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Abstract. Concurrent workflow scheduling algorithm works in three phases, name-
ly rank computation, tasks selection, and resource selection. In this paper, we in-
troduce a new ranking algorithm that computes the rank of a task, based on its
successor rank and its predecessors average communication time, instead of its suc-
cessors rank. The advantage of this ranking algorithm is that two dependent tasks
are assigned to the same machine and as a result the scheduled length is reduced.
The task selection phase selects a ready task from each workflow and creates a task
pool. The resource selection phase initially assigns tasks using min-min heuristic,
after initial assignment, tasks are moved from the highly loaded machines to the
lightly loaded machines. Our resource selection algorithm increases the load bal-
ance among the resources due to tasks assignment heuristic and reassignment of
tasks from the highly loaded machines. The simulation results show that our pro-
posed scheduling algorithm performs better over existing approaches in terms of
load balance, makespan and turnaround time.
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1 INTRODUCTION

Heterogeneous computing systems consist of a heterogeneous collection of machines,
connected over a high-speed network, communication protocols and programming
environments which provide a variety of architectural capabilities that have a diverse
execution requirements. Cluster computing, grid computing, and cloud comput-
ing [1] are examples of heterogeneous computing systems. One of the key challenges
of heterogeneous computing systems is the scheduling problem. In heterogeneous
computing system a user submits an application to the system, an application pro-
filing tool [2] is used to extract the properties of an application. The application
properties include a number of jobs forming the workflow, the size of each job in
terms of the number of instructions and the number of bytes required to be ex-
changed between the two jobs in case of parent and child relationship between jobs,
relationship (parent and child) among the tasks in a workflow. Analogical Bench-
marking [3, 4] provides a measure of how well a resource can perform a given type of
application. On the basis of available information and quality of service requirement,
the scheduler schedules tasks to the available machines in the system.

A workflow scheduling problem is an NP-complete problem and it is solved us-
ing static scheduling algorithms, dynamic scheduling algorithms, single workflow
and multiple workflow scheduling algorithms. Static scheduling algorithms [5] as-
sume that all the information about tasks, and resources are known and remain
constant. Resources performance are varying in dynamic scheduling algorithm [14].
Single workflow scheduling algorithms [13] schedule a single workflow at a time while
multiple workflow scheduling algorithms [15] schedule more than one workflow at
a time.

The multiple workflow scheduling algorithm is also known as concurrent work-
flow scheduling algorithm. The concurrent workflow scheduling algorithm works in
three phases known as rank computation, task selection and resource selection. We
have worked on rank computation and resource selection phases. Our rank compu-
tation algorithm computes the rank of a task, based on its successor rank and its
predecessors average communication cost. Our resource selection algorithm assigns
tasks to resources using Min-min [5] heuristic. After that, tasks are reassigned from
the highly loaded machines to the lightly loaded machines.

The rest of the paper is organized as follows. Section 2 presents the related work.
Section 3 presents the workflow model. Section 4 describes our proposed algorithm
named Load balancing scheduling algorithm for concurrent workflow. The results
are presented and discussed in Section 5. Finally, in Section 6 we conclude the work
and suggest future research directions.

2 RELATED WORK

A multiple workflow scheduling algorithm is categorized as offline and online schedul-
ing algorithms [7]. The offline workflow scheduling algorithms assume that all the
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workflows are available before the scheduling starts. The online workflow scheduling
algorithms assume that the workflow arrival time is not known in advance.

The two most popular ranking algorithms are Heterogeneous Earliest Finish
Time (HEFT) [6] and Critical Path on a Processor (CPOP) [6] ranking algorithms.
The HEFT ranking algorithm computes the rank of each task, on the basis of average
communication and computation cost between the current task and its successor.
The CPOP ranking algorithm uses the summation of the downward and upward rank
of a task. CPOP ranking algorithm does not perform better than HEFT [6] ranking
algorithm. The HEFT ranking algorithm does not consider communication time of
its immediate predecessor. As a result, two dependent tasks might be assigned to
different resources and increase the scheduled length.

Zhao and Sakellariou [7] presented offline multiple workflow scheduling algorithm
for composition and fairness of workflow. Their composition scheduling algorithm
composes many workflows into a single workflow. The tasks are selected from each
workflow in a round robin fashion and assigned to the resource that completes ear-
liest. Their fairness scheduling algorithm computes the task’s rank based on the
slowness of the workflow. Our work differs from their approaches. We worked on
concurrent workflow where the arrival time of workflow was not known.

Various online workflow scheduling algorithms are designed by researchers and
are known as the Rank Hybrid [9] scheduling algorithm, the Online Workflow Man-
agement (OWM) [15] scheduling algorithm and the Fair Share [8] scheduling algo-
rithm.

The Rank hybrid scheduling algorithm first computes the rank of each task
using HEFT ranking algorithm. After ranking, all the ready tasks are selected from
the workflow and assigned to the machines in increasing order of rank. Therefore, it
gives priority to the smaller workflow. While the OWM scheduling algorithm selects
a single task from each workflow, instead of selecting all the ready tasks from each
workflow, the OWM scheduling algorithm assigns tasks to the machine that takes
minimum time instead of the machine that completes first. It means if the minimum
time machine is not free, it keeps the tasks in a waiting queue. Therefore, the lowest
priority task may be executed first. The Fair share scheduling algorithm also selects
a single task from each workflow, after that the rank of each task is again computed
based on the percentage of the remaining task of a workflow. The highest rank task
is assigned first. Thus, it does not differentiate between longer and smaller workflow.

All these scheduling algorithms compute the rank using HEFT ranking algo-
rithm and assign tasks to the machine using Minimum Completion Time (MCT) [5]
scheduling algorithm, while our ranking algorithm considers its successor rank and
its predecessors average communication time. After ranking the tasks of a workflow,
a tasks pool is created, then these tasks are initially assigned using Min-min heuris-
tic. After initial assignment of tasks, they are reassigned from the highly loaded
machines to the lightly loaded machines. Our reassignment algorithm is also differ-
ent from the Balance Minimum Completion Time (BMCT) [12] resource selection
algorithm. The BMCT resource selection algorithm moves tasks from the highest
completion time machine to other machines in the system. Thus, it may transfer
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tasks to the machine that is not lightly loaded. As a result, the load may not be
balanced.

3 WORKFLOW MODEL

A typical scientific application is represented using Directed Acyclic Graph (DAG) to
model an application. A sample DAG of 10 tasks is shown in Figure 1 a). A workflow
is represented by G = (v, e, p, w), where v and e are the set of tasks and directed
edges, respectively. A node in the task graph represents a task that runs non-
preemptively on any cluster. Each edge is denoted by eij corresponding to the data
communication between ti and tj, where ti is called the immediate parent task of tj.
A child task cannot be started until all of its parent tasks are completed. A task
which does not have a parent task is called an entry task tentry. A task that does
not have a child task is called an exit task texit. w is a v × p computation matrix,
where v is the number of tasks and p is the number of processors in the system.
wij is the estimated execution time of task ti on processor pj. tpred and tsucc are the
sets of immediate predecessors and successors of task ti, respectively. The average
computation time of task ti is calculated as follows:

wi =

∑
j∈P wij

p
. (1)

Here wi is the average computation time of ti, p is the number of processor on
which task can be executed, and P is the set of processors on which task can be
executed. wij is the expected execution time of ti on processor pj. The average
communication cost between edge i and edge j is defined as follows:

cij =
L+ dataij

B
. (2)

Here cij is the average communication cost between task i and j, L is the average
communication start-up cost of all processors and B is the average bandwidth of all
links connecting to P . dataij is the amount of data that task ti transfers to task tj,
when tasks are assigned to different processors.

The resources are heterogeneous computers, connected to each other.

4 LOAD BALANCING SCHEDULING ALGORITHM
FOR CONCURRENT WORKFLOW

This algorithm works in three phases as shown in Figure 2. The first phase computes
the rank of the tasks. The second phase selects a single ready task from each
workflow in order to provide fairness among available workflow. The last phase first
assigns the tasks using Min-min heuristic then computes the average load of the
system. Based on the average load of the system, tasks are transferred from the
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Figure 1. DAG and computation matrix

highly loaded machines to the lightly loaded machines in order to reduce the load
imbalance.

4.1 Rank Computation Phase

Our rank computation algorithm is called Modified Heterogeneous Earliest Finish
Time (MHEFT) ranking algorithm. The MHEFT ranking algorithm computes the
rank from downwards. texit task rank is defined as follows:

rank(texit) = wexit + max
tk∈tpred{texit}

c(exit, k). (3)

Here tpred is the set of predecessors of texit, c(exit, k) is the average communica-
tion cost between task texit and tk, and wexit is the average computation cost of task
texit. The rank of a task ti is recursively defined and computed as follows:

rank(ti) = wi + max
tj∈tsucc{ti}

( c(i, j) + rank(tj)) + max
tk∈tpred{ti}

c(i, k). (4)

Here tsucc is the set of immediate successors of ti, wi is the average computation
cost of task ti. c(i, j) is the average communication cost between task ti and tj, tj
is the successor of ti, and c(i, k) is the average communication cost between task ti
and tk. tpred is the set of predecessors of ti.
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Figure 2. Pictorial diagram of load balancing concurrent workflow scheduling algorithm

4.1.1 Illustrative Example

Consider a sample DAG of 10 tasks and the computation matrix are given in Fig-
ures 1 a) and 1 b), respectively. An identical matrix is used by Topcuoglu et al. [6]
to show the working of HEFT ranking algorithm. It has 10 tasks and 3 processors.
Computed rank and Gantt chart of HEFT, CPOP and MHEFT ranking algorithms
are shown in Table 1 and Figure 3, respectively.

Task HEFT CPOP MHEFT

n1 108 108 108

n2 77 108 95

n3 79 105 91

n4 80 104 91

n5 69 93 80

n6 63 90 77

n7 42 105 65

n8 35 102 62

n9 44 108 67

n10 14 108 31

Table 1. Rank of scheduling algorithms
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a) b) c)

Figure 3. Gantt chart of ranking. a) HEFT ranking algorithm (schedule length = 86)
b) CPOP ranking algorithm (schedule length = 86) c) MHEFT ranking algorithm (sched-
ule length = 82).

The scheduled length of MHEFT ranking algorithm is 82 in this example, while
CPOP and HEFT ranking algorithms scheduled length is 86 in both cases. The
HEFT ranking algorithm computes the rank as follows:

rank(ti) = wi + max
tj∈tsucc{ti}

(c(i, j) + rank(tj)). (5)

The Critical Path on a Processor (CPOP) ranking Algorithm computes the rank
as follows:

rank(ti) = max
tj∈tpred{ti}

(wj + c(i, j) + rank(tj)). (6)

4.2 Task Selection Phase

This phase selects the highest priority ready task from each workflow and a task
pool is created.

4.3 Resource Selection Phase

Our resource selection phase algorithm is called the Modified Balance Minimum
Completion Time (MBMCT) resource selection algorithm. The MBMCT resource
selection algorithm pseudo code is shown in Algorithm 1.

The MBMCT resource selection algorithm first finds the initial assignment of
tasks using Min-min heuristic. Min-min heuristic first assigns the task that has
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the minimum expected execution time then updates the remaining task’s expected
execution time, this step is repeated till all the tasks are assigned. After completion
of the initial assignment, the average makespan is computed (line 5). Based on
the average makespan, the machines are categorized into lightly loaded, moderately
loaded and highly loaded machines (line 6–7). The moderately loaded machines load
is close to (±δ) average load of the system. The lightly loaded machines load is less
than moderately loaded machines. The highly loaded machines load is greater than
the average load of the system. The reassignment procedure is called till makespan
is changed (line 8–12).

The reassignment procedure finds a task that can be transferred from the highly
loaded machines to the lightly loaded machines. As a result, the load imbalance
is decreased among machines. The pseudo code of the reassignment procedure is
shown in Algorithm 2.

The reassignment procedure finds a task which can be reassigned from Mi ma-
chine (a machine that belongs to the highly loaded machines) to the lightly loaded
machine. Then, it computes the completion time of Mi machine and lightly loaded
machine (line 5–6). If completion time of Mi machine and lightly loaded machine
is less than the makespan, the makespan is updated (line 7–9). It also keeps in-
formation about the machine and the task, where and which task will be moved
(line 10–11). At the end, it returns the updated makespan (line 17).

Algorithm 1 Pseudo code of MBMCT resource selection algorithm

1: Select ready task from each workflow;
2: Assign tasks to machine using Min-min;
3: repeat
4: makeSpan← computeMakespan();
5: avrgMakeSpan← computeAverage();
6: machLow← findLowMachine(avrgMakeSpan, δ);
7: machHigh← findHighMachine(avrgMakeSpan, δ);
8: newMakeSpan← reAssignment(machLow,machHigh,makeSpan);
9: if newMakeSpan < makeSpan then

10: moveTask();
11: end if
12: until newMakeSpan < makeSpan;

The time complexity of MBMCT resource selection algorithm is O(k ∗m ∗ n2).
Where k is the number of iterations when the makespan value change, m is the
number of machines, and n is the number of tasks.

5 SIMULATION AND RESULTS

In this section, we discuss how to generate workflow, what are the performance pa-
rameters, and compare our results with existing algorithms. A Java based simulator
is designed.
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Algorithm 2 Pseudo code of reassignment procedure

1: for all Mi ∈ machHigh do
2: for all Mj ∈ machLow do
3: for Tk ∈Mi do
4: comTime′′ ← computeFinishTime(Mj);
5: comTime′′ ← comTime′′+ expected execution time of Tk on Mj;
6: comTime′ ← makeSpan− expected execution time of Tk on Mi;
7: if comTime′′ < makeSpan then
8: if comTime′ < makeSpan then
9: makeSpan← comTime′′;

10: task← Tk;
11: machine←Mj;
12: end if
13: end if
14: end for
15: end for
16: end for
17: return makeSpan

5.1 Workflow Generation

Random workflows are generated based on a given approach [6]. The parameters
to generate a workflow are the number of nodes, the average computation cost,
the computation to communication ratio, and the arrival rate is shown in Table 2.
The average computation cost denotes an average number of instructions required
to execute a task, the computation and communication ratio denotes the average
data transfer required between two tasks, the heterogeneity factor denotes the het-
erogeneity in processor speed, and the shape decides the out degree of nodes in
a workflow. The arrival rate is simulated as the corresponding percentage of tasks
completed from the recently arrived workflow. For example, 10 % of the inter-arrival
time means workflow X will be inserted after completion of 10 % tasks of workflow Y.

Parameter Name Range

Number of nodes 30 to 100

Average computation cost 10 to 200

Computation to communication ratio 0.1 to 10

Heterogeneity factor of resources 0.2 to 0.5

Shape 0.1 to 0.45

Arrival rate 10 to 50

Number of processors 3 to 30

Table 2. Workflow parameters
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5.2 Performance Parameters

The performance parameters are Makespan, Schedule Length Ratio (SLR), Load
balance, and Turnaround Time Ratio (TTR). Makespan is the difference between
execution start time and execution finish time of a workflow. The turnaround time
is the super-set of the makespan because it also includes the waiting time of work-
flow. TTR is the ratio of turnaround time to makespan. The SLR is a normalized
makespan based on the critical path. SLR is defined as follows:

SLR =
Makespan∑

ti∈cpmin
minpj∈P (wi, j)

. (7)

The denominator in SLR is the minimum computation cost of the critical path
tasks (cpmin). There is no makespan less than the denominator of the SLR equation.
Therefore, the algorithm with lowest SLR is the best algorithm. Average SLR values
over several workflows are used in our experiments. Load balance of resourcei is
computed as follows:

LoadBali =
∑
j∈K

(Makespanj − ResUtii). (8)

Here K is the set of workflows. Makespanj is the makespan of workflowj and
ResUtii is the sum of total time spent by a resource on execution of all assigned
tasks of a workflowj. Average load balance is defined as follows:

AvgLoadBal =

∑
i∈P LoadBali

p
. (9)

5.3 Simulation Results and Analysis

The value of δ is selected ±5 % of makespan based on experiment. The results pre-
sented are averaged out over thirty simulations of each type of workflow. Figures 4
and 5 show the results of different numbers of resources for average makespan and
average SLR, respectively. In each case, we have generated 100 workflows of 50
nodes. Workflows are a combination of different communication and computation
ratio. At the x-axis, it has a number of resources. In Figure 4, it can be observed
that MHEFT ranking algorithm average makespan is less than HEFT ranking algo-
rithm. The difference of average makespan increases as the number of resources are
increased. A similar trend is followed in average SLR, as shown in Figure 5. Even
when the number of resources is less the MHEFT ranking algorithm’s average SLR
is better than the HEFT ranking algorithm.

Figures 6 and 7 present the results of different inter-arrival time for the number
of iterations and average makespan, respectively. In Figure 7, it can be observed
that MBMCT resource selection algorithm’s average makespan is less than BMCT
resource selection algorithm in each inter-arrival time. The number of iterations of
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Figure 4. Results of different number of resources for average makespan

Figure 5. Results of different number of resources for average schedule length ratio

MBMCT resource selection algorithm are slightly greater than the BMCT resource
selection algorithm because MBMCT resource selection algorithm moves a task to
the lightly loaded machine, while BMCT resource selection algorithm may transfer
a task to the moderately loaded machine.

In Figures 8, 9 and 10, LB* scheduling algorithm is the combination of MHEFT
ranking algorithm and MBMCT resource selection algorithm. LB scheduling algo-
rithm is the combination of HEFT ranking algorithm and MBMCT resource selec-
tion algorithm. To assess the proposed algorithms, we have generated 100 workflows
of 70 nodes, that is the combination of different average computation cost and com-
munication ratio. The average computation and communication ratio is randomly
chosen from a particular set. In all the performance parameters, LB scheduling al-
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Figure 6. Results of different inter-arrival time for number of iterations

Figure 7. Results of different inter-arrival time for average makespan

gorithm performs better or equally to existing algorithms. It performs better when
the inter-arrival time is shorter because in shorter inter-arrival time more number of
tasks are scheduled thus, more move is possible. LB* scheduling algorithm performs
better than LB scheduling algorithm due to better ranking of tasks in a workflow.

Figure 8 displays the results of different inter-arrival time for average makespan.
The LB* scheduling algorithm average makespan is 10 % of the Fair share scheduling
algorithm in case of 10 and 20 inter-arrival time. The overall average makespan of
LB* scheduling algorithm is 15 % better than the LB scheduling algorithm.

Figure 9 demonstrates the results of different inter-arrival time for average load
balance. LB* scheduling algorithm average load balance is 47 %, 37 %, 41 %, and
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Figure 8. Results of different inter-arrival time for average makespan

26 % less than the LB, the Fair share, the OWM and the Rank hybrid scheduling
algorithm, respectively.

Figure 9. Results of different inter-arrival time for average load balance

Figure 10 shows the results of different inter-arrival time for average TTR. The
average TTR of LB* scheduling algorithm is 8 %, 50 %, 50 %, and 73 % less than the
LB, the Fair share, the OWM and the Rank hybrid scheduling algorithm respectively.

6 CONCLUSION

We have proposed the load balancing scheduling algorithm for the concurrent work-
flow that is the combination of modified heterogeneous earliest finish time ranking
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Figure 10. Results of different inter-arrival time for average turnaround time ratio

algorithm and modified balance minimum completion time resource selection algo-
rithm. The modified heterogeneous earliest finish time ranking algorithm considers
a communication time of parent task that plays a significant role when tasks are
communication intensive in a workflow. Similarly, the modified balance minimum
completion time resource selection algorithm transfers the tasks between the highly
loaded machines to the lightly loaded machines instead of transfer tasks to all the
machines in the system. As a result, faster load balance is achieved in a shorter
time. The load balancing scheduling algorithm performs better than other existing
scheduling algorithms in a shorter inter-arrival time. In future, we intend to test
our algorithm on the real large-scale workflow and heterogeneous environment.
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