merkle trees. A server selects some samples which
are assigned to a participant. The participant has to commit to its results which
are subsequently checked. The drawback of their approach is the additional burden
on the server which has to recompute some work-units itself.

1296 J. Yu, Y. Li

In [1] Du and Goodrich introduce the deceptive detection scheme named Search-
ing for high-value rare events. In their criterion-expansion scheme, under the cir-
cumstance of one-to-one correspondence in the computational task function, it has
very good safety, and it can defeat three kinds of cheating models put forward in
this article, but under the circumstance of more-to-one correspondence in the com-
putational task function, the participant will be able to position the supervisor to
find the value of the data according to the characteristics of some of the data. In
this case, the solution cannot resist the second and the third deceptive model in this
article. At the same time, the criterion-expansion detection scheme cannot resist
the collusion of the participants. In the criterion-reduction scheme of [1], it lacks the
necessary honesty testing steps, and it even cannot judge whether the participant
honestly computes all the data on the mission. Hence, there will be some serious
defects in terms of security.

Based on the scheme in [1], we present a new scheme using the Monte Carlo
simulation method. This scheme can resist the semi-honest cheater and hoarding
cheater. This scheme is available for one-to-one function and more-to-one function.
At the same time, it can resist the semi-honest cheater and hoarding cheater. But
most of schemes are available for one-to-one function.

We also design an other new scheme. In the new scheme, we add some variables
which satisfy the criterion Y to the domain of the function in the computational task.
For example, we are looking for signs of life in outer space in grid computing. Since
the value of the sign of life in outer space data is very very rare, the participant can
easily judge the criterion Y according to these characteristics, and therefore cannot
hide it. If we add appropriately some biological signs of life on earth and make the
domain of Y expand appropriately, thus let a rare event become not rare, and even
if participants find the valuable data to satisfy the standard of value Y , they are
still unable to distinguish whether these data come from outer space or from earth.
Thus, it protects rare events.

In most of cheating detection schemes, the computation task X had not been
dealt with. In order to achieve the purpose of hiding Y , they only used new criterion
Y ′ to replace Y . We present a new method. Let Y be y, we can construct a new
set C, for ∀x ∈ C, f(x) = y. In this way, we expand the task to X ∪ C. Compared
with[1], this new scheme has greatly improved the security.

3 THE MODEL

3.1 Problem Definition

In grid computing, when a supervisor releases a computational task, he/she needs to
compute f(x), ∀x ∈ X = {x1, x2, . . . , xn} and finally picks out valuable data from
the results of xi and f(xi). Due to the limited computation ability of the supervisor,
he/she will assign tasks to n participants. The task set of every Pi (i = 1, 2, . . . ,m)
is Di. Finally, each participant will return the valuable data to the supervisor in
their respective task set.

New Methods of Uncheatable Grid Computing 1297

Here we will introduce some basic terminology in the grid computing.

• Honesty Ratio r: For ∀x ∈ D, the participant needs to compute f(x). But in
fact, the participant may only compute f(x) for x ∈ D′ ⊂ D. Define honesty

ratio r as |D′|
|D| .

• Honesty Participant Ratio p: In grid computing, the ratio of the honest partic-
ipants in all of the participants should be considered.

• Valuable Events: Data that the supervisor is interested in.

• Honesty Return Ratio h: h is the proportion of correct valuable events which
were returned by Pi.

• Criterion y: The criterion can be a specific value or a range, and it can also be
a literal description language, etc. Using it, the supervisor and participants will
check whether f(x) satisfies the set of the valuable events.

• Pseudo-Valuable Events: The supervisor selects some data which satisfy the
criterion to hide the true criterion.

• High-Value Rare Events: The valuable data that satisfy the supervisor‘s cri-
terion Y is rare, and it even does not exist. For example, in the process of
searching for rare blood type, the rare blood type is the rare event.

• Ringer: A ringer is a value chosen by the supervisor in the domain of f .

• Pr(r): Assume that the participant is assigned a task that consists of computing
f(x) for all x ∈ D, where D = {x1, . . . , xn}. If a participant computes the
function f only on x ∈ D′, where D′ ⊆ D, we define the honesty ratio r as the
value of |D′|

D
. When the participant is fully honest, the honesty ratio is r = 1;

otherwise r < 1.

Let Pr(r) be the probability that a participant with honesty ratio r can cheat
without being detected by the supervisor. Let Ccheating be the expected cost of the
required task. We say a grid computing is uncheatable if one of the following or
both inequalities are true:

Pr(r) < ε, for a given ε(0 < ε ≤ 1) or Ccheating > Ctask.

In grid computing, what the supervisor mainly faces is how to ensure the fol-
lowing four conditions established:

1. Every participant Pi will compute f(x) for all data in Di;

2. Every participant Pi cannot know which data is the valuable data that the
supervisor is looking for;

3. The supervisor is able to distinguish the value of the returned data correctly;

4. Even if the participants act in collusion with each other, they cannot break the
effective implementation of the task.

1298 J. Yu, Y. Li

In grid computing, the organizer of the computation is the supervisor, at the
same time there are a lot of untrusted participants. The Supervisor will allocate
computing tasks.

The supervisor can distribute one or more computing tasks X = {x1, x2, . . . , xn}
according to the actual situation. The computing task of Pi is Di, and all of them
is X = D1 ∪D2 ∪ . . . ∪Dn.

For a specific computation, it is performed by two functions described below.

• A computational task function f : X → T defined on a finite domain X. The
goal of the computation is to evaluate f on all x ∈ X. For the purpose of
distributing the computation, the supervisor partitions X into subsets. The
evaluation of f on subset Di is assigned to participant Pi.

• A screening function S. The screener is a function that takes as input a pair of
the form ((x, f(x)); y) for x ∈ X, and returns a string s = S((x, f(x)); y), where
y represents the criterion. S is intended to screen for “valuable” outputs of f
that are reported to the supervisor by means of the string s.

• A payment scheme P . The payment scheme is a publicly known function P that
takes as input a string s from participant i and outputs the amount due to that
participant. We require that P may be efficiently evaluated. Specifically, one
evaluation of P should equal a small constant number of evaluations of f . In
many articles, they use the P function, but we do not use it.

3.2 Three Deceptive Models

This article uses three similar kinds of deceptive models proposed by Du and Good-
rich [1]. We assume each participant is given a domain D ⊂ X, and his/her task is
to compute f(x) for all x ∈ D.

1. Semi-Honest Cheater Model. In this model, the participant follows the su-
pervisor’s computations with one exception: for x ∈ Ď ⊂ D, the participant
uses ˇf(x) as the result of f(x). Function f̌ is usually much less expensive than
function f ; for instance, f̌ can be a random guess. The goal of the cheating
participant in this model is to reduce the amount of computations, such that it
can maximize its gain by “performing” more tasks during the same period of
time.

2. Hoarding Cheater Model. In this model, the participant conducts all the re-
quired computations. However, the participant will keep the computation results
if the results are valuable. However, the participant will keep the computation
results if the results are valuable. For example, if the computation is to search
for a rare event, a “lucky” participant who has found a rare event might report
a negative result because of the value of such a result. This type of cheating
behavior is a cheating on the screening function S.

3. Malicious Cheater Model. In this model, the behaviors of the participant
can be arbitrary, or even be hostile. For example, the participant P does all the

New Methods of Uncheatable Grid Computing 1299

correct calculation f(x) to all of the data in D, but he deliberately returns to the
supervisor wrong value screening results, to achieve the purpose of disorder and
confuse the supervisor to work normally, the participant may be the supervisor
of the competitors.

4 DECEPTIVE DETECTION MODEL

Whether the supervisor has the computing power is decided the way they test cheat-
ing. On this basis, we divide the deceptive detection model into two forms.

4.1 The Supervisor Has Not Computing Power

Because the supervisor has not ability to compute, so it is given a task data x,
the supervisor is unable to determine the accuracy of f(x). The supervisor can
only verify according to the participant. For this case, we can adopt the method of
double check.

Kuhn et al. [21] consider a grid framework consisting of a server and a potentially
large number of clients. A client is the logic entity with which the server interacts.
The server sends its work-units (or tasks or jobs) to clients, which return the corre-
sponding set of results. A participant is a user who has registered an account for the
project. He/she may use one or more computers (or machines) working for him/her
in the project. Moreover, a computer can correspond to one or several clients. The
computational resources of the clients are heterogeneous.

The server distributes two different kinds of tasks to the clients. Work-units
are the main computational tasks of the grid computing framework; checking units
require the client to perform a number of checks for the different results. They
assume that the main incentive for participation in the project are credit points:
There may be websites listing the credit points earned by the different users, or
there may even be ways to convert credit points into real money, by a lottery, for
example. In their system, a client earns credit points for computing both work-units
and checking units. The number of points is thereby proportional to the amount of
work, such that a participant is indifferent between the two tasks.

It is of prime importance that the credit points be earned honestly. Their
algorithms’ goal is to make sure that participants only get the credits they really
deserve, and that the system is not flooded with wrong results. They distinguish
between two kinds of clients: good clients and bad clients (or cheaters). They
consider a harsh model where all cheaters form a single coalition. Today’s systems
such as Seti@Home are reported to have roughly 1 % cheaters.

A checking algorithm which identifies dishonest behavior can achieve a higher
effectiveness if it interplays with a mechanism to punish cheaters. They assume
that a wrong result or an improper check implies that the corresponding client is
a cheater. Being debunked as a cheater basically implies that the corresponding
client’s user loses all its credits, and the corresponding account is closed.

1300 J. Yu, Y. Li

1. Double-Check. The supervisor will assign the subtask to two or more different
participants, and then compare whether the returned results are consistent with
each participant‘s. If it is consistent, the supervisor believes that the participant
is honest, otherwise, allocates the task again.

Security Analysis. If there is no collusion between participants, double check
scheme has a good security; if the participants of the same task are in collusion
with each other, they will return the same results to the supervisor. The su-
pervisor will still believe they are honest participants. So double check scheme
cannot defeat the joint attack of the participants.

In order to resist the joint attack, we can adopt the deformation mode of double
check.

2. Deformation 1.: The secondary allocation in double check scheme. The
supervisor will randomly assign the subtask D to the participant A firstly. After
it returns the results, the supervisor will randomly assign the same task D to
another participant B. For determining honesty of the participant A and B, the
supervisor compares conformance of the returned data from A and B.

3. Deformation 2: The samples testing in double check scheme. The com-
puting task X is divided into n parts, i.e. X = D1 ∩D2 . . . ∩Dn. The partici-
pant Pi has computing task Di. The supervisor randomly selects di ∈ Di as the
honesty sample data of Pi. When all the results are returned, the supervisor will
assign d1, d2, . . . , dn randomly to n new participants (at this stage, adopting the
secondary allocation in double check scheme to verify these n new participants’
honest behaviors). The supervisor will compare the sample data with returned
values of P1, P2, . . . , Pn, if the returned value of Pj is consistent with the sample
data, the participant is honest.

Security and efficiency analysis.

1. The two deformations of double check improve the security of the scheme. Be-
cause A does not know another participant B, he will compute honestly. Other-
wise, the supervisor will know he is a dishonest participant.

2. Because the samples of double check are only a small part of X, the deformation
2 which is relative to the former has a very good improvement in efficiency.

3. Both double check and two deformations require higher honest proportion p,
otherwise progress of completing the task is too slow, the price is too big. Be-
cause the supervisor needs to repeat each computing task of data distribution,
computing resources will be wasted.

4. The two deformation schemes in security have improved, but at the same time
caused the stagnation on time.

New Methods of Uncheatable Grid Computing 1301

4.2 The Supervisor Has Computing Power

The supervisor has a certain ability to compute f(x), but this kind of ability is lim-
ited. Because of the large workload, the supervisor cannot independently complete
all the verification.

[18] puts forward a kind of uncheatable grid computing based on binary tree.
When the supervisor uses m samples, the participant which honesty ratio is r can
deceive the chance of success

Pr(cheating − succeeds) = [r + (1− r)q]m,

for x ∈ D −D
′
, q is the probability that the participant correctly guesses the value

of f(x).
Combining both cases of x ∈ D

′
and x ∈ D−D′

, for one sample x, the probability
that the participant can prove its honesty on sample x is (r + (1− r)q). Therefore,
the probability that the participant can prove its honesty on all m samples is (r +
(1− r)q)m.

To keep the probability of successful cheating below a small threshold ε, the
sample size m should be

m ≥ log ε

log(r + (1− r)q)
.

But this detection method can only detect whether the participant computes
correctly the f(x), ∀x ∈ D. The participant will still be able to deceive the screener
function. So anti-cheat binary tree method can only detect semi-honest cheater.

5 THE HIDDEN CRITERION

The supervisor wants to search for valuable data from a large database. He can
adopt the method of grid computing and ask participants to help to search. The
supervisor has the criterion Y , but he cannot disclose it to participants. Otherwise
the participant will obtain valuable data. From thousands of drugs, for example, the
supervisor wants to find a formulation for the treatment of certain disease effectively,
but does not want to let participant know effective standard of the formulation.

In order to avoid leaking the criterion Y , the supervisor constructs a new cri-
terion to replace Y . So the supervisor can hide Y and the valuable data x ∈ {x |
f(x) = Y, x ∈ D}. In general, there are two kinds of typical processing method for
criterion Y .

5.1 Criterion Expansion

Golle and Mironov put forward the basic ringer scheme [15]. The basic ringer scheme
hides the criterion by the method of criterion-expansion method. Let the supervi-
sor’s criterion be Y = {y}, we are looking for valuable x which satisfies f(x) = y,
x ∈ D. The supervisor and participant will perform the following steps.

1302 J. Yu, Y. Li

1. The supervisor chooses for participant Pi uniformly independently at random
n values xi

1, xi
2, . . . , xi

n in Di, and also computes the corresponding images:
yij = f(xi

j).

2. The screener Si is defined as follows. On input (k, f(k)), test whether f(k)
belongs to the set {y, yi1, yi2, . . . , yin}. If so output the string k, otherwise output
the empty string.

3. The secret key Ki is the set xi
1, x

i
2, . . . , xi

n, which we call the set of ringers.

4. The supervisor checks that si contains all the ringers in Ki plus possibly x such
that f(x) = y. If so, the participant is honest.

Security Analysis.

1. If the criterion y included in the set {y, yi1, yi2, . . . , yin} is not hidden, partici-
pant Pi can relatively easy to determine y.

2. Only for f is a one-way function. If f is not a one-way function, the partic-
ipant can solve the preimages set of xi

1, xi
2, . . . , xi

n directly from the set of
{y, yi1, yi2, . . . , yin} and does not need to compute tasks in each function value
f(x). But the supervisor cannot find any cheating behavior.

3. Participant Pi knows the number of the elements in the ringer set. If partici-
pant Pi found all elements in the ring set, he needs not to do the rest of the
calculation.

4. This scheme cannot prevent collusion. By comparing {y, yi1, yi2, . . . , yin} with
{y, yj1, y

j
2, . . . , y

j
n}, Pi and Pj can gain the criterion y and its corresponding valu-

able x.

After the basic ringer scheme, Golle and Mironov put forward two improvement
schemes: Bogus ringer scheme and Hybrid scheme.

5.2 Criterion Reduction

Assuming the supervisor has computing task f(x), x ∈ X and criterion Y = {y |
y = f(x), and satisfies the constraints of y1, y2, . . . , yt}.

1. The supervisor partitions all participants into n parts (n < t, n is safety param-
eter). Each part has the ability to complete computing f(x), x ∈ X alone.

2. The supervisor distributes computing task f(x), x ∈ X and criterion {yi} to
part i. Part i eventually returns the set Si, for ∀x ∈ Si, yi = f(x).

3. The supervisor gets the set S = S1∩S2∩. . .∩Sn. He can verify each participant’s
behavior.

4. The supervisor’s criterion is y
′

= {y | f(x) = y, x ∈ S and satisfies the con-
straints of yn+1, yn+1, . . . , yt}.

New Methods of Uncheatable Grid Computing 1303

In the process of allocating the task by supervisor, just sent t constrained con-
ditions to n parts, even if all participants are in collusion with each other, they also
cannot get to judge criterion Y .

Because of |S| � |X|, the supervisor can easily gain the valuable data.

6 SEARCHING FOR HIGH-VALUE RARE EVENTS

Du and Goodrich [1] introduce the searching for high-value rare events scheme.

They propose a more practical set of grid computations – data filtering prob-
lems. In data filtering problems they are given a large set X of data instances and
a Boolean filtering function f . The supervisor is interested in all the elements x
of X such that f(x) = 1. Usually, the function f will involve some internal scoring
function on each input x along with a threshold value such that if x scores above
this value, then x is considered rare and interesting. This class of problems includes
the SETI@home application, where X consists of extraterrestrial signals that are
scored against what are considered to be patterns of intelligence.

By their very nature, it is not obvious which of the inputs in X will score
positive for the filter f (for otherwise there would be no motivation for them to go
to the trouble of using a grid computing environment to solve this problem). For
example, a casual examination of the signals that have scored highest so far in the
SETI@home scoring function does not yield any obvious patterns; to the naked eye
they all appear as noise. Thus, for data filtering applications such as this, employing
an input chaff injection scheme is easy.

To inject input chaff into the set of tasks, the supervisor needs only to have a set
of instances Y such that determining if any member yi is not in X is at least as
difficult as computing f(yi). (The supervisor may not need to explicitly construct
Y if he/she has a way of choosing elements from Y probabilistically.) Then the
supervisor can randomly inject members of Y into the task sets D ⊂ X for each
participant (with some probability p) to provably obfuscate the rare events. For
example, a true input x in the SETI@home application could be transformed into
chaff simply by adding a pattern of intelligence to it.

1. The supervisor randomly selects m inputs x1, . . . , xm from the input domain X.
Note that X is the global input domain, each participant only conducts tasks
for a subset of X.

2. The supervisor generates m chaff by computing ci = hash(f(xi)), for i =
1, . . . ,m.

3. The supervisor sends the list C = {hash(y), c1, . . . , cm} to all the participants.
C should be permuted to hide hash(y).

4. For any input x assigned to each participant, the participant computes
hash(f(x)) and compares the results with the list C. If a match occurs, the
participant sends x back to the supervisor; otherwise x is discarded.

1304 J. Yu, Y. Li

5. The supervisor can verify whether a returned x value is an actual rare event
or chaff, by a simple lookup in C (say, by storing the elements of C in a hash
table). The supervisor also checks whether the participant whose tasks include
chaff has returned the chaff or not. This way, the cheater can be caught.

This scheme cannot resist collusion of participants in a criterion expansion type
and cannot detect the semi-honest cheater in a detection scheme. Here we introduce
two schemes in [1].

6.1 Scheme I (Criterion Expansion)

1. The supervisor randomly selects n inputs x1, . . . , xn from the input domain X.
Note that X is the global input domain, each participant only conducts tasks
for a subset X.

2. The supervisor generates n ringers by computing

ci = hash(f(xi)),

for i = 1, . . . , n.

3. The supervisor sends the list

C = {hash(y), c1, . . . , cn}

to all the participants. C should be permuted to hide hash(y).

4. For any input x assigned to each participant, the participant computes
hash(f(x)) and compares the results with the list C. If a match occurs, the
participant sends x back to the supervisor, otherwise x is discarded.

5. The supervisor can verify whether a returned x value is an actual rare event or
ringer, by a simple lookup in C (say, by storing the elements of C in a hash
table). The supervisor also checks whether the participant whose tasks include
ringer has returned the ringer or not. This way, the cheater can be caught.

If f is a one-to-one function, this scheme has a good security. Even if all partic-
ipants in the scheme are in collusion with each other, we can also hide criterion Y
and valuable data x and f(x). First of all, every participant gets the same set

C = {hash(y), c1, c2, . . . , cn},

even if participants are in collusion with each other, they also cannot get more
information from C. Next, when f is the one-to-one function, the preimages of

{f(x1), f(x2), . . . , f(xn), y}

have only one, respectively, x1, x2, . . . , xn, x. The participant is unable to distin-
guish between valuable x and pseudo valuable data x1, x2, . . . , xn. But when all

New Methods of Uncheatable Grid Computing 1305

participants are in collusion, they can know whether the valuable data exists. We
can improve the security of this scheme. In step 3, change the original criterion
to

C = {hash(y), c1, c2, . . . , cn, c
′

1, c
′

2, . . . , c
′

t},

in which, c
′
1, c

′
2, . . . , c

′
t are some random numbers that supervisor adds. If the valu-

able data exists, hash(y) and c1, c2, . . . , ct will have only one preimage, respectively;
if the rare valuable data does not exist, hash(y) and c

′
1, c

′
2, . . . , c

′
t will have not any

preimage. As long as n and t are privately owned by the supervisor, every participant
cannot determine whether the valuable data exists.

When f is a more-to-one function, if all participants are in collusion with each
other, participants can find the hash(y) based on the number of preimages of ci and
hash(y). Usually, every ci has a lot of preimages in X. However, the preimages of
hash(y) are rare. Participants will find criterion hash(y) and valuable data. This
scheme cannot resist the second and third deceive models.

6.2 Scheme II (Criterion Reduction)

1. The supervisor computes h(y), and let ŷ be the first k bits of the result, where
k is a security parameter. The supervisor sends ŷ to participants along with the
task assignments.

2. For each assigned input x, a participant computes f(x), and checks whether the
first k bits of h(f(x)) equal ŷ. If true, the participant returns x and h(f(x)) to
the supervisor; otherwise, discards x.

3. The supervisor verifies whether h(f(x)) = h(y). If false, x is just ringer; else,
x is a rare event.

Apparently, in the single compression method there exist larger defects. In the b)
of scheme 2, participant Pi may only compute the part of the data in Di, but the
supervisor cannot detect this kind of deception. It can easily cause the loss of rare
event.

By the above analysis, when the task function f is one-to-one function in
the scheme I, it has a good security and can resist the three deceptive models.
But when f is a more-to-one function, participants will be able to find the rare
event that the supervisor is looking for. So the scheme I cannot resist the sec-
ond and third deception models. The scheme II lacks the necessary honesty test
steps, and even cannot determine whether participant do the honest computa-
tion for all the data in the task. Thus, it also has a lot of defects on secu-
rity.

6.3 Three New Schemes

In this section, we propose three new schemes.

1306 J. Yu, Y. Li

1) New Scheme I.

Firstly, we introduce Monte Carlo simulation [9, 16]. It is a technique that
employs random numbers to solve problems in which time plays no substantive
role. The technique involves simulating a random experiment a large number,
say N , of times and recording the number of times, say C, that an event of
interest occurs. The law of large numbers asserts that if N is large, the ratio C/N
should be a good point estimate of the probability of the event occurring.

As a simple example, consider the problem of finding the area of a region S
contained in the square U ≡ [0, 1] × [0, 1] in the xy-plane. Using Monte Carlo
simulation, one can choose N points from a uniform distribution in U , and count
the number of points, C, that lie in S. The approximation for the area would
then be C/N .

This example is not well suited for a large scale distributed computation, but
serves as an illustration of how the seeding technique can be applied to Monte
Carlo simulations in general. The supervisor chooses a particular implementa-
tion for the random number generator (ensuring portability) and some number k
of seeds. Before any tasks are assigned, an initial run of N/k replications is com-
puted using one of the seeds s′ chosen arbitrarily. This seed becomes the ringer
for the remaining task assignments. Participants are then sent the code for the
generator along with k seeds (including s′), and are instructed to run N/k repli-
cations with each of the seeds, returning the area estimate corresponding to each
seed. An adversary cannot determine which of the k seeds is the ringer, and
therefore cannot return results for fewer than k seeds without raising suspicion.
The returned results can be checked for validity using the initial run generated
with s′. In effect, the supervisor has managed to provide a measure of assurance
while performing only 1/k of the work.

By their very nature, Monte Carlo simulations provide a form of redundancy be-
cause, provided the number of replications is sufficiently large, each task should
return an estimate similar to the other tasks. However, seeding as described
here augments the redundancy by enhancing the resistance to collusion.

We can use Monte Carlo simulations to verify whether the participant is honest.
This scheme is available for one to one function and more to one function. At
the same time, it can resist the semi-honest cheater and hoarding cheater.

Let n be the number of participants in the scheme. Pi (i = 1, 2, . . . , n) is
a participant, and Di is P

′
i task set. Obviously X = D1 ∪D2 ∪ . . . Dn.

1. The supervisor randomly selects n inputs x1, x2, . . . , xn from the input
domain X.

2. The supervisor computes ci = hash(f(xi)), for i = 1, . . . , n and hash(y). Let
ŷ be the first k bits of hash(y).

3. The supervisor randomly selects D
′
i ⊂ Di. For each input x ∈ D

′
i, the

supervisor computes f(x), and checks whether the first k bits of h(f(x))

New Methods of Uncheatable Grid Computing 1307

equal ŷ. If true, the supervisor adds x in D
′′
i . Let pi be the number

|D′′
i |

|D′
i |

, if

pi < ε (ε is a parameter), we select k again and repeat b). Otherwise, the
supervisor can estimate the number of which satisfies that the first k bits of
h(f(x)), x ∈ Di equal ŷ is pi|D

′
i|.

4. The supervisor sends ŷ and C = {c1, c2, . . . , cn} to participants along with
the task assignments.

5. For each assigned input x, participant Pi computes f(x), and checks whether
the first k bits of h(f(x)) equal ŷ or h(f(x)) equals Ci. If true, Pi returns x
and h(f(x)) to the supervisor. Actually, the results which Pi returns are
divided into two sets. One is Ri = {(x, h(f(x))) | x ∈ Di, the first k bits of
h(f(x)) equal ŷ} and the other is

R
′

i = {{x ∈ Di | hash(f(x)) = c1}, . . . ,

{x ∈ Di | hash(f(x)) = cn}}.

6. The supervisor checks whether h(f(x)) equals h(y), x ∈ Ri. If true, x is the

rare event. The supervisor also checks whether |Ri|
pi|D

′
i |

approximately equals 1

and

xi ∈ {{x ∈ Di | h(If(x)) = ci}, . . . , {x ∈ Di | h(f(x)) = cn}}.

If true, Pi is a honest participant.

Security Analysis.

Because Ri contains more elements, pi is unable to determine the real rare event.
Hence whether for the one-to-one or more-to-one function, it can well hide the
valuable data. Because R

′
i must contain all the random inputs in Di, Pi must

compute all f(x) for x ∈ Di. So this scheme can resist semi-honest cheater and

hoarding cheater. And at the same time, the validation of equation |Ri|
pi|D

′
i |
≈ 1

ensures the small possibility of missing rare events. On average, the feasibility
and the security of the scheme are both relatively high.

2) New Scheme II.

Like most of schemes of grid computing, the above scheme is unable to resist
malicious cheater. Because the supervisor did not verify the elements in Ri

which were returned by participant Pi in order to destroy the supervisor’s work,
malicious cheater Pi obtains Ri, but he/she does not return the real Ri to the
supervisor. So he/she constructs a new set R

′
i in which the first k bits of every

element equals ŷ, and |R′
i| = |Ri|. In this way, the supervisor cannot find the

cheat of Pi and loses some high-value rare events. For example, x0 is a high-
value rare element which is obtained by malicious cheater Pi, i.e., f(x) = y, x0 ∈
Di. Pi uses (x0, A) to replace (x0, hash(x0)) (the first k bits of A equal ŷ and

1308 J. Yu, Y. Li

A 6= hash(x0). According to A 6= hash(y), the supervisor thinks that x0 is not
a value element, so the high-value element will be lost.

In the following we present a simple improved scheme. Using the sample test of
Ri, it can resist the three deception models, and the security is enhanced.

Let n be the number of participants in the scheme. Pi (i = 1, 2, . . . , n) is
a participant, and Di is the task of set of Pi, and

X = D1 ∪D2 ∪ . . . ∪Dn.

1. The supervisor randomly selects n inputs x1, x2, . . . , xn from the input do-
main X.

2. The supervisor computes ci = hash(f(xi)), for i = 1, . . . , n and hash(y). Let
ŷ be the first k bits of hash(y).

3. The supervisor randomly selects D
′
i ⊂ Di. For each input x ∈ D

′
i, the

supervisor computes f(x), and checks whether the first k bits of h(f(x))

equal ŷ. If true, the supervisor adds x in D
′′
i . Let pi be the number

|D′′
i |

|D′
i |

, if

pi < ε (ε is a parameter), we select k again and repeat b). Otherwise, the
supervisor can estimate the number of which satisfies that the first k bits of
h(f(x)), x ∈ Di equal ŷ is pi|D

′
i|.

4. The supervisor sends ŷ and C = {c1, c2, . . . , cn} to participants along with
the task assignments.

5. For each assigned input x, participant Pi computes f(x), and checks whether
the first k bits of h(f(x)) equal ŷ or h(f(x)) equals Ci. If true, Pi returns
x and h(f(x)) to the supervisor. Actually, the results which Pi returns are
divided into two sets. One is Ri = {(x, h(f(x))) | x ∈ Di, the first k bits of
h(f(x)) equal ŷ} and the other is

R
′

i = {{x ∈ Di | hash(f(x)) = c1}, . . . ,

{x ∈ Di | hash(f(x)) = cn}}.

6. The supervisor checks whether h(f(x)) equals h(y), x ∈ Ri. If true, x is the

rare event. The supervisor also checks whether |Ri|
pi|D

′
i |

approximately equals 1

and

xi ∈ {{x ∈ Di | h(f(x)) = ci}, . . . , {x ∈ Di | h(f(x)) = cn}}.

If true, Pi is a honest participant.

If true, the supervisor will carry out sample test.

7. The supervisor randomly chooses m elements from Ri. Let

S = {(s1, A1), (s2, A2), . . . , (sm, Am)}

New Methods of Uncheatable Grid Computing 1309

be the set which is constructed by m elements and their computing values.
The supervisor verifies whether h(f(si)) equals Ai for i = 1, . . . ,m. If true,
Pi is honest. So the supervisor checks whether f(f(x)) equals h(y), x ∈ Ri.
If true, x is the rare event.

Theorem 1. When s samples are sampled by the supervisor in this scheme, the
probability that a participant with honesty return ratio h can cheat successfully
is

Pr(cheating succeeds) = hs.

Proof. Since the sample number is very big, it is an independent and identically
distributed probability. When the probability of one correct sample is h, the
probability of s correct samples is hs. 2

Therefore, the probability that the supervisor finds the cheat of a malicious
cheater Pi is 1− hs.

To keep the probability of unsuccessful cheating above a big threshold ε, the
sample size s should be

s >
log(1− ε)

log h
.

Table 1 shows how large s should be for different honesty return ratio h, given
ε = 0.9 or 0.99. In fact, if s > 500, the probability that the supervisor finds the
cheat of malicious cheater Pi is greater than 0.99.

h t = 0.9 t = 0.99

0.5 4 7

0.8 11 21

0.9 22 44

0.99 230 459

Table 1.

3) New Scheme III.

In most of cheating detection schemes, the computation task X had not been
dealt with. In order to achieve the purpose of hiding Y , they only used new
criterion Y

′
to replace Y .

We present a new method. Let Y be {y}, we can construct a new set C, for
∀x ∈ C, f(x) = y. In this way, we expand the task to X ∪ C.

The new scheme is described in the following:

1. The supervisor constructs a new collection C, for ∀x ∈ C, f(x) = y, and
C = C1 ∪ C2 ∪ . . . ∪ Cn.

1310 J. Yu, Y. Li

2. The supervisor computes hash(y), and let ŷ be the first k bits, where k is
a safety parameter. The supervisor sends ŷ to participant Pi along with the
task Di ∪ Ci, i = 1, . . . , n.

3. For each assigned input x, participant Pi computes f(x), and checks whether
the first k bits of h(f(x)) equal ŷ. If true, Pi returns x and h(f(x)) to the
supervisor.

Let Ri = {(x, h(f(x))) | x ∈ Di ∪ Ci, the first k bits of h(f(x)) equal ŷ}.

• The supervisor checks whether Ci is contained in Ri. If true, Pi is honest.

• The supervisor checks whether h(f(x)) equals h(y). If true, x is the rare
event.

If Ci is contained in Ri, Pi is honest. So Pi must compute every f(x),
x ∈ Di ∪Ci. If not, the supervisor will find his dishonesty. Due to a participant
cannot distinguish the data from Di and Ci, the rare events can be disguised. In
conclusion, the scheme can resist all three cheat modes and a collusion attack.

7 CONCLUSION

In this article, according to the computing power of the supervisor, we propose
the deceptive detection schemes under two different circumstances, and combine
the characteristics of the task function f to analyze the security of the deceptive
detection. Based on the technology of double check, we proposed an improved
scheme at the sacrifice of time, i.e. the secondary allocation scheme of double check.
We reinforced the security of double check greatly. Finally, we analyzed the common
problem of High-Value Rare Events, improved the deceptive detection scheme due
to Du and Goodrich [1], and then put forward a new deceptive detection scheme
with better security and efficiency.

REFERENCES

[1] Du, W.—Goodrich, M.T.: Searching for High-Value Rare Events with Uncheat-
able Grid Computing. Proceedings of the 3rd Applied Cryptography and Network
Security Conference (ACNS), New York, NY, USA, June 2005, pp. 122–137, doi:
10.1007/11496137 9.

[2] Yu, J.—Wang, X.: Deceptive Detection and Security Reinforcement in Grid Com-
puting. 2013 5th International Conference on Intelligent Networking and Collaborative
Systems, 2013, pp. 146–152, doi: 10.1109/INCoS.2013.30.

[3] Climate Prediction Web Site. Available at: http://www.climateprediction.net.

[4] Distributed.net Web Site. Available at: http://www.distributed.net.

[5] IBM Grid Computing. Available at: http://www-1.ibm.com/grid/aboutgrid/

what-is.shtml.

https://doi.org/10.1007/11496137_9
https://doi.org/10.1109/INCoS.2013.30
http://www.climateprediction.net
http://www.distributed.net
http://www-1.ibm.com/grid/about grid/what-is.shtml
http://www-1.ibm.com/grid/about grid/what-is.shtml

New Methods of Uncheatable Grid Computing 1311

[6] SETI@Home. Available at: http://setiathome.berkeley.edu.

[7] The Smallpox Research Grid. Available at: http://www-3.ibm.com/solutions/

lifesciences/research/smallpox.

[8] The Great Internet Mersenne Prime Search. Available at: http://www.mersenne.

org/prime.htm.

[9] Search for Extraterrestrials’ or Extra Cash. Available at: http://www.dallasnews.
com/technology/1202ptech9pcs.htm.

[10] Law, A.M.—Kelton, W.D.: Simulation Modeling and Analysis. McGraw-Hill,
3rd edition, 2000.

[11] Aiello, W.—Bhatt, S.—Ostrovsky, R.—Rajagopalan, S.R.: Fast Verifi-
cation of Any Remote Procedure Call: Short Witness-Indistinguishable One-Round
Proofs for NP. In: Montanari, U., Rolim, J. D. P., Welzl, E. (Eds.): Automata, Lan-
guages and Programming (ICALP 2000). Springer, Berlin, Heidelberg, Lecture Notes
in Computer Science, Vol. 1853, 2000, pp. 463–474, doi: 10.1007/3-540-45022-x 39.

[12] Anderson, D. P.: BOINC: A System for Public-Resource Computing and Stor-
age. Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing,
Washington, DC, USA, November 2004, pp. 4–10, doi: 10.1109/grid.2004.14.

[13] Beigel, R.—Margulis, G.—Spielman, D.A.: Fault Diagnosis in a Small Con-
stant Number of Parallel Testing Rounds. Proceedings of the Fifth Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA ’93), 1993, pp. 21–29,
doi: 10.1145/165231.165234.

[14] Brin, S.—Page, L.: The Anatomy of Large-Scale Hypertextual Web Search Engine.
Computer Networks and ISDN Systems, Vol. 30, 1998, No. 1–7, pp. 107–117, doi:
10.1016/s0169-7552(98)00110-x.

[15] Golle, P.—Mironov, I.: Uncheatable Distributed Computations. In: Nac-
cache, D. (Ed.): Topics in Cryptology (CT-RSA 2001). Springer, Berlin, Heidelberg,
Lecture Notes in Computer Science, Vol. 2020, 2001, pp. 425–440, doi: 10.1007/3-
540-45353-9 31.

[16] Golle, P.—Stubblebine, S.G.: Secure Distributed Computing in a Commercial
Environment. Proceedings of the 5th International Conference on Financial Cryptog-
raphy, British West Indies, February 2001, pp. 289–304, doi: 10.1007/3-540-46088-
8 23.

[17] Szajda, D.—Lawson, B.—Owen, J.: Hardening Functions for Large Scale Dis-
tributed Computations. Proceedings 2003 IEEE Symposium on Security and Privacy,
Berkeley, CA, USA, May 2003, pp. 216–224, doi: 10.1109/SECPRI.2003.1199338.

[18] Du, W.—Jia, J.—Mangal, M.—Murugesan, M.: Uncheatable Grid Com-
puting. Proceedings of the 24th International Conference on Distributed Com-
puting Systems (ICDCS), Hachioji, Tokyo, Japan, March 2004, pp. 4–11, doi:
10.1109/icdcs.2004.1281562.

[19] Minsky, Y.—van Renesse, R.—Schneider, F. B.—Stoller, S.D.: Cryp-
tographic Support for Fault-Tolerant Distributed Computing. Proceedings of the
Seventh ACM SIGOPS European Workshop: System Support for Worldwide
Applications (EW 7), Connemara, Ireland, September 1996, pp. 109–114, doi:
10.1145/504450.504472.

http://setiathome.berkeley.edu
http://www-3.ibm.com/solutions/lifesciences/research/smallpox
http://www-3.ibm.com/solutions/lifesciences/research/smallpox
http://www.mersenne.org/prime.htm
http://www.mersenne.org/prime.htm
http://www.dallasnews.com/technology/1202ptech9pcs.htm
http://www.dallasnews.com/technology/1202ptech9pcs.htm
https://doi.org/10.1007/3-540-45022-x_39
https://doi.org/10.1109/grid.2004.14
https://doi.org/10.1145/165231.165234
https://doi.org/10.1016/s0169-7552(98)00110-x
https://doi.org/10.1007/3-540-45353-9_31
https://doi.org/10.1007/3-540-45353-9_31
https://doi.org/10.1007/3-540-46088-8_23
https://doi.org/10.1007/3-540-46088-8_23
https://doi.org/10.1109/SECPRI.2003.1199338
https://doi.org/10.1109/icdcs.2004.1281562
https://doi.org/10.1145/504450.504472

1312 J. Yu, Y. Li

[20] Kahney, L.: Cheaters Bow to Peer Pressure. Wired Magazine,
February 15, 2001. Available at: https://www.wired.com/2001/02/

cheaters-bow-to-peer-pressure/.

[21] Kuhn, M.—Schmid, S.—Wattenhofer, R.: Distributed Asymmetric Verification
in Computational Grids. Proceedings of the 2008 IEEE International Symposium on
Parallel and Distributed Processing, Miami, Florida USA, April 2008, pp. 1–10, doi:
10.1109/ipdps.2008.4536244.

Jianhua Yu is Ph.D. student at the South China Normal Uni-
versity. He is Lecturer at the School of Mathematical Sciences,
South China Normal University. His research interests include
issues related to cryptography, computer network, and mathe-
matical modeling. He is author of a great deal of research studies
published in national and international journals and conference
proceedings.

Yuan Li received his Ph.D. in number theory at the State
University of New York. He is Associate Professor at the De-
partment of Mathematics, Winston-Salem State University. His
research interests include computational number theory and
cryptography.

https://www.wired.com/2001/02/cheaters-bow-to-peer-pressure/
https://www.wired.com/2001/02/cheaters-bow-to-peer-pressure/
https://doi.org/10.1109/ipdps.2008.4536244

