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Abstract. Large-scale continuous optimization has gained considerable attention
in recent years. Differential evolution (DE) is a simple yet efficient global numerical
optimization algorithm, which has been successfully used in diverse fields. Gen-
erally, the vectors in the DE mutation operators are chosen randomly from the
population. In this paper, we employ the ranking-based mutation operators for the
DE algorithm to improve DE’s performance. In the ranking-based mutation opera-
tors, the vectors are selected according to their rankings in the current population.
The ranking-based mutation operators are general, and they are integrated into
the original DE algorithm, GODE, and GaDE to verify the enhanced performance.
Experiments have been conducted on the large-scale continuous optimization prob-
lems. The results indicate that the ranking-based mutation operators are able to
enhance the overall performance of DE, GODE, and GaDE in the large-scale con-
tinuous optimization problems.
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1 INTRODUCTION

During the last few decades, evolutionary algorithms and metaheuristics have been
successfully used for the optimization problems. However, they are mainly applied
for the low- or moderate-dimensional problems. Since there are many real-world
problems (such as neural network training, bio-computing, etc.) that have large
problem size, in recent years, large-scale continuous optimization has gained more
attention [17, 31, 37, 18, 16].

Differential evolution (DE), which was proposed by Storn and Price in 1995 [27,
28], is a simple and powerful evolutionary algorithm for global optimization. Due
to its simplicity, robustness, ease of use, and efficiency, DE has obtained many
successful applications in diverse fields, such as data mining, engineering design,
geophysical inversion, and so on [22, 14]. More details on the state-of-the-art research
within DE can be found in two surveys [20] and [5] and the references therein.

In the original DE algorithm, the core operator is the differential mutation,
and generally, the parents in the mutation are always randomly chosen from the
current population. For example, in the classical “DE/rand/1” mutation, three
parent vectors xr1 , xr2 , and xr3 are selected randomly from the current population.
The indexes r1, r2, and r3 satisfy r1, r2, r3 ∈ [1,NP] and r1 6= r2 6= r3 6= i. Since the
parent vectors in the mutation are selected randomly, it may lead to DE be good at
exploring the search space and locating the region of global minimum, but be slow
at exploitation of the solutions [21]. Based on this motivation, in this paper, we
modify our previous proposed ranking-based mutation operators [11] to enhance the
exploitation ability of DE and employ it for the large-scale continuous optimization
problems.

In the proposed ranking-based mutation operators, each parent vector has a se-
lection probability, which is calculated according to its ranking in the population.
Then, the parent vectors in the mutation are proportionally selected based on the
selection probabilities. The major advantage of our proposed ranking-based muta-
tion operators is that they are very simple and do not introduce any new parameters
at all. In addition, the ranking-based mutation operators are general, they can be
easily incorporated into most of existing DE variants. In this paper, they are in-
tegrated into the original DE algorithm, GODE [32], and GaDE [36] to verify the
enhanced performance. Experiments have been conducted on the large-scale contin-
uous optimization problems. The results indicate that the ranking-based mutation
operators are able to enhance the overall performance of DE, GODE, and GaDE in
the large-scale continuous optimization problems.

The rest of this paper is organized as follows. In Section 2, we briefly intro-
duce the related work, including the DE algorithm and large-scale optimization in
DE. Section 3 describes the ranking-based mutation operators for the DE algorithm
in detail. The experimental results and analysis are shown in Section 4. Finally,
in Section 5, we draw the conclusions from this work. In addition, the detailed
experimental results of rank-DE, rank-GODE, and rank-GaDE are described in Ap-
pendix A.
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2 RELATED WORK

Without loss of generality, in this work, we consider the following numerical opti-
mization problem:

Minimize f(x), x ∈ S (1)

where S ⊆ RD is a compact set, x = [x1, x2, . . . , xD]T , and D is the dimension,
i.e. the number of decision variables. Generally, for each variable xj, it satisfies
a boundary constraint, such that:

xj ≤ xj ≤ xj, j = 1, 2, . . . , D (2)

where xj and xj are respectively the lower bound and upper bound of xj.

2.1 Differential Evolution

Similar to other evolutionary algorithms, differential evolution, which is mainly used
for the numerical optimization problems, is a population-based optimization algo-
rithm. The population consists of NP vectors. Each vector xi, i = 1, . . . ,NP is
initialized within the boundary. There are three operators in the DE algorithms, i.e.
differential mutation, crossover, and selection. DE creates new candidate solutions
through the differential mutation and crossover operations. The selection is applied
between the target solution and its corresponding trial solution, and a candidate
replaces the parent only if it has an equal or better fitness value. The pseudo-
code of the original DE algorithm is shown in Algorithm 1, where D is the number
of decision variables; NP is the population size; F is the mutation scaling factor;
CR is the crossover rate; xi,j is the jth variable of the solution xi; ui is the off-
spring. The function rndint(1, D) returns a uniformly distributed random integer
number between 1 and D, while rndreal[0, 1) gives a uniformly distributed random
real number in [0, 1). 〈·〉D is the modulo operation with divisor D. In Algorithm 1,
the “DE/rand/1/exp” is illustrated, since the exponential crossover obtains very
promising results in large-scale optimization. The binomial crossover and other mu-
tation operators can be found in [22]. As for the terminal conditions, we can either
fix the maximum number of fitness function evaluations (Max NFFEs) or define
a desired solution value-to-reach (VTR).

2.2 Large-Scale Optimization in DE

Many real-world problems can be formulated as numerical optimization problems,
and many of them are large-scale, such as bio-computing, data mining, neural net-
work training, etc. [18]. Due to the importance of the large-scale optimization, using
the evolutionary algorithms and metaheuristics for the large-scale continuous opti-
mization problems has gained considerable attention in recent years, such as the
special sessions in conference [30, 29] and special issue in journal [12].
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Algorithm 1 The DE algorithm with “DE/rand/1/exp”

1: Generate the initial population randomly
2: Evaluate the fitness for each individual in the population
3: while the stop criterion is not satisfied do
4: for i = 1 to NP do
5: Select uniform randomly r1 6= r2 6= r3 6= i
6: vi = xr1 + F · (xr2 − xr3)
7: ui = xi

8: jrand = rndint(1, D)
9: ui,jrand

= vi,jrand

10: L = 0
11: while rndreal[0, 1) < CR and L < D do
12: jrand = 〈jrand + 1〉D
13: L = L+ 1
14: ui,jrand

= vi,jrand

15: end while
16: end for
17: for i = 1 to NP do
18: Evaluate the offspring ui

19: if f(ui) is better than or equal to f(xi) then
20: Replace xi with ui

21: end if
22: end for
23: end while

Since DE has obtained very promising performance in the numerical optimiza-
tion [5], many researchers employed it for the large-scale continuous optimization
recently. Yang et al. [34] presented two DE algorithms based on the cooperative
coevolution framework for large-scale optimization problems. Later on, in order
to handle the high-dimensional nonseparable problems, they extended their work
in [34] and proposed a new cooperative coevolution framework [35], where the ran-
dom grouping scheme and adaptive weighting are introduced. In [19], Muelas et
al. proposed a hybrid memetic algorithm based on DE for large-scale optimization
problems. Brest et al. [4] presented a self-adaptive DE, jDElsgo, on large-scale op-
timization. In [32], the authors presented a neighborhood search based sequential
DE for the CEC2010 Special Session on Large Scale Global Optimization. Stanare-
vic [26] hybridized the artificial bee colony with DE for the large scale optimization
problems.

Recently, in the special issue of Soft Computing on the large-scale continuous
optimization, there are seven papers related to the DE algorithm [18]. Brest and
Maučec proposed jDElscop [3], where parameter self-adaptation, three strategies,
and a population size reduction mechanism are combined. In [10], Garćıa-Mart́ınez
et al. proposed the role differentiation mechanism and malleable mating for DE. The
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role differentiation mechanism differentiates the DE population into four groups,
i.e., receiving, placing, leading, and correcting groups. The malleable mating en-
sures some similarity relations between chosen vectors. LaTorre et al. [15] proposed
a memetic algorithm that combines the explorative and exploitative strength of
differential evolution and MTS-LS1. In addition, the multiple offspring sampling
framework has also been used in the hybrid memetic algorithm. Wang et al. [32]
presented an improved DE algorithm based on generalized opposition-based learn-
ing (GOBL) for high dimensional optimization problems, where the opposition-based
population initialization and generation jumping are applied with GOBL. SOUPDE,
proposed by Weber et al. [33], is a shuffle or update parallel DE, where a structured
population algorithm characterized by sub-populations is employed. Based on the
analysis of the similarities and pitfalls of existing parameter adaptation techniques in
DE, Yang et al. [36] proposed a generalized parameter adaptation method in DE for
large-scale optimization problems. In [39], the authors presented the SaDE-MMTS
algorithm to solve large-scale continuous optimization problems. In SaDE-MMTS,
the strategy adaptation along with control parameter values presented in SaDE [23],
the JADE mutation strategy [38], and the modified multi-trajectory search (MMTS)
algorithm are hybridized.

3 RANKING-BASED DE

In this work, we modified our previous proposed ranking-based mutation operators
in [11] and combine them with the original DE algorithm, GODE [32], and GaDE [36]
to improve their performance on the large-scale continuous optimization problems.

3.1 Ranking-Based Mutation

3.1.1 Rankings Assignment

In order to utilize the information of good vectors in the DE population, in this work,
we assign a ranking for each vector according to its fitness. Firstly, the population
is sorted in ascendent order (i.e., from the best to the worst) based on the fitness of
each vector. Then, the ranking of a vector is assigned as follows:

Ri = NP− i, i = 1, 2, . . . ,NP (3)

where NP is the population size. According to Equation (3), the best vector in the
current population will obtain the highest ranking.
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3.1.2 Selection Probability

After assigning the ranking for each vector, the selection probability pi of the ith

vector xi is calculated based on the quadratic model as follows:

pi =

(
Ri

NP

)2

. (4)

Different models can be used to calculate the selection probabilities, and they may
lead to different selection pressure on the better solutions. Note that, in this
work, the quadratic model is used, since it is able to provide better results than
the linear and sinusoidal models. Interested readers can refer to our recent paper
in [11].

Algorithm 2 Ranking-based vector selection for “DE/rand/1” mutation

1: Input: The target vector index i
2: Output: The selected vector indexes r1, r2, r3
3: Randomly select r1 ∈ [1,NP]
4: while rndreal[0, 1) > pr1 or r1 == i do
5: Randomly select r1 ∈ [1,NP]
6: end while
7: Randomly select r2 ∈ [1,NP]
8: while rndreal[0, 1) > pr2 or r2 == r1 or r2 == i do
9: Randomly select r2 ∈ [1,NP]

10: end while
11: Randomly select r3 ∈ [1,NP]
12: while rndreal[0, 1) <= pr3 or r3 == r2 or r3 == r1 or r3 == i do
13: Randomly select r3 ∈ [1,NP]
14: end while

3.1.3 Ranking-Based Vector Selection

Inspired by the role differentiation mechanism proposed in [10], in our proposed
ranking-based mutation operators, the vectors are selected based on their rankings
and roles. Also, the vector can be classified into four different roles (i.e. placing,
leading, correcting, and receiving vectors) as proposed in [10]. Solutions in the
population with higher selection probabilities are more likely to be chosen as the
placing and leading vectors, while poor solutions are more likely to be selected as
the correcting vectors in the DE mutation. As an illustration, the ranking-based
vector selection for the “DE/rand/1” mutation is shown in Algorithm 2. From
Algorithm 2, different from the vector selection in the original DE algorithm, in
the ranking-based vector selection the selection probabilities, which are calculated
based on the rankings, are used to control the selection of different vectors. For
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example, in ranking-based “DE/rand/1” mutation, the placing vector xr1 and the
leading vector xr2 try to select good solutions, but the correcting vector xr3 pro-
portionally chooses the poor solution. Different from the vector selection presented
in [10], our approach does not introduce any new parameters, while in [10] there
are three new parameters, i.e. NP , NL, and NC . In addition, in our ranking-based
vector selection there are no explicit groups to differentiate the vectors in the pop-
ulation.

It is worth pointing out that Algorithm 2 is only an illustration for the “DE/
rand/1” mutation, our proposed ranking-based vector selection is simple and gen-
eral. It is also applicable to other mutation operators. Compared with our pre-
vious work in [11], the major difference is that in this work the correcting vec-
tor is also selected according to its ranking, while in [11] it is only selected ran-
domly.

Algorithm 3 rank-DE: ranking-based differential evolution

1: Generate the initial population randomly
2: Evaluate the fitness for each individual in the population
3: while the stop criterion is not satisfied do
4: Sort the population based on the fitness of each individual ⇐
5: Calculate the selection probability for each individual according to Equa-

tion (4) ⇐

6: for i = 1 to NP do
7: Select r1, r2, r3 as shown in Algorithm 2 ⇐
8: Generate the trial vector ui with ranking-based “DE/rand/1/exp” strategy
9: end for

10: for i = 1 to NP do
11: Evaluate the offspring ui

12: if f(ui) is better than or equal to f(xi) then
13: Replace xi with ui

14: end if
15: end for
16: end while

3.2 DE with Ranking-Based Mutation

By combing the ranking-based mutation operators, we propose the ranking-based
DE algorithm, referred to as rank-DE. The pseudo-code of rank-DE is shown in
Algorithm 3. The differences between Algorithm 1 and Algorithm 3 are highlighted
in “⇐”. Note that in line 8 of Algorithm 3 other ranking-based DE strategies
can also be used to generate trial vector ui. Compared with the original DE algo-
rithm, Algorithm 3 indicates that our proposed ranking-based DE algorithm is very
simple, it does not increase the overall complexity of DE. Additionally, rank-DE



56 L. Guo, X. Li, W. Gong

enhances the exploitation ability of DE due to its ranking-based mutation opera-
tor.

4 EXPERIMENTAL RESULTS AND ANALYSIS

In order to evaluate the performance of our proposed ranking-based DE for large-
scale optimization problems, we employ the test suite presented for the special issue
of Soft Computing on scalability of evolutionary algorithms and other metaheuristics
for large-scale continuous optimization problems [12]. The test suite contains 19 test
functions, which can be categorized into four groups:

• Shifted unimodal functions: F1–F2;

• Shifted multimodal functions: F3–F6;

• Other shifted unimodal functions: F7–F11;

• Hybrid composite functions: F12–F19.

All of these functions are tested at D = 50, 100, 200, 500, and 1 000. More details
of these functions can be found in [13].

Algorithm Parameter Settings

DE, rank-DE NP = 60, CR = 0.9, F = 0.5

GODE, rank-GODE NP = 60, CR = 0.9, F = 0.5

GaDE, rank-GaDE NP = 60, p = 0.2, c = 0.1
Fm = 0.5, CRm = 0.9

Table 1. Parameter settings for all compared DE variants

4.1 Parameter Settings

As mentioned above, our proposed ranking-based mutation operators are general,
they can be used in different DE variants. In this work, the ranking-based mutation
operators are integrated into the original DE algorithm, GODE [32], and GaDE [36],
and they are respectively named as rank-DE, rank-GODE, and rank-GaDE. In order
to make a fair comparison between rank-DE and its corresponding non-rank DE, we
adopt the same parameter settings as used in their original literature. The parameter
settings for all compared algorithms are shown in Table 1. The maximal number of
fitness function evaluations (Max NFFEs) are set to 5 000×D as suggested in [12].
All algorithms are performed over 25 independent runs. In addition, in both rank-
DE and rank-GODE the “DE/rand/1/exp” strategy is used as adopted in DE and
GODE. In rank-GaDE, the same strategies are also employed as originally used in
GaDE.
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F DE rank-DE GODE rank-GODE GaDE rank-GaDE

F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F2 3.60E−01 8.15E−04 2.57E−01 1.33E−03 1.46E+01 2.69E+00

F3 2.89E+01 1.59E−01 3.06E+01 1.87E−09 1.18E+01 3.24E−12
F4 3.98E−02 3.98E−02 1.05E−13 3.98E−02 0.00E+00 0.00E+00

F5 0.00E+00 9.85E−04 0.00E+00 0.00E+00 0.00E+00 8.88E−04

F6 1.43E−13 0.00E+00 1.24E−14 0.00E+00 0.00E+00 0.00E+00

F7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F8 3.44E+00 3.45E−03 1.67E−01 4.42E−08 1.08E−08 0.00E+00

F9 2.73E+02 9.91E−09 7.77E−06 4.39E−10 6.24E−07 0.00E+00

F10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F11 6.23E−05 1.05E−08 6.44E−06 6.93E−10 1.31E−06 0.00E+00

F12 5.35E−13 0.00E+00 1.33E−13 0.00E+00 0.00E+00 0.00E+00

F13 2.45E+01 4.98E−02 2.55E+01 5.05E−02 1.19E+01 6.24E−01
F14 4.16E−08 3.35E−14 6.24E−09 5.79E−13 9.78E−13 0.00E+00

F15 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F16 1.56E−09 0.00E+00 1.57E−10 5.35E−14 4.78E−12 0.00E+00

F17 7.98E−01 2.21E−01 1.17E+00 3.96E−02 4.97E−01 2.49E−01
F18 1.22E−04 1.18E−10 2.97E−07 6.30E−10 4.82E−08 2.40E−10
F19 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

All the results below 1.00E−14 have been approximated to 0.

Table 2. Comparison of the mean error values between DEs and their corresponding rank-
DEs for functions F1–F19 at D = 50

4.2 Influence of Ranking-Based Mutation

In this section, we evaluate the influence of ranking-based mutation operators to
DE, GODE, and GaDE. The ranking-based DE is compared with its corresponding
non-ranking-based DE, i.e., rank-DE vs. DE, rank-GODE vs. GODE, and rank-
GaDE vs. GaDE. The results for all functions at D = 50, 100, 200, 500, and 1 000
are reported in Tables 2–6, respectively. Note that the results of DE, GODE, and
GaDE are obtained from http://sci2s.ugr.es/eamhco/SOCO-results.xls. In
Tables 2–6, the better results are highlighted in boldface compared between rank-
DEs and their corresponding non-rank-DEs. In addition, as stated in [8, 9], the
multiple-problem statistical analysis is also important to check the behavior of the
stochastic algorithms. Therefore, in order to further prove statistical significance
of the results, we also use the Wilcoxon’s test to compare rank-DEs with their
corresponding non-rank-DEs. The Wilcoxon’s test is a non-parametric statistical
hypothesis test, which can be used as an alternative to the paired t-test when the
results cannot be assumed to be normally distributed [25]. The results, which are
calculated by OriginPro software, are shown in Table 7. In addition, the detailed
results of rank-DE, rank-GODE, and rank-GaDE for all functions at different di-
mensions are shown in Tables 15–17 in the Appendix A.

http://sci2s.ugr.es/eamhco/SOCO-results.xls
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F DE rank-DE GODE rank-GODE GaDE rank-GaDE

F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F2 4.45E+00 1.69E−01 3.65E+00 2.10E−01 3.88E+01 4.74E+00

F3 8.01E+01 3.39E+01 8.14E+01 4.14E+01 5.89E+01 2.22E+00

F4 7.96E−02 1.19E−01 8.32E−14 0.00E+00 0.00E+00 0.00E+00

F5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F6 3.10E−13 1.42E−14 2.60E−14 1.48E−14 0.00E+00 0.00E+00

F7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F8 3.69E+02 1.75E+01 7.53E+01 8.50E−06 1.23E−03 3.34E−06
F9 5.06E+02 1.04E−07 1.46E−05 7.32E−10 3.87E−07 0.00E+00

F10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F11 1.28E−04 1.13E−07 1.58E−05 7.30E−10 4.34E−07 0.00E+00

F12 5.99E−11 0.00E+00 7.57E−12 0.00E+00 0.00E+00 0.00E+00

F13 6.17E+01 2.49E+01 6.32E+01 2.87E+01 4.99E+01 8.96E−01
F14 4.79E−02 3.98E−02 4.13E−08 3.98E−02 7.90E−13 0.00E+00

F15 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F16 3.58E−09 1.46E−13 3.75E−10 1.24E−12 2.45E−12 4.21E−13
F17 1.23E+01 1.03E−01 1.11E+01 8.98E−02 3.28E+00 7.19E−01
F18 2.98E−04 2.66E−09 1.11E−06 1.30E−08 1.96E−08 2.47E−09
F19 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

All the results below 1.00E−14 have been approximated to 0.

Table 3. Comparison of the mean error values between DEs and their corresponding rank-
DEs for functions F1–F19 at D = 100

4.2.1 Comparison Between DE and Rank-DE

First, the results of rank-DE is compare with those of DE. From the results shown
in Tables 2–6, we can see that:

• For all functions at D = 50, in 5 functions (F1, F7, F10, F15, and F19) both
DE and rank-DE are able to find the global optimum over all runs. In 12 out of
19 functions, our proposed rank-DE obtains better mean error values than DE.
Only in one function (F5), DE is better than rank-DE. In F5, rank-DE occasion-
ally converges to the local optima. The reason might be that the ranking-based
mutation operator in rank-DE leads to over-exploitation in this problem. There-
fore, this motivates us to study more sophisticated ranking technique that can
control the selection pressure adaptively. We will leave it in our future work.

• When D = 100, there are 6 functions (F1, F5, F7, F10, F15, and F19) whose
global optimum are obtained by both DE and rank-DE over all runs. rank-DE
provides better results than DE in 12 out of 19 functions, but only loses in one
function (F4).

• With respect to D = 200, similar to the results at D = 100, both DE and rank-
DE get the global optimum in 6 functions (F1, F5, F7, F10, F15, and F19). In
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F DE rank-DE GODE rank-GODE GaDE rank-GaDE

F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F2 1.92E+01 3.22E+00 1.53E+01 3.59E+00 5.76E+01 2.86E+01

F3 1.78E+02 1.36E+02 1.80E+02 1.42E+02 1.61E+02 9.03E+01

F4 1.27E−01 1.59E−01 4.17E−13 3.98E−02 0.00E+00 0.00E+00

F5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.91E−04

F6 6.54E−13 3.09E−14 5.45E−14 3.24E−14 0.00E+00 0.00E+00

F7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F8 5.53E+03 1.15E+03 2.10E+03 9.33E−07 3.02E+00 6.94E−01
F9 1.01E+03 8.19E−07 3.23E−05 9.66E−11 4.53E−09 7.09E−07

F10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.20E−02 4.20E−02

F11 2.62E−04 8.00E−07 3.12E−05 1.18E−10 1.85E−07 2.21E−06

F12 9.76E−10 2.38E−14 1.20E−10 2.30E−13 4.92E−14 0.00E+00

F13 1.36E+02 1.09E+02 1.38E+02 1.11E+02 1.24E+02 7.63E+01

F14 1.38E−01 1.19E−01 8.17E−02 1.59E−01 2.87E−12 2.17E−13
F15 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F16 7.46E−09 1.84E−12 9.54E−10 1.35E−11 1.58E−12 5.96E−12

F17 3.70E+01 1.13E+01 3.74E+01 1.26E+01 2.45E+01 7.54E−01
F18 4.73E−04 7.96E−02 1.91E−06 3.98E−02 2.53E−08 2.39E−08
F19 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

All the results below 1.00E−14 have been approximated to 0.

Table 4. Comparison of the mean error values between DEs and their corresponding rank-
DEs for functions F1–F19 at D = 200

11 functions, rank-DE is better than DE in terms of the mean error values. In
2 functions (F4 and F18), DE provides better results than rank-DE.

• For all function at D = 500, also in 6 functions (F1, F5, F7, F10, F15, and
F19) both DE and rank-DE obtain the global optimum over all runs. rank-DE
is capable of providing better results in 10 out of 19 functions, but loses in three
functions (F4, F14, and F18).

• When the dimension is scaled up to D = 1 000, for functions F1, F5, F7, F10,
F15, and F19, their global optimum are found by both rank-DE and DE over
all 25 runs. In 12 out of 19 functions, rank-DE improves the results of DE.
DE only gets better mean error value in one function (F18) than that of rank-
DE.

4.2.2 Comparison Between GODE and Rank-GODE

In this section, the ranking-based mutation operator is integrated into GODE [32]
to verify the enhanced performance of our approach. The mean error values of rank-
GODE and GODE are shown in Tables 2–6. From the results, it can be observed
that:
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F DE rank-DE GODE rank-GODE GaDE rank-GaDE

F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F2 5.35E+01 2.35E+01 5.81E+01 2.31E+01 7.42E+01 4.69E+01

F3 4.76E+02 4.35E+02 4.76E+02 4.34E+02 4.40E+02 3.80E+02

F4 3.20E−01 4.38E−01 1.62E−03 2.39E−01 0.00E+00 0.00E+00

F5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F6 1.65E−12 8.22E−14 1.43E−13 8.88E−14 1.46E−14 3.44E−14

F7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F8 6.09E+04 2.68E+04 3.93E+04 0.00E+00 1.33E+03 1.32E+03

F9 2.52E+03 6.28E−06 7.84E−05 4.20E−14 0.00E+00 4.44E−05

F10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.78E−01 1.26E−01
F11 6.76E−04 6.22E−06 8.25E−05 3.72E−14 0.00E+00 4.04E−05

F12 7.07E−09 2.43E−12 7.39E−10 1.81E−11 1.07E−12 7.04E−12

F13 3.59E+02 3.31E+02 3.59E+02 3.34E+02 3.34E+02 3.07E+02

F14 1.35E−01 3.18E−01 7.67E−02 2.79E−01 2.79E−11 8.42E−12
F15 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F16 2.04E−08 2.72E−11 2.24E−09 1.72E−10 1.67E−12 1.38E−10

F17 1.11E+02 8.69E+01 1.12E+02 8.84E+01 9.26E+01 5.24E+01

F18 1.22E−03 3.98E−02 5.06E−06 1.49E−06 5.59E−08 3.99E−10
F19 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.20E−02 0.00E+00

All the results below 1.00E−14 have been approximated to 0.

Table 5. Comparison of the mean error values between DEs and their corresponding rank-
DEs for functions F1–F19 at D = 500

• In 6 functions (F1, F5, F7, F10, F15, and F19) at D = 50, 100, 200, and 500,
both rank-GODE and GODE consistently get the global optimum over all runs.
At D = 1 000, in 9 functions (F1, F5, F7–F11, F15, and F19) rank-GODE still
obtains the global optimum over all 25 runs. While GODE finds the global
optimum only in 4 functions.

• Regardless of the influence of dimensionality, in the majority of the test func-
tions, our proposed rank-GODE consistently provides better results than those
of GODE. In 12, 12, 10, 11, and 14 functions, rank-GODE respectively gets
better mean error values than GODE at D = 50, 100, 200, 500, and 1 000.

• Rank-GODE is only worse than GODE in 1, 1, 3, 2, and 1 out of 19 functions
at D = 50, 100, 200, 500, and 1 000, respectively.

4.2.3 Comparison Between GaDE and Rank-GaDE

GaDE, proposed by Yang et al. [36], is an adaptive DE variant with a new proposed
generalized parameter adaptation scheme and strategy adaptation. In this section,
our proposed ranking-based vector selection technique is integrated into both of
the mutation operators used in GaDE. The results of rank-GaDE and GaDE are
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F DE rank-DE GODE rank-GODE GaDE rank-GaDE

F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F2 8.46E+01 5.03E+01 9.02E+01 4.79E+01 8.93E+01 4.34E+01

F3 9.69E+02 9.27E+02 9.70E+02 9.30E+02 9.45E+02 8.76E+02

F4 1.44E+00 5.97E−01 1.03E+00 7.56E−01 0.00E+00 0.00E+00

F5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F6 3.29E−12 1.75E−13 2.88E−13 1.86E−13 1.66E−14 5.41E−14

F7 0.00E+00 0.00E+00 INF 0.00E+00 0.00E+00 0.00E+00

F8 2.46E+05 1.37E+05 1.86E+05 0.00E+00 1.77E+04 1.59E+04

F9 5.13E+03 2.26E−05 1.70E−04 0.00E+00 0.00E+00 1.80E−04

F10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.62E−01 8.40E−02
F11 1.35E−03 2.29E−05 1.73E−04 0.00E+00 0.00E+00 1.73E−04

F12 1.68E−08 2.30E−11 1.87E−09 1.57E−10 3.85E−12 1.49E−10

F13 7.30E+02 7.06E+02 7.31E+02 7.08E+02 7.15E+02 6.80E+02

F14 6.90E−01 3.98E−01 6.06E−01 3.98E−01 8.82E−11 7.18E−12
F15 0.00E+00 0.00E+00 INF 0.00E+00 0.00E+00 0.00E+00

F16 4.18E−08 1.28E−10 4.59E−09 8.00E−10 2.35E−12 6.78E−10

F17 2.36E+02 2.11E+02 2.36E+02 2.14E+02 2.19E+02 1.80E+02

F18 2.37E−03 3.98E−02 3.29E−05 3.98E−02 1.30E−07 1.62E−08
F19 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.78E−01 0.00E+00

All the results below 1.00E−14 have been approximated to 0.

Table 6. Comparison of the mean error values between DEs and their corresponding rank-
DEs for functions F1–F19 at D = 1 000

reported in Tables 2–6. All of the results are averaged over 25 independent runs.
The results in Tables 2–6 show that:

• When D = 50, both rank-GaDE and GaDE can solve 8 functions (F1, F4, F6,
F7, F10, F12, F15, and F19) over all runs. rank-GaDE improves the mean error
values of GaDE in 10 out of 19 functions. GaDE only obtains better results
than rank-GaDE in function F5.

• For all functions at D = 100, in 9 functions (F1, F4–F7, F10, F12, F15, and
F19), their global optimum are obtained by rank-GaDE and GaDE consistently.
In the rest of 10 functions, rank-GaDE gets better results than GaDE.

• For all functions at D = 200, rank-GaDE obtains better results in 8 functions,
but loses in 4 functions compared with GaDE. In the rest of 7 functions, both
rank-GaDE and GaDE get the same mean error values.

• With respect to D = 500, in 9 out of 19 functions rank-GaDE is capable of pro-
vide better results than GaDE. rank-GaDE is worse than GaDE in 5 functions.
Both GaDE and rank-GaDE consistently find the global optimum in the rest of
5 functions (F1, F4, F5, F7, and F15).
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D = 50

Algorithm R+ R− p-value significance
at α = 0.05

significance
at α = 0.1

rank-DE vs. DE 97 8 3.05E−03 + +

rank-GODE vs. GODE 83 8 6.10E−03 + +

rank-GaDE vs. GaDE 59 7 1.86E−02 + +

D = 100

Algorithm R+ R− p-value significance
at α = 0.05

significance
at α = 0.1

rank-DE vs. DE 84 7 4.64E−03 + +

rank-GODE vs. GODE 83 8 6.10E−03 + +

rank-GaDE vs. GaDE 55 0 1.95E−03 + +

D = 200

Algorithm R+ R− p-value significance
at α = 0.05

significance
at α = 0.1

rank-DE vs. DE 78 13 2.15E−02 + +

rank-GODE vs. GODE 70 21 9.42E−02 = +

rank-GaDE vs. GaDE 57 21 1.76E−01 = =

D = 500

Algorithm R+ R− p-value significance
at α = 0.05

significance
at α = 0.1

rank-DE vs. DE 73 18 5.74E−02 = +

rank-GODE vs. GODE 76 15 3.27E−02 + +

rank-GaDE vs. GaDE 85 20 4.19E−02 + +

D = 1 000

Algorithm R+ R− p-value significance
at α = 0.05

significance
at α = 0.1

rank-DE vs. DE 86 5 2.44E−03 + +

rank-GODE vs. GODE? 114 6 8.54E−04 + +

rank-GaDE vs. GaDE 84 21 4.94E−02 + +

? In GODE, for functions F7 and F15 “INF” is approximated to 1.00E+20 to
make the multiple-problem Wilcoxon’s test.

Table 7. Results of the multiple-problem Wilcoxon’s test for all DE variants on the mean
error values of functions F1–F19

• When D = 1 000, similar to the results at D = 500, in 5 functions (F1, F4,
F5, F7, and F15) GaDE and rank-GaDE get the global optimum over all runs.
rank-GaDE improves GaDE in 9 functions, but loses in 5 functions.

4.2.4 Summary

To summarize the results shown in Tables 2–6, the multiple-problem analysis on the
mean error values in all functions is tabulated in Table 7. From Table 7, it is clear to
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F DE CHC G-CMA-ES rank-DE rank-GODE rank-GaDE

F1 0.00E+00 1.67E−11 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F2 3.60E−01 6.19E+01 2.75E−11 8.15E−04 1.33E−03 2.69E+00

F3 2.89E+01 1.25E+06 7.97E−01 1.59E−01 1.87E−09 3.24E−12
F4 3.98E−02 7.43E+01 1.05E+02 3.98E−02 3.98E−02 0.00E+00

F5 0.00E+00 1.67E−03 2.96E−04 9.85E−04 0.00E+00 8.88E−04

F6 1.43E−13 6.15E−07 2.09E+01 0.00E+00 0.00E+00 0.00E+00

F7 0.00E+00 2.66E−09 1.01E−10 0.00E+00 0.00E+00 0.00E+00

F8 3.44E+00 2.24E+02 0.00E+00 3.45E−03 4.42E−08 0.00E+00

F9 2.73E+02 3.10E+02 1.66E+01 9.91E−09 4.39E−10 0.00E+00

F10 0.00E+00 7.30E+00 6.81E+00 0.00E+00 0.00E+00 0.00E+00

F11 6.23E−05 2.16E+00 3.01E+01 1.05E−08 6.93E−10 0.00E+00

F12 5.35E−13 9.57E−01 1.88E+02 0.00E+00 0.00E+00 0.00E+00

F13 2.45E+01 2.08E+06 1.97E+02 4.98E−02 5.05E−02 6.24E−01

F14 4.16E−08 6.17E+01 1.09E+02 3.35E−14 5.79E−13 0.00E+00

F15 0.00E+00 3.98E−01 9.79E−04 0.00E+00 0.00E+00 0.00E+00

F16 1.56E−09 2.95E−09 4.27E+02 0.00E+00 5.35E−14 0.00E+00

F17 7.98E−01 2.26E+04 6.89E+02 2.21E−01 3.96E−02 2.49E−01

F18 1.22E−04 1.58E+01 1.31E+02 1.18E−10 6.30E−10 2.40E−10
F19 0.00E+00 3.59E+02 4.76E+00 0.00E+00 0.00E+00 0.00E+00

All the results below 1.00E−14 have been approximated to 0.

Table 8. Comparison of the mean error values among three baseline algorithms and rank-
DEs for functions F1–F19 at D = 50

see that the ranking-based DE variants consistently provides higher R+ values than
those of non-ranking-based DEs, which means that the ranking-based DE variants
are consistently better than the original DE mutation based methods. At α = 0.05,
in 12 out of 15 cases rank-DEs get significantly better results than non-rank-DEs
according to the Wilcoxon’s test. In addition, when α = 0.1, rank-DEs significantly
outperforms non-rank-DEs in 18 out of 19 cases.

In general, from the results shown in Tables 2–7 and the above analysis, we
can conclude that our proposed ranking-based vector selection technique is really
capable of improving the performance of DE. The reason is that the ranking-based
mutation operators enhance the exploitation ability and make ranking-based DE
balance the exploration and exploitation abilities.

4.3 Comparison with Baseline Algorithms

In the previous section, we have verified the enhanced performance of our proposed
ranking-based mutation operators. In this section, in order to make an analysis of
the scalability behavior of our proposed rank-DEs, the comparison to three base-
line evolutionary algorithms for continuous optimization problems is performed as
suggested in [12]. The three baseline algorithms are
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F DE CHC G-CMA-ES rank-DE rank-GODE rank-GaDE

F1 0.00E+00 3.56E−11 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F2 4.45E+00 8.58E+01 1.51E−10 1.69E−01 2.10E−01 4.74E+00

F3 8.01E+01 4.19E+06 3.88E+00 3.39E+01 4.14E+01 2.22E+00

F4 7.96E−02 2.19E+02 2.50E+02 1.19E−01 0.00E+00 0.00E+00

F5 0.00E+00 3.83E−03 1.58E−03 0.00E+00 0.00E+00 0.00E+00

F6 3.10E−13 4.10E−07 2.12E+01 1.42E−14 1.48E−14 0.00E+00

F7 0.00E+00 1.40E−02 4.22E−04 0.00E+00 0.00E+00 0.00E+00

F8 3.69E+02 1.69E+03 0.00E+00 1.75E+01 8.50E−06 3.34E−06
F9 5.06E+02 5.86E+02 1.02E+02 1.04E−07 7.32E−10 0.00E+00

F10 0.00E+00 3.30E+01 1.66E+01 0.00E+00 0.00E+00 0.00E+00

F11 1.28E−04 7.32E+01 1.64E+02 1.13E−07 7.30E−10 0.00E+00

F12 5.99E−11 1.03E+01 4.17E+02 0.00E+00 0.00E+00 0.00E+00

F13 6.17E+01 2.70E+06 4.21E+02 2.49E+01 2.87E+01 8.96E−01
F14 4.79E−02 1.66E+02 2.55E+02 3.98E−02 3.98E−02 0.00E+00

F15 0.00E+00 8.13E+00 6.30E−01 0.00E+00 0.00E+00 0.00E+00

F16 3.58E−09 2.23E+01 8.59E+02 1.46E−13 1.24E−12 4.21E−13
F17 1.23E+01 1.47E+05 1.51E+03 1.03E−01 8.98E−02 7.19E−01

F18 2.98E−04 7.00E+01 3.07E+02 2.66E−09 1.30E−08 2.47E−09
F19 0.00E+00 5.45E+02 2.02E+01 0.00E+00 0.00E+00 0.00E+00

All the results below 1.00E−14 have been approximated to 0.

Table 9. Comparison of the mean error values among three baseline algorithms and rank-
DEs for functions F1–F19 at D = 100

• DE: the original DE algorithm with “DE/rand/1/exp” strategy, CR = 0.9, and
F = 0.5 [28];

• CHC: the real-coded CHC proposed by Eshelman and Schaffer [7];

• G-CMA-ES: a restart CMA-ES with increasing population size [2].

We obtained the results of DE, CHC and G-CMA-ES from http://sci2s.ugr.

es/eamhco/SOCO-results.xls. The results of DE, CHC, G-CMA-ES, rank-DE,
rank-GODE, and rank-GaDE for all functions at D = 50, 100, 200, 500, and 1 000
are respectively reported in Tables 8–12. In these tables, the best and second best
results are highlighted in grey boldface and boldface, respectively. In addition,

the average rankings obtained by each above algorithm in the Friedman test1 are
tabulated in Table 13.

From the results shown in Tables 8–12, we can observe that regardless of the
dimensionality the ranking-based DE variants always get the 1st best mean error
values than the three baseline algorithms in the majority of the functions. For
example, for all functions at D = 500, rank-DE, rank-GODE, rank-GaDE, DE, and

1 The KEEL software [1] (http://www.keel.es/) is used to get the average rankings
obtained by each algorithm based on the Friedman test.

http://sci2s.ugr.es/eamhco/SOCO-results.xls
http://sci2s.ugr.es/eamhco/SOCO-results.xls
http://www.keel.es/
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F DE CHC G-CMA-ES rank-DE rank-GODE rank-GaDE

F1 0.00E+00 8.34E−01 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F2 1.92E+01 1.03E+02 1.16E−09 3.22E+00 3.59E+00 2.86E+01

F3 1.78E+02 2.01E+07 8.91E+01 1.36E+02 1.42E+02 9.03E+01

F4 1.27E−01 5.40E+02 6.48E+02 1.59E−01 3.98E−02 0.00E+00

F5 0.00E+00 8.76E−03 0.00E+00 0.00E+00 0.00E+00 5.91E−04
F6 6.54E−13 1.23E+00 2.14E+01 3.09E−14 3.24E−14 0.00E+00

F7 0.00E+00 2.59E−01 1.17E−01 0.00E+00 0.00E+00 0.00E+00

F8 5.53E+03 9.38E+03 0.00E+00 1.15E+03 9.33E−07 6.94E−01

F9 1.01E+03 1.19E+03 3.75E+02 8.19E−07 9.66E−11 7.09E−07
F10 0.00E+00 7.13E+01 4.43E+01 0.00E+00 0.00E+00 4.20E−02
F11 2.62E−04 3.85E+02 8.03E+02 8.00E−07 1.18E−10 2.21E−06

F12 9.76E−10 7.44E+01 9.06E+02 2.38E−14 2.30E−13 0.00E+00

F13 1.36E+02 5.75E+06 9.43E+02 1.09E+02 1.11E+02 7.63E+01

F14 1.38E−01 4.29E+02 6.09E+02 1.19E−01 1.59E−01 2.17E−13
F15 0.00E+00 2.14E+01 1.75E+00 0.00E+00 0.00E+00 0.00E+00

F16 7.46E−09 1.60E+02 1.92E+03 1.84E−12 1.35E−11 5.96E−12
F17 3.70E+01 1.75E+05 3.36E+03 1.13E+01 1.26E+01 7.54E−01
F18 4.73E−04 2.12E+02 6.89E+02 7.96E−02 3.98E−02 2.39E−08
F19 0.00E+00 2.06E+03 7.52E+02 0.00E+00 0.00E+00 0.00E+00

All the results below 1.00E−14 have been approximated to 0.

Table 10. Comparison of the mean error values among three baseline algorithms and
rank-DEs for functions F1–F19 at D = 200

G-CMA-ES provides the 1st best results in 8, 9, 11, 6 and 3 functions, respectively.
There are no functions that CHC obtains the best overall results.

The p-values computed by Iman-Davenport test on the mean error values shown
in Tables 8–12 are respectively 1.50E−11, 1.00E−12, 2.30E−11, 2.90E−11, and
1.00E−11 at D = 50, 100, 200, 500, and 1 000. The results indicate that there
are significant differences in the behavior of the compared six algorithms for all the
functions at α = 0.05, regardless of the dimensionality of the test functions.

According to the average rankings obtained by each algorithm in the Friedman
test shown in Table 13, the results show that all of our proposed ranking-based DE
variants obtain better rankings than the three compared baseline algorithms. Re-
gardless of the dimensionality, in all cases, rank-GaDE gets the 1st ranking, followed
by rank-GODE, rank-DE, DE, G-CMA-ES (except D = 500 and D = 1 000)2, and
CHC.

2 In G-CMA-ES, when D = 500 and D = 1 000 the average error values of some
functions are greater than 1.00E + 100, therefore, the average rankings obtained by the
Friedman test do not include the G-CMA-ES in these two cases.
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F DE CHC G-CMA-ES rank-DE rank-GODE rank-GaDE

F1 0.00E+00 2.84E−12 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F2 5.35E+01 1.29E+02 3.48E−04 2.35E+01 2.31E+01 4.69E+01

F3 4.76E+02 1.14E+06 3.58E+02 4.35E+02 4.34E+02 3.80E+02

F4 3.20E−01 1.91E+03 2.10E+03 4.38E−01 2.39E−01 0.00E+00

F5 0.00E+00 6.98E−03 2.96E−04 0.00E+00 0.00E+00 0.00E+00

F6 1.65E−12 5.16E+00 2.15E+01 8.22E−14 8.88E−14 3.44E−14
F7 0.00E+00 1.27E−01 7.21E+153 0.00E+00 0.00E+00 0.00E+00

F8 6.09E+04 7.22E+04 2.36E−06 2.68E+04 0.00E+00 1.32E+03

F9 2.52E+03 3.00E+03 1.74E+03 6.28E−06 4.20E−14 4.44E−05

F10 0.00E+00 1.86E+02 1.27E+02 0.00E+00 0.00E+00 1.26E−01
F11 6.76E−04 1.81E+03 4.16E+03 6.22E−06 3.72E−14 4.04E−05

F12 7.07E−09 4.48E+02 2.58E+03 2.43E−12 1.81E−11 7.04E−12
F13 3.59E+02 3.22E+07 2.87E+03 3.31E+02 3.34E+02 3.07E+02

F14 1.35E−01 1.46E+03 1.95E+03 3.18E−01 2.79E−01 8.42E−12
F15 0.00E+00 6.01E+01 2.82E+262 0.00E+00 0.00E+00 0.00E+00

F16 2.04E−08 9.55E+02 5.45E+03 2.72E−11 1.72E−10 1.38E−10
F17 1.11E+02 8.40E+05 9.59E+03 8.69E+01 8.84E+01 5.24E+01

F18 1.22E−03 7.32E+02 2.05E+03 3.98E−02 1.49E−06 3.99E−10
F19 0.00E+00 1.76E+03 2.44E+06 0.00E+00 0.00E+00 0.00E+00

All the results below 1.00E−14 have been approximated to 0.

Table 11. Comparison of the mean error values among three baseline algorithms and
rank-DEs for functions F1–F19 at D = 500

4.4 Comparison with Reported Results

In the special issue of Soft Computing [12], there are 13 papers published therein. All
of the results are available online at http://sci2s.ugr.es/eamhco/SOCO-results.
xls. In this subsection, we compare the results of rank-DE, rank-GODE, and rank-
GaDE with those of the 13 advanced methods. With respect to the mean error
values, the average rankings obtained by each algorithm in the Friedman test are
reported in Table 14. From the results, it can be seen that MOS [15], which is a mul-
tiple offspring sampling method containing different search strategies, consistently
obtains the best ranking regardless of the dimensionality. The ranking of jDElscop
and rank-GaDE in different dimensions of problems are twisted: in D = 50, 200, and
500, jDElscop is better than rank-GaDE; while in D = 100 and 1 000, rank-GaDE
provides better rankings than jDElscop. However, in overall, rank-GaDE obtains
the 2nd ranking, following by jDElscop, rank-GODE, and rank-DE. It is worth not-
ing that although the ranking-based DE variants are not the best one among all
compared algorithms, they can provide promising results. More importantly, they
improves their non-ranking-based DEs markedly, for example, the overall ranking of
rank-GaDE is 2, while GaDE only ranks 7.

http://sci2s.ugr.es/eamhco/SOCO-results.xls
http://sci2s.ugr.es/eamhco/SOCO-results.xls
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F DE CHC G-CMA-ES rank-DE rank-GODE rank-GaDE

F1 0.00E+00 1.36E−11 NA 0.00E+00 0.00E+00 0.00E+00

F2 8.46E+01 1.44E+02 NA 5.03E+01 4.79E+01 4.34E+01

F3 9.69E+02 8.75E+03 NA 9.27E+02 9.30E+02 8.76E+02

F4 1.44E+00 4.76E+03 NA 5.97E−01 7.56E−01 0.00E+00

F5 0.00E+00 7.02E−03 NA 0.00E+00 0.00E+00 0.00E+00

F6 3.29E−12 1.38E+01 NA 1.75E−13 1.86E−13 5.41E−14
F7 0.00E+00 3.52E−01 NA 0.00E+00 0.00E+00 0.00E+00

F8 2.46E+05 3.11E+05 NA 1.37E+05 0.00E+00 1.59E+04

F9 5.13E+03 6.11E+03 NA 2.26E−05 0.00E+00 1.80E−04

F10 0.00E+00 3.83E+02 NA 0.00E+00 0.00E+00 8.40E−02
F11 1.35E−03 4.82E+03 NA 2.29E−05 0.00E+00 1.73E−04

F12 1.68E−08 1.05E+03 NA 2.30E−11 1.57E−10 1.49E−10
F13 7.30E+02 6.66E+07 NA 7.06E+02 7.08E+02 6.80E+02

F14 6.90E−01 3.62E+03 NA 3.98E−01 3.98E−01 7.18E−12
F15 0.00E+00 8.37E+01 NA 0.00E+00 0.00E+00 0.00E+00

F16 4.18E−08 2.32E+03 NA 1.28E−10 8.00E−10 6.78E−10
F17 2.36E+02 2.04E+07 NA 2.11E+02 2.14E+02 1.80E+02

F18 2.37E−03 1.72E+03 NA 3.98E−02 3.98E−02 1.62E−08
F19 0.00E+00 4.20E+03 NA 0.00E+00 0.00E+00 0.00E+00

All the results below 1.00E−14 have been approximated to 0.

Table 12. Comparison of the mean error values among three baseline algorithms and
rank-DEs for functions F1–F19 at D = 1 000. “NA” means the results are not available.

Algorithm Ranking Ranking Ranking Ranking Ranking
(D = 50) (D = 100) (D = 200) (D = 500) (D = 1 000)

DE 3.5 3.5263 3.3158 3.2368 3.3421

CHC 5.5 5.5 5.6316 4.8947 4.8947

G-CMA-ES 4.5789 4.6579 4.4474 NA NA

rank-DE 2.6579 2.6579 2.6316 2.6053 2.3947

rank-GODE 2.3947 2.5263 2.5263 2.1316 2.3421

rank-GaDE 2.3684 2.1316 2.4474 2.0893 2.0263

Table 13. Average rankings obtained by each algorithm in the Friedman test. “NA”
means not available.

5 CONCLUSIONS

In this paper, we employ our proposed modified ranking-based mutation operators
to enhance the performance of differential evolution. In the ranking-based mutation
operators, the vectors in the mutation operators are selected according to their rank-
ings in the current population. Better solutions are more likely to be selected to be
the placing and leading vectors, while worse solutions have more chance to be chosen
as the correcting vector(s). In general, the proposed ranking-based vector technique



68 L. Guo, X. Li, W. Gong

Algorithm Ranking Ranking Ranking Ranking Ranking Average Overall
(D = 50) (D = 100) (D = 200) (D = 500) (D = 1 000)

SOUPDE 7.7632 8.2105 8.2632 8.0263 7.3684 7.9263 9

DE−D40+Mm 8.3947 8.5263 8.4737 7.8421 7.3158 8.1105 10

GODE 8.9211 8.9737 8.3947 8.3947 6.5789 8.2526 11

GaDE 7.6316 7.5000 6.7895 7.3158 NA 7.3092 7

jDElscop 5.9211 6.5789 6.2105 6.2632 6.5000 6.2947 3

SaDE−MMTS 6.6579 7.3421 7.3421 7.8421 7.1316 7.2632 6

MOS 5.6053 5.7632 5.0263 5.0000 4.5526 5.1895 1

MA-SSW-Chains 9.3684 10.1842 10.6579 12.0526 10.6053 10.5737 15

RPSO-vm 11.5526 10.9211 10.8684 10.3684 8.3684 10.4158 14

Tuned IPSOLS 9.6842 7.7105 7.7105 7.6053 6.5263 7.8474 8

EvoPROpt 15.1316 15.0000 14.8421 14.0000 12.8421 14.3632 16

EM323 10.1842 9.1053 9.1842 9.7895 NA 9.5658 12

VXQR1 10.3947 10.6316 11.0263 10.6842 8.9211 10.3316 13

rank-DE 6.5526 7.3158 7.5263 7.7105 6.5526 7.1316 5

rank-GODE 6.1842 6.4474 6.8421 6.6579 6.0000 6.4263 4

rank-GaDE 6.0526 5.7895 6.8421 6.4474 5.7368 6.1737 2

Table 14. Average rankings obtained by different algorithms in the Friedman test. “NA”
means not available.

is very simple, and it does not introduce any new parameters. In order to verify the
performance of our proposed ranking-based mutation operators, they are integrated
into the original DE, GODE, and GaDE; rank-DE, rank-GODE, and rank-GaDE
are evaluated on the large-scale continuous optimization problems presented in the
special issue of Soft Computing. Experimental results verify our expectation that
the ranking-based mutation operators are consistently able to enhance the perfor-
mance of DE, GODE, and GaDE. Regardless of the dimensionality, ranking-based
DEs achieve very promising results in the large-scale continuous optimization. Com-
pared with the three baseline algorithms, statistical results show that ranking-based
DEs still obtain better rankings.

The ranking-based mutation operators may also be useful in the constrained
optimization and multiobjective optimization. For example, the stochastic ranking
technique [24] and non-dominated sorting method [6] can be possibly used to rank
solutions in the constrained optimization and multiobjective optimization. In our
future, we will try to verify these expectations.

A APPENDIX

In this section, the detailed results of rank-DE, rank-GODE, and rank-GaDE are
reported in Tables 15–17, respectively. In each function, each algorithm is performed
over 25 independent runs. In Tables 15–17, the median value is highlighted in
boldface when it is better than or equal to the mean value in the same function.
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D F Best Median Worst Mean D F Best Median Worst Mean
50 F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 50 F11 6.17E−09 9.93E−09 1.77E−08 1.05E−08

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 6.25E−08 1.13E−07 1.75E−07 1.13E−07
200 0.00E+00 0.00E+00 0.00E+00 0.00E+00 200 6.75E−07 7.90E−07 9.43E−07 8.00E−07
500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 500 5.51E−06 6.25E−06 7.06E−06 6.22E−06

1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1 000 2.09E−05 2.26E−05 2.53E−05 2.29E−05
50 F2 5.21E−04 7.79E−04 1.40E−03 8.15E−04 50 F12 0.00E+00 0.00E+00 0.00E+00 0.00E+00

100 1.34E−01 1.69E−01 2.03E−01 1.69E−01 100 0.00E+00 0.00E+00 0.00E+00 0.00E+00
200 2.82E+00 3.24E+00 3.49E+00 3.22E+00 200 1.72E−14 2.47E−14 3.34E−14 2.38E−14
500 2.23E+01 2.36E+01 2.50E+01 2.35E+01 500 1.58E−12 2.49E−12 3.17E−12 2.43E−12

1 000 4.91E+01 5.02E+01 5.16E+01 5.03E+01 1 000 2.01E−11 2.27E−11 2.85E−11 2.30E−11
50 F3 1.77E−14 2.61E−11 3.99E+00 1.59E−01 50 F13 6.16E−08 3.85E−07 3.94E−01 4.98E−02

100 3.12E+01 3.38E+01 3.68E+01 3.39E+01 100 1.91E+01 2.52E+01 2.78E+01 2.49E+01
200 1.31E+02 1.35E+02 1.75E+02 1.36E+02 200 1.06E+02 1.07E+02 1.44E+02 1.09E+02
500 4.29E+02 4.32E+02 4.74E+02 4.35E+02 500 3.28E+02 3.31E+02 3.35E+02 3.31E+02

1 000 9.24E+02 9.27E+02 9.30E+02 9.27E+02 1 000 7.01E+02 7.02E+02 7.45E+02 7.06E+02
50 F4 0.00E+00 0.00E+00 9.95E−01 3.98E−02 50 F14 0.00E+00 2.36E−14 9.57E−14 3.35E−14

100 0.00E+00 0.00E+00 9.95E−01 1.19E−01 100 4.29E−12 7.30E−12 9.95E−01 3.98E−02
200 0.00E+00 0.00E+00 9.95E−01 1.59E−01 200 1.39E−10 3.43E−10 9.95E−01 1.19E−01
500 0.00E+00 0.00E+00 1.99E+00 4.38E−01 500 2.81E−09 4.15E−09 1.99E+00 3.18E−01

1 000 0.00E+00 0.00E+00 3.98E+00 5.97E−01 1 000 1.10E−08 1.38E−08 1.99E+00 3.98E−01
50 F5 0.00E+00 0.00E+00 1.48E−02 9.85E−04 50 F15 0.00E+00 0.00E+00 0.00E+00 0.00E+00

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 0.00E+00 0.00E+00 0.00E+00 0.00E+00
200 0.00E+00 0.00E+00 0.00E+00 0.00E+00 200 0.00E+00 0.00E+00 0.00E+00 0.00E+00
500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 500 0.00E+00 0.00E+00 0.00E+00 0.00E+00

1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 F6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 50 F16 0.00E+00 0.00E+00 0.00E+00 0.00E+00

100 1.11E−14 1.47E−14 1.47E−14 1.42E−14 100 9.08E−14 1.31E−13 2.27E−13 1.46E−13
200 2.89E−14 3.24E−14 3.24E−14 3.09E−14 200 1.38E−12 1.84E−12 2.49E−12 1.84E−12
500 7.86E−14 8.22E−14 8.57E−14 8.22E−14 500 2.23E−11 2.74E−11 3.06E−11 2.72E−11

1 000 1.75E−13 1.75E−13 1.82E−13 1.75E−13 1 000 1.12E−10 1.28E−10 1.40E−10 1.28E−10
50 F7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 50 F17 3.46E−07 1.07E−02 3.99E+00 2.21E−01

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 1.95E−05 7.81E−02 2.84E−01 1.03E−01
200 0.00E+00 0.00E+00 0.00E+00 0.00E+00 200 7.69E+00 1.16E+01 1.62E+01 1.13E+01
500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 500 8.50E+01 8.72E+01 8.90E+01 8.69E+01

1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1 000 2.10E+02 2.11E+02 2.16E+02 2.11E+02
50 F8 1.29E−03 3.45E−03 8.21E−03 3.45E−03 50 F18 5.53E−11 1.15E−10 1.79E−10 1.18E−10

100 8.89E+00 1.67E+01 3.01E+01 1.75E+01 100 1.84E−09 2.43E−09 5.00E−09 2.66E−09
200 8.92E+02 1.11E+03 1.44E+03 1.15E+03 200 2.50E−08 3.54E−08 9.95E−01 7.96E−02
500 2.30E+04 2.66E+04 3.21E+04 2.68E+04 500 3.15E−07 3.60E−07 9.95E−01 3.98E−02

1 000 1.27E+05 1.37E+05 1.46E+05 1.37E+05 1 000 1.28E−06 1.44E−06 9.95E−01 3.98E−02
50 F9 5.68E−09 9.27E−09 2.06E−08 9.91E−09 50 F19 0.00E+00 0.00E+00 0.00E+00 0.00E+00

100 7.35E−08 1.09E−07 1.40E−07 1.04E−07 100 0.00E+00 0.00E+00 0.00E+00 0.00E+00
200 6.13E−07 8.19E−07 9.60E−07 8.19E−07 200 0.00E+00 0.00E+00 0.00E+00 0.00E+00
500 5.04E−06 6.42E−06 7.55E−06 6.28E−06 500 0.00E+00 0.00E+00 0.00E+00 0.00E+00

1 000 2.05E−05 2.24E−05 2.66E−05 2.26E−05 1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 F10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 All the results below 1.00E−14 have been

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 approximated to 0.
200 0.00E+00 0.00E+00 0.00E+00 0.00E+00
500 0.00E+00 0.00E+00 0.00E+00 0.00E+00

1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Table 15. Experimental results of rank-DE for functions F1–F19 at D = 50, 100, 200,
500, and 1 000, where the median value is highlighted in boldface when it is better than
or equal to the mean value in the same function
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D F Best Median Worst Mean D F Best Median Worst Mean
50 F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 50 F11 2.29E−10 6.18E−10 1.48E−09 6.93E−10

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 8.30E−11 6.86E−10 1.58E−09 7.30E−10
200 0.00E+00 0.00E+00 0.00E+00 0.00E+00 200 1.53E−11 7.12E−11 5.04E−10 1.18E−10
500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 500 0.00E+00 1.46E−14 2.11E−13 3.72E−14

1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 F2 8.02E−04 1.31E−03 2.19E−03 1.33E−03 50 F12 0.00E+00 0.00E+00 0.00E+00 0.00E+00

100 1.72E−01 2.05E−01 2.57E−01 2.10E−01 100 0.00E+00 0.00E+00 0.00E+00 0.00E+00
200 2.93E+00 3.62E+00 3.94E+00 3.59E+00 200 1.21E−13 2.33E−13 3.28E−13 2.30E−13
500 2.23E+01 2.30E+01 2.42E+01 2.31E+01 500 1.42E−11 1.77E−11 2.46E−11 1.81E−11

1 000 4.68E+01 4.78E+01 4.96E+01 4.79E+01 1 000 1.37E−10 1.58E−10 1.79E−10 1.57E−10
50 F3 2.94E−13 7.41E−10 8.27E−09 1.87E−09 50 F13 1.23E−06 4.12E−06 3.48E−01 5.05E−02

100 3.28E+01 3.60E+01 8.42E+01 4.14E+01 100 2.49E+01 2.89E+01 3.31E+01 2.87E+01
200 1.34E+02 1.37E+02 1.82E+02 1.42E+02 200 1.07E+02 1.10E+02 1.49E+02 1.11E+02
500 4.32E+02 4.34E+02 4.38E+02 4.34E+02 500 3.31E+02 3.32E+02 3.72E+02 3.34E+02

1 000 9.28E+02 9.30E+02 9.32E+02 9.30E+02 1 000 7.02E+02 7.05E+02 7.41E+02 7.08E+02
50 F4 0.00E+00 0.00E+00 9.95E−01 3.98E−02 50 F14 1.03E−13 5.08E−13 1.34E−12 5.79E−13

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 2.28E−11 9.93E−11 9.95E−01 3.98E−02
200 0.00E+00 0.00E+00 9.95E−01 3.98E−02 200 1.18E−09 2.67E−09 1.99E+00 1.59E−01
500 0.00E+00 0.00E+00 1.99E+00 2.39E−01 500 1.92E−08 2.68E−08 9.95E−01 2.79E−01

1 000 2.38E−13 9.95E−01 2.98E+00 7.56E−01 1 000 7.16E−08 9.30E−08 1.99E+00 3.98E−01
50 F5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 50 F15 0.00E+00 0.00E+00 0.00E+00 0.00E+00

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 0.00E+00 0.00E+00 0.00E+00 0.00E+00
200 0.00E+00 0.00E+00 0.00E+00 0.00E+00 200 0.00E+00 0.00E+00 0.00E+00 0.00E+00
500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 500 0.00E+00 0.00E+00 0.00E+00 0.00E+00

1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 F6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 50 F16 2.45E−14 4.99E−14 1.36E−13 5.35E−14

100 1.47E−14 1.47E−14 1.82E−14 1.48E−14 100 6.95E−13 1.21E−12 1.76E−12 1.24E−12
200 2.89E−14 3.24E−14 3.60E−14 3.24E−14 200 8.54E−12 1.36E−11 1.72E−11 1.35E−11
500 8.57E−14 8.93E−14 9.28E−14 8.88E−14 500 1.44E−10 1.75E−10 1.95E−10 1.72E−10

1 000 1.82E−13 1.85E−13 1.92E−13 1.86E−13 1 000 7.25E−10 8.02E−10 8.98E−10 8.00E−10
50 F7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 50 F17 4.39E−07 6.60E−06 2.36E−01 3.96E−02

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 1.66E−05 6.28E−02 2.50E−01 8.98E−02
200 0.00E+00 0.00E+00 0.00E+00 0.00E+00 200 9.17E+00 1.30E+01 1.45E+01 1.26E+01
500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 500 8.54E+01 8.88E+01 9.03E+01 8.84E+01

1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1 000 2.11E+02 2.14E+02 2.16E+02 2.14E+02
50 F8 1.38E−10 8.45E−09 3.13E−07 4.42E−08 50 F18 2.93E−10 6.11E−10 1.08E−09 6.30E−10

100 9.28E−09 2.84E−07 7.14E−05 8.50E−06 100 7.10E−09 1.25E−08 2.45E−08 1.30E−08
200 1.03E−11 5.35E−08 1.42E−05 9.33E−07 200 9.94E−08 1.36E−07 9.95E−01 3.98E−02
500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 500 1.16E−06 1.47E−06 1.79E−06 1.49E−06

1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1 000 4.39E−06 5.13E−06 9.95E−01 3.98E−02
50 F9 1.47E−10 3.64E−10 1.13E−09 4.39E−10 50 F19 0.00E+00 0.00E+00 0.00E+00 0.00E+00

100 1.87E−10 6.01E−10 2.68E−09 7.32E−10 100 0.00E+00 0.00E+00 0.00E+00 0.00E+00
200 7.27E−12 7.92E−11 3.24E−10 9.66E−11 200 0.00E+00 0.00E+00 0.00E+00 0.00E+00
500 4.14E−15 2.19E−14 2.06E−13 4.20E−14 500 0.00E+00 0.00E+00 0.00E+00 0.00E+00

1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 F10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 All the results below 1.00E−14 have been

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 approximated to 0.
200 0.00E+00 0.00E+00 0.00E+00 0.00E+00
500 0.00E+00 0.00E+00 0.00E+00 0.00E+00

1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Table 16. Experimental results of rank-GODE for functions F1–F19 at D = 50, 100, 200,
500, and 1 000, where the median value is highlighted in boldface when it is better than
or equal to the mean value in the same function
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D F Best Median Worst Mean D F Best Median Worst Mean
50 F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 50 F11 0.00E+00 0.00E+00 0.00E+00 0.00E+00

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 0.00E+00 0.00E+00 0.00E+00 0.00E+00
200 0.00E+00 0.00E+00 0.00E+00 0.00E+00 200 0.00E+00 4.33E−07 1.15E−05 2.21E−06
500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 500 2.64E−05 3.57E−05 7.15E−05 4.04E−05

1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1 000 1.05E−04 1.71E−04 2.59E−04 1.73E−04
50 F2 9.10E−01 2.49E+00 7.88E+00 2.69E+00 50 F12 0.00E+00 0.00E+00 0.00E+00 0.00E+00

100 3.59E−01 3.65E+00 1.79E+01 4.74E+00 100 0.00E+00 0.00E+00 0.00E+00 0.00E+00
200 1.84E+01 2.64E+01 3.80E+01 2.86E+01 200 0.00E+00 0.00E+00 2.59E−14 0.00E+00
500 2.89E+01 4.86E+01 6.32E+01 4.69E+01 500 3.01E−12 6.40E−12 1.78E−11 7.04E−12

1 000 2.85E+01 4.48E+01 6.03E+01 4.34E+01 1 000 8.11E−11 1.40E−10 2.51E−10 1.49E−10
50 F3 0.00E+00 0.00E+00 6.32E−11 3.24E−12 50 F13 4.10E−02 2.94E−01 4.32E+00 6.24E−01

100 5.04E−10 1.04E−01 1.21E+01 2.22E+00 100 1.73E−01 8.50E−01 2.26E+00 8.96E−01
200 4.80E+01 8.57E+01 1.39E+02 9.03E+01 200 6.02E+01 6.59E+01 1.13E+02 7.63E+01
500 3.38E+02 3.79E+02 4.11E+02 3.80E+02 500 2.89E+02 3.06E+02 3.30E+02 3.07E+02

1 000 7.95E+02 8.71E+02 9.67E+02 8.76E+02 1 000 6.22E+02 6.78E+02 7.40E+02 6.80E+02
50 F4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 50 F14 0.00E+00 0.00E+00 0.00E+00 0.00E+00

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 0.00E+00 0.00E+00 0.00E+00 0.00E+00
200 0.00E+00 0.00E+00 0.00E+00 0.00E+00 200 5.32E−14 1.98E−13 6.29E−13 2.17E−13
500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 500 4.13E−12 8.06E−12 1.25E−11 8.42E−12

1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1 000 4.05E−12 7.24E−12 1.02E−11 7.18E−12
50 F5 0.00E+00 0.00E+00 7.40E−03 8.88E−04 50 F15 0.00E+00 0.00E+00 0.00E+00 0.00E+00

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 0.00E+00 0.00E+00 0.00E+00 0.00E+00
200 0.00E+00 0.00E+00 1.48E−02 5.91E−04 200 0.00E+00 0.00E+00 0.00E+00 0.00E+00
500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 500 0.00E+00 0.00E+00 0.00E+00 0.00E+00

1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 F6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 50 F16 0.00E+00 0.00E+00 5.48E−14 0.00E+00

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 1.16E−13 3.37E−13 1.12E−12 4.21E−13
200 0.00E+00 0.00E+00 0.00E+00 0.00E+00 200 2.98E−12 5.54E−12 1.25E−11 5.96E−12
500 2.84E−14 3.20E−14 6.75E−14 3.44E−14 500 7.88E−11 1.42E−10 1.92E−10 1.38E−10

1 000 4.26E−14 4.97E−14 1.28E−13 5.41E−14 1 000 4.13E−10 6.66E−10 1.00E−09 6.78E−10
50 F7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 50 F17 8.12E−08 2.35E−01 4.71E−01 2.49E−01

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 2.82E−01 6.94E−01 1.53E+00 7.19E−01
200 0.00E+00 0.00E+00 0.00E+00 0.00E+00 200 3.85E−01 7.39E−01 1.10E+00 7.54E−01
500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 500 4.44E+01 5.20E+01 5.96E+01 5.24E+01

1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1 000 1.73E+02 1.80E+02 1.85E+02 1.80E+02
50 F8 0.00E+00 0.00E+00 5.48E−14 0.00E+00 50 F18 5.10E−11 1.76E−10 5.92E−10 2.40E−10

100 3.89E−07 2.41E−06 9.87E−06 3.34E−06 100 9.64E−10 2.41E−09 5.62E−09 2.47E−09
200 1.58E−01 5.69E−01 3.68E+00 6.94E−01 200 1.74E−08 1.99E−08 7.88E−08 2.39E−08
500 7.36E+02 1.21E+03 2.04E+03 1.32E+03 500 2.05E−10 3.83E−10 5.98E−10 3.99E−10

1 000 1.33E+04 1.55E+04 1.93E+04 1.59E+04 1 000 1.17E−08 1.51E−08 2.11E−08 1.62E−08
50 F9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 50 F19 0.00E+00 0.00E+00 0.00E+00 0.00E+00

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 0.00E+00 0.00E+00 0.00E+00 0.00E+00
200 0.00E+00 0.00E+00 5.27E−06 7.09E−07 200 0.00E+00 0.00E+00 0.00E+00 0.00E+00
500 1.97E−05 4.39E−05 7.60E−05 4.44E−05 500 0.00E+00 0.00E+00 0.00E+00 0.00E+00

1 000 9.73E−05 1.60E−04 4.11E−04 1.80E−04 1 000 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 F10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 All the results below 1.00E−14 have been

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 approximated to 0.
200 0.00E+00 0.00E+00 0.00E+00 1.05E+00
500 0.00E+00 0.00E+00 1.05E+00 1.26E−01

1 000 0.00E+00 0.00E+00 1.05E+00 8.40E−02

Table 17. Experimental results of rank-GaDE for functions F1–F19 at D = 50, 100, 200,
500, and 1 000, where the median value is highlighted in boldface when it is better than
or equal to the mean value in the same function
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From the results it is clear to see that in the majority of the cases the median values
are much better than or equal to the corresponding mean values. For example, for
rank-GODE there are 85 out of 95 cases where the median values are much better
than or equal to the corresponding mean values. The results show that the ranking-
based DEs sometimes occasionally converge to the local optima in some functions.
But, in general, our proposed ranking-based DEs are able to obtain good solutions
within the specified Max NFFEs.
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