
Computing and Informatics, Vol. 37, 2018, 229–243, doi: 10.4149/cai 2018 1 229

PARALLELIZATION OF ANT SYSTEM FOR GPU
UNDER THE PRAM MODEL

Andrej Brodnik

Department of Information Science and Technology
University of Primorska
Glagoljaška 8
6000 Koper, Slovenia
&
Faculty of Computer and Information Science
University of Ljubljana
Tržaška cesta 25
1000 Ljubljana, Slovenia
e-mail: andrej.brodnik@upr.si

Marko Grgurovič

Department of Information Science and Technology
University of Primorska
Glagoljaška 8
6000 Koper, Slovenia
e-mail: marko.grgurovic@student.upr.si

Abstract. We study the parallelized ant system algorithm solving the traveling
salesman problem on n cities. First, following the series of recent results for the
graphics processing unit, we show that they translate to the PRAM (parallel ran-
dom access machine) model. In addition, we develop a novel pheromone matrix
update method under the PRAM CREW (concurrent-read exclusive-write) model
and translate it to the graphics processing unit without atomic instructions. As
a consequence, we give new asymptotic bounds for the parallel ant system, result-
ing in step complexities O(n lg lg n) on CRCW (concurrent-read concurrent-write)
and O(n lg n) on CREW variants of PRAM using n2 processors in both cases. Fi-
nally, we present an experimental comparison with the currently known pheromone

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computing and Informatics (E-Journal - Institute of Informatics,...

https://core.ac.uk/display/267942442?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

230 A. Brodnik, M. Grgurovič

matrix update methods on the graphics processing unit and obtain encouraging
results.

Keywords: Parallel random access machine, graphics processing unit, ant system,
metaheuristics, traveling salesman problem, combinatorial optimization

Mathematics Subject Classification 2010: 68-W10

1 INTRODUCTION

In this paper, we study the parallel variants of the Ant System (AS) algorithm,
which is part of the ant colony optimization (ACO) family of metaheuristics. The
ACO family of algorithms simulate the behavior of real ants which find paths using
pheromone trails. A number of variations on the basic idea exist, such as the Ant
System [7], Ant Colony System [6], the MAX -MIN Ant System [16] and many
others. In this paper we focus on the canonical Ant System algorithm, which can be
adapted to solve a variety of combinatorial optimization problems such as vehicle
routing [2], quadratic assignment [13], subset problems [11] and others. In this
paper, we will limit ourselves to the traveling salesman problem (TSP).

The adoption of the graphics processing unit (GPU) as a computing platform in
recent years has triggered a wave of papers discussing the parallelization of known
algorithms. Recent papers [4, 12, 17] have focused on providing a parallel version
of Ant System for the GPU. In this paper, we show that these algorithms are more
general and can be studied in absence of GPU specifics. In line with this observation,
we suggest a move towards more well-understood theoretical models such as the
parallel random access machine (PRAM). This greatly facilitates asymptotic analysis
and subsequently allows one to see where the algorithms could be improved.

The main goal of this paper is to investigate efficient AS algorithms for vari-
ants of the PRAM model of computation and to identify how these might be useful
in practice. We break down the AS algorithm into two separate phases: Tour
Construction and Pheromone Update. Then we show that the existing GPU algo-
rithms for AS can be translated to the PRAM model, which permits to perform
asymptotic analysis. While Tour Construction remains efficient even on PRAM, we
identify bottlenecks in the Pheromone Update phase, which are caused by reliance
on atomic instructions that are not readily available on most variants of PRAM (or
older GPUs). We overcome this with a novel Pheromone Update algorithm that
does not require such instructions. Finally, we show that these results are relevant
in practice when atomic instructions are not available. We do this by implementing
the resulting Pheromone Update algorithm on the GPU and we obtain significantly
better results in case of no atomic instructions.

The paper is structured as follows. In Section 2 we briefly introduce the PRAM
model, the traveling salesman problem, and the Ant System algorithm in its se-

Parallelization of Ant System for GPU under the PRAM Model 231

quential form. In Section 3 we provide PRAM implementations of the Ant System
algorithm and show how to improve them, and finally we provide results of empirical
tests on the GPU. In Section 4 we provide conclusions and suggestions for future
work.

2 BACKGROUND

2.1 Parallel Random Access Machine

The PRAM model is a variant of the random access machine (RAM) adapted to
parallel execution. We denote the number of processors by p. In this paper, we deal
with two types of synchronous PRAM: concurrent-read exclusive-write (CREW) and
concurrent-read concurrent-write (CRCW). The CREW variant assumes that each
memory location is tied to a specific processor, and only that processor can write
to it. However, any processor can read from any memory location. In contrast,
the CRCW variant has no such restriction. Since under CRCW all processors can
write to the same location, it is typical to parametrize the CRCW variant by how
the competing writes are handled. In this paper we consider two standard ways of
doing that:

• COMMON: All processors must write the same value.

• COMBINING: All values being concurrently written are combined using some
operator (e.g. addition, maximum, etc.).

In this paper we will focus on CREW, CRCW and COMBINING CRCW algorithms,
where by CRCW we mean algorithms that run under the COMMON variant. An im-
portant parallel operation which we will make extensive use of is finding the largest
element in an array of n elements. Throughout the paper we will use S(n) to denote
the step complexity of a parallel algorithm, i.e. the number of steps executed. The
work complexity of an algorithm, denoted by W (n), corresponds to the total num-
ber of operations executed (over all processors). It is important to note that finding
the maximum among n numbers can be performed in S(n) = O(lg lg n) time under
CRCW [15] with p = n. However, it is only possible in S(n) = O(lg n) time under
CREW with the same number of processors. The work complexity is W (n) = O(n)
in both cases. Under COMBINING CRCW, finding the maximum can be performed
in S(n) = O(1) and W (n) = O(n) by making use of the combining mechanism in
a trivial way (i.e. setting it to be the maximum operation).

2.2 The Traveling Salesman Problem

In the traveling salesman problem (TSP), we are given a complete, directed graph
G = (V,E), with V and E being the sets of vertices and edges, respectively. We are
also given a function ` : E → R+ which maps each edge to its length. To simplify
notation, we define n = |V |. The task, then, is to produce a permutation Π of V

232 A. Brodnik, M. Grgurovič

with the least cost. Let Πk denote the vertex at position k in the permutation Π.
The cost of a permutation Π of V is then defined as:

`(Πn,Π1) +
∑

2≤k≤n

`(Πk−1,Πk).

Observe, that even though our formulation requires a complete graph, sparse
graphs can be handled by inserting the missing edges with length ∞. Undirected
graphs can also be handled simply by creating two directed edges for each undirected
edge, with equal lengths assigned to them.

2.3 Ant System for the TSP

As in the description of the TSP problem, we assume we are given a directed, com-
plete graph G = (V,E). We then define the heuristic matrix η and the pheromone
matrix τ , both of dimensions n × n. The heuristic matrix is constant throughout
the algorithm and represents the quality of an edge (u, v). Formally, we choose
ηu,v = 1/`(u, v). The pheromone matrix changes throughout the execution of the
algorithm. Two parameters α and β regulate the importance of pheromone and
heuristic information, respectively.

Algorithm 1 Sequential Ant System

1: procedure AntSystem(α, β, ρ, totalIterations)
2: Allocate matrices of size n× n: η, τ , chance, π, tabu
3: Allocate vector of size n: score
4: for iter := 1 to totalIterations do
5: Initialize(α, β, τ, η, score, chance, π, tabu)
6: TourConstr(η, score, chance, π, tabu)
7: PheromoneUpdate(τ, ρ, score)
8: end for
9: end procedure

Ants then build solutions according to:

p(v|p, S) =
ταp,v · ηβp,v∑

w∈N(p,S) τ
α
p,w · η

β
p,w

(1)

where p(v|p, S) is the probability of choosing vertex v when at position p and ac-
cording to the current partial solution S. The feasible neighborhood of the current
incomplete solution is defined by N(p, S). Since the TSP does not permit returns
to previously included vertices (except for the last vertex), those vertices have prob-
ability zero of being included. This is typically accomplished by having each ant
keeping the track of a tabu list.

Parallelization of Ant System for GPU under the PRAM Model 233

Algorithm 2 Sequential Initialize

1: procedure Initialize(α, β, τ, η, score, chance, π, tabu)
2: Allocate vector of size n: sum
3: for i := 1 to n do
4: sum[i] := 0
5: end for
6: for i := 1 to n do
7: for j := 1 to n do
8: sum[i] := sum[i] + τ [i, j]α · η[i, j]β

9: end for
10: end for
11: for i := 1 to n do
12: for j := 1 to n do
13: chance[i, j] := τ [i, j]α · η[i, j]β/sum[i]
14: tabu[i, j] := 1
15: end for
16: end for
17: for i := 1 to n do
18: π[i, 1] := i
19: score[i] := 0
20: tabu[i, i] := 0
21: end for
22: end procedure

Once solutions are constructed, they are evaluated to obtain their respective
qualities, which in most cases is simply the inverse of the cycle length. Once eval-
uated, the qualities are used to update the pheromone matrix. First, each cell of
the pheromone matrix is decreased by a constant factor (evaporation) and then in-
creased according to the solution score (pheromone deposit). Let f(S) denote the
score of solution S and let Z be the set of all solutions produced by the ants, where
each ant contributes a single solution. Then, the pheromone update stage is defined
by:

τv,w ← (1− ρ) · τv,w +
∑

S∈Z|(v,w)∈S

f(S). (2)

When considering AS for TSP, the recommended number of ants equals the
number of vertices [8]. Thus hereof we always assume we have n ants, each starting
its solution in a different vertex. The Ant System algorithm, as we have described
it, can be formalized as Algorithm 1. An initialization stage (Algorithm 2) was
added where certain bookkeeping tasks can be performed. The tour construction
(Algorithm 3) and pheromone update (Algorithm 4) stages correspond to what we
have described. In line 7 of Algorithm 3 we call the function rand(), which is
supposed to return a random uniformly distributed real number in the range (0, 1).
This is the source of randomness in the algorithm, and allows it to implement the

234 A. Brodnik, M. Grgurovič

Algorithm 3 Sequential Tour Construction

1: procedure TourConstr(η, score, chance, π, tabu)
2: for i := 1 to n do
3: for k := 2 to n do
4: v := 0
5: c := −∞
6: for j := 1 to n do
7: t := chance[π[i, k − 1], j] · rand() · tabu[i, j]
8: if t ≥ c then
9: c := t

10: v := j
11: end if
12: end for
13: π[i, k] := v
14: tabu[i, π[i, k]] := 0
15: score[i] := score[i] + η[π[i, k − 1], π[i, k]]
16: end for
17: end for
18: for i := 1 to n do
19: score[i] := score[i] + η[π[i, n], π[i, 1]]
20: end for
21: end procedure

probabilistic selection according to Equation (1). The algorithm also uses a number
of matrices, which play the following roles: chance stores the visit probability values
(cf. (1)), π holds the solutions, tabu is used to prevent infeasible solutions. The
vector score holds the computed score for each solution.

3 PARALLEL ANT SYSTEM

It is conceptually simpler to consider Ant System as a combination of two algorithms:
tour construction and pheromone update (lines 6 and 7 in Algorithm 1, respectively).
Attempts at parallel AS, e.g. [5, 3], are usually not very attractive for the PRAM
model, since they either employ coarse parallelization or neglect certain parts of
parallel AS, typically pheromone update. However, it turns out that parallel AS
algorithms for the GPU model [12, 17, 4] translate almost without any effort to the
PRAM model. Thus, we focus exclusively on the translation and improvement of
the GPU algorithms. It is important to note that the unit of parallelism in the GPU
is a thread while on a PRAM the unit of parallelism is a processor. However since
the PRAM is a theoretical model, the actual meaning of processor in this context is
abstract.

Parallelization of Ant System for GPU under the PRAM Model 235

Algorithm 4 Sequential Pheromone Update

1: procedure PheromoneUpdate(τ, ρ, score)
2: for i := 1 to n do
3: for j := 1 to n do
4: τ [i, j] := (1− ρ) · τ [i, j]
5: end for
6: end for
7: for i := 1 to n do
8: for k := 2 to n do
9: τ [π[i, k − 1], π[i, k]] := τ [π[i, k − 1], π[i, k]] + score[i]

10: end for
11: τ [π[i, n], π[i, 1]] := τ [π[i, n], π[i, 1]] + score[i]
12: end for
13: end procedure

Due to the decomposition of AS into two algorithms (construction and update),
the complexity of AS becomes the worst of the two. We will now explore strategies
for each algorithm.

3.1 Tour Construction

The simplest method (cf. [12, 17]) delegates each ant to a unique processor. Now,
since each ant stochastically considers each vertex n times (cf. (1)) and has p = n
processors, this amounts to step complexity S(n) = O(n2) and work complexity
W (n) = O(n3).

A remarkable contribution of [4] is their strategy for parallel tour construction.
Their tour construction method uses p = n2 processors and associates each ant with
n processors. When each ant can make use of n processors, it can effectively generate
multiple random numbers in parallel. Then, the maximum operation is used to
choose one among n neighbouring vertices, again in parallel. In total, n maximum
operations are performed per ant. When translating this result to the PRAM model,
the step complexity of the algorithm depends on the model of computation. In the
case of CREW, the maximum can be found with a step complexity S(n) = O(lg n)
and work complexity W (n) = O(n). Since there are n maximum operations per ant
this brings the step complexity to S(n) = O(n lg n). There are n ants in total, each
performing n maximum operations, meaning the work complexity remains W (n) =
O(n3). However, under CRCW, maximum can be performed in S(n) = O(lg lg n)
step complexity (see e.g. [15]), thus the step complexity of the algorithm becomes
S(n) = O(n lg lg n), with the work complexity remaining the same as in the CREW
case. Under COMBINING CRCW, this is further reduced to S(n) = O(n) by simply
taking the combining operation to be maximum.

It is possible to further reduce the step complexity of the CRCW algorithm to
S(n) = O(n) using p = n3 processors and a different method to find the maximum

236 A. Brodnik, M. Grgurovič

which takes S(n) = O(1): simply compare all pairs of elements in the array in
parallel. However, we will restrict ourselves to p = n2, since the large amount of
additional processors required hardly justifies the lg lg n gain.

3.2 Pheromone Update

Once tour is constructed, the pheromone update must be performed. In [12, 17]
the latter is accomplished sequentially rather than in parallel, i.e., one processor
performs the update in S(n) = O(n2) and W (n) = O(n2) while others are waiting.
This method is appropriate if we use the first construction method, which also has
a step complexity of O(n2), but it becomes a bottleneck if we choose the more
parallel construction method of [4].

Two pheromone update methods can be found in [4]. The first is straightforward
and is based on atomic instructions for addition (cf. the summation in Equation (2)).
This method corresponds to the use of COMBINING CRCW with the combining
operation set to addition. Thus, we already have one parallel method for pheromone
update with p = n and running with a step complexity of S(n) = O(n) and a work
complexity of W (n) = O(n2). If we allow p = n2, then the update can be performed
in S(n) = O(1).

The second method of [4] which they refer to as “scatter to gather” is more com-
putationally intensive, but does not use atomic instructions. In this case each cell of
the pheromone matrix is represented by a distinct processor, so we require p = n2.
Each processor loops through all solutions, summing only the relevant qualities. So-
lutions are of size O(n) and there are n solutions, meaning each processor performs
S(n) = O(n2) operations. Since there are n2 processors, this yields a W (n) = O(n4)
work complexity. This method works under both CREW and CRCW models, but
in terms of computational complexity, it is uninteresting. Better bounds are ac-
complished by performing pheromone update sequentially, i.e. by a single processor
while others wait. Nonetheless, we mention this method because we will show how
to improve its complexity.

3.3 Improvements

In this subsection, we propose a novel method for pheromone update, which im-
proves the currently known bounds under the CREW and CRCW models. Tour
construction in our algorithm is performed as in [4], which translates effortlessly to
the PRAM. However, instead of using their “scatter to gather” pheromone update,
we develop a new technique.

Theorem 1. Pheromone update using p = n2 processors can be performed in
S(n) = O(n) and W (n) = O(n3) under a CREW PRAM.

Proof. Each ant already stores a list of n entries, which correspond to vertices in
the order it visited them. In addition to this list, we require that each ant also

Parallelization of Ant System for GPU under the PRAM Model 237

stores an array edge of length n, implicitly storing which edge was used to reach
a particular vertex. For example, if the edge (u, v) was used to visit vertex v, then
we would set edge[v] := u. During pheromone update, we can now check whether
a given solution S contains the desired edge in constant time. Without this array,
we would have to inspect every element of the solution, which would take O(n)
time. There are n solutions, so the step complexity of pheromone update becomes
S(n) = O(n) and the work complexity becomes W (n) = O(n3). �

The pseudocode for the parallel algorithm is shown in Algorithms 5, 6, 7 and 8.
PRAM algorithms use a scalar processor identifier. To improve readability we use
a two-dimensional processor identifier (x, y) ∈ [n] × [n], where [n] = {1, 2, . . . , n}.
Remember that each ant is using n processors, so the x component of the identifier
denotes an ant and the y component denotes an ant’s processor. The algorithm
consists of an initialization phase, where we compute the probability (chance matrix)
of choosing certain edges and reset structures after each iteration. We explicitly
denote variables that are local to each processor by prefixing them with a local
identifier in their initialization. All matrices in the algorithm are of size n× n. The
matrices η, τ , chance, π, tabu and vector score were already described in Section 2.
Additional matrices exist for the parallel algorithm which have the following roles:
R holds the results from parallel random number generation and edge is used as
described in the proof of Theorem 1.

Theorem 2. Algorithm 5 executes on a CREW PRAM.

Proof. It is easy to see that writes to R (line 3 in Algorithm 7) and τ (lines 2 and 5
in Algorithm 8) preserve write exclusivity since only processor (x, y) writes to R[x, y]
and τ [x, y]. We lump together the proof of write exclusivity for chance (line 8 in
Algorithm 6), tabu (lines 9 and 13 in Algorithm 6 and line 7 in Algorithm 7), score
(line 12 in Algorithm 6 and lines 8 and 13 in Algorithm 7) and edge (lines 6 and 12
in Algorithm 7). Observe that in each case the processor’s y index is set to one.
For score, which only has one dimension, this avoids conflicts. The rest are matrices
and all writes from processor (x, 1) are to cells (x, k) where k ∈ [n], which does not
lead to any conflicts. Note that the proof for the write exclusivity of π (line 11 in
Algorithm 6 and line 4 in Algorithm 7) is the same. Naturally, we require that the
parallel implementation of arg max observes the write exclusivity of π (which leads
to different implementations on CREW and CRCW). �

Corollary 1. Algorithm 5 executes under a CRCW PRAM.

It is easy to see that the suggested pheromone update method can be sped up
if more processors are provided. For example, given p = n3 processors, each cell
in the pheromone matrix can be represented by n processors, allowing pheromone
summation to be performed using reduction. However, there seems little incentive
to do so, since the complexity of parallel Ant System algorithm becomes dominated
by the tour construction step.

238 A. Brodnik, M. Grgurovič

Algorithm 5 Parallel Ant System

1: procedure PAntSystem(α, β, ρ, totalIterations)
2: Allocate matrices of size n× n: R, η, τ, chance, π, tabu, edge
3: Allocate vector of size n: score
4: for i := 1 to totalIterations do
5: for (x, y) ∈ [n]× [n] in parallel do
6: PInitialize(x, y, α, β, τ, η, score, chance, π, tabu)
7: PTourConstr(x, y, R, η, score, chance, π, tabu, edge)
8: PPheromoneUpdate(x, y, τ, ρ, edge, score)
9: end for

10: end for
11: end procedure

Algorithm 6 Parallel Initialize

1: procedure PInitialize(x, y, α, β, τ, η, score, chance, π, tabu)
2: if y = 1 then
3: local float sum := 0
4: for i := 1 to n do
5: sum := sum + τ [x, i]α · η[x, i]β

6: end for
7: for i := 1 to n do
8: chance[x, i] := τ [x, i]α · η[x, i]β/sum
9: tabu[x, i] := 1

10: end for
11: π[x, 1] := x
12: score[x] := 0
13: tabu[x, x] := 0
14: end if
15: end procedure

Table 1 summarizes complexity bounds derived from the previous work as well as
new bounds resulting from the improvements presented in this paper. Since a single
iteration of the parallel Ant System algorithm requires both tour construction and
pheromone update, the bound becomes the worse of the two.

3.4 Empirical Comparison

We implemented different pheromone update methods on the GPU. We used Nvidia
CUDA, which was also used in recent papers [4, 12, 17] studying the parallel GPU
implementation of the Ant System algorithm. Compared to the GPU, the PRAM
model is much simpler. While programs on the PRAM execute in SIMD (single
instruction, multiple data) lock-step fashion, the GPU model of execution is the

Parallelization of Ant System for GPU under the PRAM Model 239

Algorithm 7 Parallel Tour Construction

1: procedure PTourConstr(x, y, R, η, score, chance, π, tabu, edge)
2: for k := 2 to n do
3: R[x, y] := chance[π[x, k − 1], y] · rand() · tabu[x, y]
4: Compute (arg maxi∈{1...n}R[x, i]) and store result in π[x, k]
5: if y = 1 then
6: edge[x, π[x, k]] := π[x, k − 1]
7: tabu[x, π[x, k]] := 0
8: score[x] := score[x] + η[π[x, k − 1], π[x, k]]
9: end if

10: end for
11: if y = 1 then
12: edge[x, π[x, 1]] := π[x, n]
13: score[x] := score[x] + η[π[x, n], π[x, 1]]
14: end if
15: end procedure

Algorithm 8 Parallel Pheromone Update

1: procedure PPheromoneUpdate(x, y, τ, ρ, edge, score)
2: τ [x, y] := (1− ρ) · τ [x, y]
3: for k := 1 to n do
4: if edge[k, y] = x then
5: τ [x, y] := τ [x, y] + score[k]
6: end if
7: end for
8: end procedure

significantly more ambiguous SIMT (single instruction, multiple threads), where
such lock-step guarantees are lost. Together with details like different levels of
memory with different speeds and capacities, writing programs becomes a matter of
mixing theoretical and practical considerations. With this paper we mainly focus
on the theoretical aspects of such programs by studying them in the cleaner PRAM
model, then transferring them over to the “messier” GPU.

The tests were run on an Nvidia GeForce GTX 560Ti using stock Nvidia fre-
quencies. Test instances were taken from TSPLIB [14], which are standard test
cases. We included some of the instances that have also been used by [4] to facil-
itate comparisons. We compared only the pheromone update stage, since our tour
construction step is identical to the one presented in [4], thus we refer readers in-
terested in comparisons between various tour construction methods or comparisons
between the parallel and sequential code to that paper.

We tested three methods: atomic, scatter-gather and non-atomic fast. The
atomic method updates the pheromone matrix using atomic instructions for addi-
tion. The scatter-gather method is the non-atomic method proposed by [4]. Finally,

240 A. Brodnik, M. Grgurovič

Previous Work

CREW CRCW CMB. CRCW

Tour [4]
S(n) O(n lg n) O(n lg lg n) O(n)
W(n) O(n3) O(n3) O(n3)

PH [4]
S(n) O(n2) O(n2) O(1)
W(n) O(n2) O(n2) O(n2)

Total
S(n) O(n2) O(n2) O(n)
W(n) O(n3) O(n3) O(n3)

This Paper

CREW CRCW

PH
S(n) O(n) O(n)
W(n) O(n3) O(n3)

Total
S(n) O(n lg n) O(n lg lg n)
W(n) O(n3) O(n3)

Table 1. Previous and new bounds for the parallel Ant System, which is comprised of two
sub-algorithms: tour construction and pheromone (PH) update. We denote the COMBIN-
ING CRCW model by CMB. CRCW. Step and work complexities are denoted by S(n)
and W (n), respectively. All bounds assume n2 processors.

Method

Instance Atomic [4] Scatter-Gather [4] Non-Atomic Fast

att48 0.06 1.29 0.19

kroC100 0.11 17.35 0.51

a280 0.47 759.14 3.61

pcb442 0.82 4 681 11.5

d657 1.74 22 · 103 34.7

pr1002 3.48 118 · 103 114.8

pr2392 16.39 3 800 · 103 1 525.4

Table 2. Running time (milliseconds) of pheromone update methods on TSPLIB instances

the non-atomic fast method is the one suggested in this paper. We also remark
that, in our case, the atomic update method made full use of p = n2 threads, since
we found its performance to be significantly better compared to p = n threads,
as used in [4]. The results are shown in Table 2 and are also shown as a plot in
Figure 1.

It is reassuring to see that the theoretical improvements also translate into prac-
tice. While the atomic variant is significantly faster, many older GPUs still in use
today do not have access to the appropriate atomic instructions. Thus, these results
are practically relevant for GPU implementations if code is expected to work on all
GPUs currently in use.

Parallelization of Ant System for GPU under the PRAM Model 241

att48 kroC100 a280 pcb442 d657 pr1002 pr2392
10−2

10−1

100

101

102

103

104

105

106
106.5

ti
m

e
(m

il
li
se

co
n
d
s)

Atomic
Scatter-Gather

Non-Atomic fast

Figure 1. Plotted running times of pheromone update methods on TSPLIB instances

4 CONCLUSION

In this paper we have shown that recent parallel variants of the Ant System al-
gorithm for the GPU systems can be easily modeled by the more general PRAM
model. This makes them both simpler to understand and to analyze. The fa-
cilitation in a theoretical analysis allowed us to determine which parts of the al-
gorithm needed improvement. It turned out that in two out of three variants
of PRAM models studied, the parallel Ant System algorithm was dominated by
the pheromone update. We proposed a new pheromone update method that im-
proves the asymptotic bound of the parallel Ant System algorithm to such an
extent, that the entire algorithm becomes dominated by the tour construction
phase.

Future research directs us to study the possibility of application of the pro-
posed pheromone update method to other algorithms in the ACO family. More-
over, optimization problems other than the TSP could be parallelized in a sim-
ilar fashion. The algorithms could be studied under various other parallel com-
putation models. Last but not least, we are also interested in other algorithms
that could be more efficiently parallelized if they are split into two phases or more
phases.

242 A. Brodnik, M. Grgurovič

REFERENCES

[1] Bilchev, G.—Parmee, I. C.: The Ant Colony Metaphor for Searching Continuous
Design Spaces. In: Fogarty, T. C. (Ed.): Evolutionary Computing (AISB EC 1995).
Springer, Lecture Notes in Computer Science, Vol. 993, 1995, pp. 25–39.

[2] Bullnheimer, B.—Hartl, R. F.—Strauss, C.: An Improved Ant System Al-
gorithm for the Vehicle Routing Problem. Annals of Operations Research, Vol. 89,
1999, pp. 319–328, doi: 10.1023/A:1018940026670.

[3] Bullnheimer, B.—Kotsis, G.—Strauss, C.: Parallelization Strategies for the
Ant System. In: De Leone, R. et al. (Eds.): High Performance Algorithms and Soft-
ware in Nonlinear Optimization. Springer, Boston, Applied Optimization, Vol. 24,
1998, pp. 87–100.

[4] Cecilia, J. M.—Garćıa, J. M.—Nisbet, A.—Amos, M.—Ujaldón, M.: En-
hancing Data Parallelism for Ant Colony Optimization on GPUs. Journal of
Parallel and Distributed Computing, Vol. 73, 2013, No. 1, pp. 42–51, doi:
10.1016/j.jpdc.2012.01.002.

[5] Delisle, P.— Krajecki, M.—Gravel, M.—Gagné, C.: Parallel Implementa-
tion of an Ant Colony Optimization Metaheuristic with OpenMP. Proceedings of the
Third European Workshop on OpenMP, International Conference on Parallel Archi-
tectures and Compilation Techniques, 2001, pp. 8–12.

[6] Dorigo, M.—Gambardella, L. M.: Ant Colony System: A Cooperative Learning
Approach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary
Computation, Vol. 1, 1997, No. 1, pp. 53–66, doi: 10.1109/4235.585892.

[7] Dorigo, M.—Maniezzo, V.—Colorni, A.: Ant System: Optimization by
a Colony of Cooperating Agents. IEEE Transactions on Systems, Man and Cybernet-
ics, Part B (Cybernetics), Vol. 26, 1996, No. 1, pp. 29–41, doi: 10.1109/3477.484436.

[8] Dorigo, M.—Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge, MA,
2004.

[9] Korošec, P.—Šilc, J.: Using Stigmergy to Solve Numerical Optimization Prob-
lems. Computing and Informatics, Vol. 27, 2008, No. 3, pp. 377–402.

[10] Korošec, P.—Šilc, J.—Filipič, B.: The Differential Ant-Stigmergy Algorithm.
Information Sciences, Vol. 192, 2012, pp. 82–97, doi: 10.1016/j.ins.2010.05.002.

[11] Leguizamon, G.—Michalewicz, Z.: A New Version of Ant System for Subset
Problems. In: Angeline, P. J. et al. (Eds.): Proceedings of the Congress on Evolu-
tionary Computation (CEC ’99), Washington, D.C., July 1999, pp. 1459–1464, doi:
10.1109/CEC.1999.782655.

[12] Li, J.—Hu, X.—Pang, Z.—Qian, K.: A Parallel Ant Colony Optimization Al-
gorithm Based on Fine-Grained Model with GPU-Acceleration. International Jour-
nal of Innovative Computing, Information, and Control, Vol. 5, 2009, No. 11 (A),
pp. 3707–3716.

[13] Maniezzo, V.—Colorni, A.: The Ant System Applied to the Quadratic Assign-
ment Problem. IEEE Transactions on Knowledge and Data Engineering, Vol. 11,
1999, No. 5, pp. 769–778, doi: 10.1109/69.806935.

https://doi.org/10.1023/A:1018940026670
https://doi.org/10.1016/j.jpdc.2012.01.002
https://doi.org/10.1109/4235.585892
https://doi.org/10.1109/3477.484436
https://doi.org/10.1016/j.ins.2010.05.002
https://doi.org/10.1109/CEC.1999.782655
https://doi.org/10.1109/69.806935

Parallelization of Ant System for GPU under the PRAM Model 243

[14] Reinelt, G.: TSPLIB – A Traveling Salesman Problem Library. INFORMS Journal
on Computing, Vol. 3, 1991, No. 4, pp. 376–384, doi: 10.1287/ijoc.3.4.376.

[15] Shiloach, Y.—Vishkin, U.: Finding the Maximum, Merging, and Sorting in a Par-
allel Computation Model. Journal of Algorithms, Vol. 2, 1981, No. 1, pp. 88–102, doi:
10.1007/BFb0105127.

[16] Stützle, T.—Holger, H. H.: MAX-MIN Ant System. Future Generation Com-
puter Systems, Vol. 16, 2000, No. 8, pp. 889–914.

[17] You, Y.-S.: Parallel Ant System for Traveling Salesman Problem on GPUs. In:
Raidl, G. et al. (Eds.): Genetic and Evolutionary Computation Conference (GECCO
2009), New York, July 2009, pp. 1–2.

Andrej Brodnik received his Ph.D. from the University of
Waterloo, Ontario, Canada. In 2002 he moved to University of
Primorska. During the same time he also worked as Researcher
and Adjoined Professor with the University of Technology in
Lule̊a, Sweden. He authored several tens of various scientific
papers. He is also author and co-author of patents in Sweden
and USA. The CiteSeer and ACM Digital Library lists over 200
citations of his works. Currently he holds positions with the
University of Ljubljana and the University of Primorska.

Marko Grgurovi�c is a Ph.D. student in computer science at
the University of Primorska. He received his B.Sc. (2010) and
M.Sc. (2012) degrees in computer science from the University
of Primorska. His research interests lie in theoretical computer
science, particularly in the design and analysis of algorithms.

https://doi.org/10.1287/ijoc.3.4.376
https://doi.org/10.1007/BFb0105127

