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Abstract. Recently feature extraction methods have commonly been used as a prin-
cipled approach to understand the intrinsic structure hidden in high-dimensional
data. In this paper, a novel supervised learning method, called Supervised Spar-
sity Preserving Projections (SSPP), is proposed. SSPP attempts to preserve the
sparse representation structure of the data when identifying an efficient discrimi-
nant subspace. First, SSPP creates a concatenated dictionary by class-wise PCA
decompositions and learns the sparse representation structure of each sample under
the constructed dictionary using the least squares method. Second, by maximizing
the ratio of non-local scatter to local scatter, a Laplacian discriminant function is
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defined to characterize the separability of the samples in the different sub-manifolds.
Then, to achieve improved recognition results, SSPP integrates the learned sparse
representation structure as a regular term into the Laplacian discriminant function.
Finally, the proposed method is converted into a generalized eigenvalue problem.
The extensive and promising experimental results on several popular face databases
validate the feasibility and effectiveness of the proposed approach.

Keywords: Feature extraction, sparse representation, manifold learning, Laplacian
discriminant function
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1 INTRODUCTION

In many application domains, such as speech recognition [1, 2], protein function
prediction [3, 4], and time series analysis [5, 6], data are typically provided in a high-
dimensional form because of which they are difficult to describe, interpret, and
classify. In practice, feature extraction has become a widely used approach to handle
the aforementioned problem [7, 8]. Thus far, a variety of feature extraction methods
have been designed. Based on the data structure these methods utilize they are
divided into three categories: global structure-based methods, local neighborhood-
based methods, and sparse representation-based methods.

Principal Component Analysis (PCA) [9], Linear Discriminant Analysis
(LDA) [10], and their kernelized versions are typical global structure-based meth-
ods [11, 12]. Owing to its simplicity and effectiveness, PCA, which aims to maximize
the variance of the projected data, has extensive applications in the fields of science
and engineering. Although PCA is an effective feature extraction method, it does
not employ the label information of the samples, and this leads to an inefficient
classification. Unlike PCA, LDA is a supervised method that attempts to identify
an optimal projection by maximizing the between-class scatter while minimizing the
within-class scatter. Because the label information is fully exploited in LDA, it has
been proven more efficient than PCA with regards to classification [13]. However,
LDA is limited in that it can extract K − 1 features at best (K is the number
of categories), what is unacceptable in many situations. Furthermore, LDA of-
ten encounters the small sample size (SSS) problem when high-dimensional data
are involved. Baudat et al. proposed the Regularized LDA to address these prob-
lem [14, 15]; however, all the methods mentioned above are based on the hypothesis
that samples from each class lie on a linear subspace [16, 17], and thus neither of
them can identify the local sub-manifold structure hidden in high-dimensional data.

Recently, manifold learning methods, which are especially useful for the anal-
ysis of the data that lie on a sub-manifold of the original space, have been pro-
posed [18, 19, 20, 21, 22]. Representative manifold learning methods include Lapla-
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cian Eigenmaps (LE) [19], Locally Linear Embedding (LLE) [20], Locality Preserving
Projections (LPP) [21], and Neighborhood Preserving Embedding (NPE) [22]. All
of the above manifold learning methods can determine the optimal feature subspace
by solving an optimization problem based on the weight graph question; however,
all of them consider only the local structure of the data, ignoring the non-local prop-
erty of the samples: they do not consider the projected relationship of two distant
samples in the original space. Furthermore, they are not supervised and do not
utilize the label information when training data.

Sparse representation, a new state-of-the-art technique for signal representation,
has been successfully applied to object identification [23, 24, 25, 26], medical im-
age segmentation [27, 28, 29], visual tracking [30, 31], and image super-resolution
reconstruction [32, 33, 34]. It models a signal as a sparse linear combination of
the elementary signals from a dictionary and attempts to preserve the sparse repre-
sentation structure of the samples in a low-dimensional embedding subspace. The
representative feature extraction algorithms based on sparse representation include
Sparsity Preserving Projections (SPP) [35], Sparsity Regularization Discriminant
Analysis (SRDA) [36], Sparse Tensor Discriminant Analysis (STDA) [37], and Sparse
Nonnegative Matrix Factorization [38]. It is noteworthy that a sparse model also
depends on the subspace assumption that each sample can be linearly expressed by
other samples from the same class, i.e., each sample can be sparsely recovered by
samples from all classes. In general, these sparse learning algorithms provide a supe-
rior recognition accuracy compared with the conditional methods. However, all the
feature extraction methods based on sparse coding mentioned earlier must solve the
`1-norm minimization problem to construct the sparse weight matrix. Therefore,
they are computationally prohibitive for large-scale problems. For example, SPP
attempts to preserve the sparse reconstructive relationship of the data [35], which is
an effective and powerful technique for feature extraction. However, the computa-
tional complexity of SPP is excessively high; hence it cannot be used extensively for
large-scale data processing (in fact, the time cost for constructing the sparse weight
graph is O(n4), where n indicates the total number of training samples). Moreover,
SPP does not utilize the label information. Thus, the algorithm is unsupervised.
Recently, Lu et al. and Zang et al. proposed Discriminant Sparsity Neighborhood
Preserving Embedding (DSNPE) [39] and Discriminative Learning by Sparse Rep-
resentation Projections (DLSP) [40], respectively, to improve the classification per-
formance of SPP and applied them to face recognition. Experimental results show
that DSNPE and DLSP are more suitable for recognition tasks than SPP. However,
DSNPE and DLSP also require resolving the time-consuming `1-norm minimization
problems to obtain the sparse weight graph; consequently, the computational costs
of learning the sparse representation structure for DSNPE and DLSP are still very
high.

Motivated by the above works, a novel supervised learning method, called Su-
pervised Sparsity Preserving Projections (SSPP), is proposed in this paper. By
integrating SPP with local discriminant information for dimensionality reduction,
SSPP can be regarded as a combination of sparse representation and manifold learn-
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ing. More specifically, SSPP first creates a concatenated dictionary using class-wise
PCA decompositions and learns the sparse representation structure of each sam-
ple under the constructed dictionary using the least squares method. Then, by
maximizing the ratio of non-local scatter to local scatter, a Laplacian discriminant
function is defined to characterize the separability of the samples in the different
sub-manifolds. Subsequently, by integrating the sparse representation information as
a regular term into the Laplacian discriminant function, SSPP attempts to preserve
the sparse representation structure of the data and maximize the the separability of
the different manifolds simultaneously. Finally, the proposed method is transformed
into a generalized eigenvalue problem.

It is worth emphasizing some merits of SSPP and the main contributions of this
paper:

1. SSPP is a supervised feature extraction method that aims to identify a discrim-
inating subspace where the sparse representation structure of the data and the
label information are maintained. Meanwhile, the separability of different sub-
manifolds is maximized and the separability of each sub-manifold is minimized;
consequently, samples belonging to different classes can be distinguished more
clearly.

2. The time required for extracting discriminant vectors in SSPP is significantly
less than that in the SPP algorithm. Therefore, the proposed method can be
applied to solve large-scale problems more time-efficiently.

3. Label information is employed twice in SSPP. First, it is adopted to construct
the dictionary for sparse representation and to calculate the sparse coefficient
vector, which may contribute to a more discriminating sparse representation
structure. Second, it is utilized in computing the local scatter and non-local
scatter, which is more conducive for classification.

4. The small sample size problem is effectively avoided in SSPP because the sin-
gular problem of the local scatter matrix is circumvented owing to the sparse
representation and the Tikhonov [41] regularized term in the SSPP formulation.

The rest of this paper is organized as follows: Section 2 briefly reviews the
existing SPP algorithm. The SSPP algorithm is introduced in detail in Section 3.
The experimental results and analysis are presented in Section 4 and lastly, the
concluding remarks are given in Section 5.

2 BRIEF REVIEW OF SPARSITY PRESERVING
PROJECTIONS (SPP)

SPP aims to preserve the sparse reconstruction relationship of the samples [35].
Given a set of training samples {xi}ni=1 where xi ∈ Rm and n is the number of
training samples. Let X = [x1,x2, . . . ,xn] ∈ Rm×n be the data matrix consist-
ing of all the training samples. SPP first seeks the sparse reconstruction coefficient
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vector si for each sample xi through the following modified `1-minimization prob-
lem:

min
si
‖si‖1, s.t.xi=Xsi, 1=1Tsi (1)

where si = [si1, . . . , si,i−1, 0, si,i+1, . . . , si,n]T is a n-dimensional column vector in
which the ith element is equal to zero, implying the xi is removed from X, and the
element sij, j 6= i denotes the contribution of xj for reconstructing xi. Then, the
sparse reconstructive weight matrix S is given as follows:

S = [s1, s2, . . . , sn] (2)

where si is the optimal solution of Equation (1). The final optimal projection vector
w is obtained through the following maximization problem:

max
w

wTXSβX
Tw

wTXXTw
, (3)

with Sβ = S + ST − STS. This problem transforms to a generalized eigenvalue
problem.

It follows that SPP need resolve n time-consuming `1-norm minimization prob-
lems to obtain the sparse weight matrix S. Thus, the computational complexity of
SPP is excessively high and therefore not widely applicable to large-scale data pro-
cessing. Moreover, SPP does not exploit the prior knowledge of class information,
which is valuable for classification and recognition problems such as face recognition.

3 SUPERVISED SPARSITY PRESERVING PROJECTIONS

In order to minimize the disadvantage caused in the case of SPP because of the
requirement of resolving n time-consuming `1-norm minimization problems to ob-
tain the sparse weight matrix S, SSPP first constructs a concatenated dictionary
through class-wise PCA decompositions and learns the sparse representation struc-
ture of each sample under the constructed dictionary quickly using the least squares
method. To enhance the classification performance, it defines a non-local scatter ma-
trix and local scatter matrix to characterize the separability of the samples in the
sub-manifolds and then constructs a Laplacian discriminant function by maximiz-
ing the ratio of non-local scatter to local scatter. Subsequently, by integrating the
sparse representation information into the Laplacian discriminant function, SSPP
aims to maximize the separation between the sub-manifolds (or intrinsic clusters)
without destroying localities while preserving the sparse representation structure
of the data. Hence, the proposed algorithm is expected to not only preserve the
intrinsic geometry structure, but also to have superior discriminant abilities.
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3.1 Constructing the Concatenated Dictionary

For convenience, we first provide some notations used in this paper. Assume that
X = {x1,x2, . . . ,xn} is a set of training samples, where xi ∈ Rm. We can categorize
the training samples as X = [X1,X2, . . . ,XK ], where Xi = [xi1,xi2, . . . ,xini

] ∈
Rm×ni(i = 1, 2, . . . , K) consists of samples from class i. Suppose that samples from
a single class lie on a linear subspace. Thus, each sample can be sparse linearly
represented by samples from all classes [36]. The subspace model is a powerful tool
to capture the underlying information in real data sets [42, 43]. For the convenience
of PCA decomposition and relevant calculations, we first center the samples from
each class at the origin, X̃i = [xi1−µi,xi2−µi, . . . ,xini

−µi] (i = 1, 2, . . . , K), where
µi denotes the mean of class i; that is, µi =

∑ni
i=1 xi/ni. Therefore, the training

sample can be recast as X̃ = [X̃1, X̃2, . . . , X̃K ]. Afterwards, PCA decomposition is
conducted for every X̃i(i = 1, 2, . . . , K), whose objective function is:

max
‖d‖=1

dT
∑
i

d (4)

where
∑
i is the sample covariance matrix of X̃i. For every class i, the first li

principal components are selected to construct Di = [d1,d2, . . . ,dli ] (in fact, li is
automatically selected by the value of the PCA ratio from the system). Thus,
a sample x from class i can be simply represented as:

x = Dis̃i = [D1,D2, . . . ,Di−1,Di,Di+1, . . . ,DK ]s = Ds, (5)

with D = [D1,D2, . . . ,DK ] and s = [0T ,0T , . . . ,0T , s̃Ti ,0
T , . . . ,0T ]T . Di is the

dictionary of class i by the PCA decomposition above, D is the concatenated dictio-
nary composed of all Di(i = 1, 2, . . . , K). s is the sparse representation of a sample
x under the concatenated dictionary D and s̃i is the coefficient vector under the
dictionary Di. In fact, s̃i can be quickly computed from the least square method
as:

s̃i = (Di
TDi)

−1Di
Tx = Di

Tx. (6)

The orthogonality of each principal component of PCA decomposition of the
same class is utilized in the reduction of the above formula. The process of con-
structing the concatenated dictionary is presented in Figure 1.

According to the preceding procedure, each training sample corresponds to
a sparse representation under the concatenated dictionary D and the sparse coeffi-
cient vector s of any training sample from class i can be quickly computed from the
least squares method (in fact, it is the primary reason that the proposed approach
is significantly faster than SPP, which will be explained in detail in Section 4.4) be-
cause the computational process of s involves only Di, which is column orthogonal
in view of Equations (5) and (6).
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Figure 1. The process of constructing the concatenated dictionary

3.2 Preserving Sparse Representation Structure

As can be seen in Section 3.1, to some extent, the dictionaryD describes the intrinsic
geometric properties of the data and the sparse coefficient vectors explicitly encode
the discriminant information of the training samples. Thus, it is hoped that this
valued property in the original high-dimensional space can be preserved in the low-
dimensional embedding subspace. Therefore, the objective function is expected
to look for an optimal projection that can best preserve the sparse representation
structure:

Js(w) = min
w

n∑
i=1

∥∥∥wTxi −wTDsi
∥∥∥2

2
(7)

where si is the sparse reconstruction vector corresponding to xi.
Using algebraic operations, Equation (7) can be arranged as:

n∑
i=1

∥∥∥wTxi −wTDsi
∥∥∥2

2
= wT

(
n∑
i=1

(xi −Dsi)(xi −Dsi)T
)
w

= wT

(
n∑
i=1

xixi
T − xisiTDT −DsixiT +Dsi(Dsi)

T

)
w

= wT
(
XXT −XSTDT −DSXT +DSSTDT

)
w (8)

where S = [s1, s2, . . . , sn] and therefore, Equation (7) can be simply recast as:

Js(w) = min
w
wT

(
XXT −XSTDT −DSXT +DSSTDT

)
w. (9)

3.3 Characterization of the Laplacian Discriminant Function

To effectively discover the discriminant structure embedded in high-dimensional data
and improve the classification performance, we construct a Laplacian discriminant
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function. Because data belonging to the same class lie on one or more sub-manifolds
and data belonging to different classes are distributed on different sub-manifolds,
it is important for classification problems to distinguish one sub-manifold from an-
other. Therefore, a non-local scatter matrix and a local scatter matrix are defined
to characterize the separability of the samples in the sub-manifolds. The aim of
SSPP is to distinguish between different sub-manifolds more clearly after they are
projected; hence, the non-local scatter of different sub-manifolds should be maxi-
mized and the local scatter of the data belonging to the same manifold should be
minimized simultaneously. Thus, we can construct the similarity matrix Ω = [Ωij]
and diversity matrix B = [Bij], to describe the local and non-local relationships,
respectively of each point as follows:

Ωij =


exp

(
−‖xi−xj‖22

σ

)
, if both xi and xj are k nearest neighbors

each other and have the same label;

0, otherwise,

(10)

Bij =


1− exp

(
−‖xi−xj‖22

σ

)
, if both xi and xj are k nearest neighbors

each other and have different labels;

0, otherwise

(11)

where ‖xi − xj‖2
2 denotes the geodesic distance between points xi and xj, σ is

a parameter, which is often set as the standard deviation value of the samples.
As it is evident in the above definition, if two close points xi and xj belong to
the same manifold, the similarity between them is considerable and in contrast,
if two distant points xi and xj belong to different sub-manifolds, the diversity
between them is considerable. In summary, the points belonging to the same
sub-manifold should be located closer while the points belonging to different sub-
manifolds should be farther apart after projection. Therefore, the local scatter and
non-local scatter (or separability) can be characterized by Equations (12) and (13),
respectively:

Jl(w) =
1

2nn

∑
i

∑
j

‖yi − yj‖2
2 Ωij, (12)

Jn(w) =
1

2nn

∑
i

∑
j

‖yi − yj‖2
2Bij (13)

where yi = wTxi (i = 1, 2, . . . , n) is the low-dimensional representation of the
original data, which can be obtained by projecting each xi onto the direction
vector w ∈ Rm. With algebraic simplifications, Equation (12) can be rewritten
as:
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Jl =
1

2nn

n∑
i,j

Ωij ‖yi − yj‖2
2

=
1

2nn
wT

 n∑
i,j

Ωij(xi − xj)T (xi − xj)

w
=

1

nn
wT

1

2

n∑
i=1

n∑
j=1

Ωij(xi − xj)T (xi − xj)

w
=

1

nn
wT

1

2

 n∑
i=1

n∑
j=1

Ωijxixi
T − 2

n∑
i=1

n∑
j=1

Ωijxixj
T +

n∑
i=1

n∑
j=1

Ωijxjxj
T

w
=

1

nn
wT

 n∑
i=1

D′
iixixi

T −
n∑
i=1

n∑
j=1

Ωijxixj
T

w
=

1

nn
wT

(
X(D′ −Ω)XT

)
w

=
1

nn
wTXLΩX

Tw (14)

where LΩ is the intra-class Laplacian matrix with definition LΩ = D′ − Ω and
D′ is a diagonal matrix [44], i.e., D′

ii =
∑
j Ωij. Equation (14) characterizes the

separability of the data set in the same sub-manifold. Similarly, the non-local scatter
(or separability) can be expressed as:

Jn =
1

2nn

n∑
i,j

Bij ‖yi − yj‖2
2 (15)

=
1

nn
wT

(
X(D′′ −B)XT

)
w (16)

=
1

nn
wTXLBX

Tw (17)

where LB is the inter-class Laplacian matrix with definition LB = D′′−B andD′′ is
a diagonal matrix, i.e., D′′

ii =
∑
j Bij. Equation (17) characterizes the diversity (or

scatter) of the data set in the different sub-manifolds. Therefore, each manifold can
be separated clearly, as long as the optimal projection w∗ is adopted. To ensure that
the projected samples of different sub-manifolds remain distant from each other while
samples from the same sub-manifold remain close, we can construct the Laplacian
discriminant function as follows:

max
w

J(w) =
Jn(w)

Jl(w)
=
wTXLBX

Tw

wTXLΩXTw
. (18)
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3.4 Algorithm of Supervised Sparsity Preserving Projections

To achieve improved recognition results, we explicitly integrate the sparsity preserv-
ing constraint as indicated in Equation (7) into the Laplacian discriminant function,
as illustrated in Equation (18). According to Section 3.2, minimizing the sparsity
preserving regular term can preserve the intrinsic sparse structure; therefore, the
novel supervised algorithm SSPP, which not only identifies an efficient discriminat-
ing subspace but also preserves the sparse representation structure, is defined as:

max
w

Jn(w)

Jl(w) + λ1wTw + λ2Js(w)
(19)

where λ1 and λ2 are two parameters that control the tradeoff among the three terms
in the denominator; Jn(w) and Jl(w) are the non-local scatter and local scatter in
Section 3.3, respectively; Js(w) is the sparsity preserving term in Section 3.2. To
avoid the small sample size problem, the Tikhonov regular term wTw is employed.
Substituting Equation (8) into (19) and making some simple algebraic manipula-
tions, we obtain

Jn(w)

Jl(w) + λ1wTw + λ2Js(w)

=
wTXLBX

Tw

wTXLΩXTw + λ1wTw + λ2wT (XXT −XSTDT −DSXT +DSSTDT )w

=
wTXLBX

Tw

wT (XLΩXT + λ1I + λ2M)w
(20)

where M = XXT −XSTDT −DSXT +DSSTDT and I is an identity matrix.
In fact, M corresponds to the sparsity preserving regular term and I is associated
with the Tikhonov regular term. Therefore, it can be deduced that the projecting
matrixW = [w1,w2, . . . ,wd] is composed of eigenvectors associated with the largest
d eigenvalues of the following generalized eigenvalue problem:

XLBX
Tw = η(XLΩX

T + λ1I + λ2M )w. (21)

Based on the above discussion, the proposed SSPP is summarized in Algorithm 1.

4 EXPERIMENTS

In this section, the proposed SSPP algorithm is tested on three publicly available face
databases (Yale [13], ORL [45], and Extended Yale B [46]) and compared with seven
popular dimensionality reduction methods—PCA, LDA, LPP, NPE, SPP, DLSP,
and DSNPE. Furthermore, for PCA, the only model parameter is the subspace
dimension and for LDA, the performance is directly influenced by the energy of the
eigenvalues kept in the PCA preprocessing phase. For LPP and NPE, the supervised



Supervised Sparsity Preserving Projections for Face Recognition 825

Algorithm 1 Supervised Sparsity Preserving Projections (SSPP)

Step 1: Execute PCA decomposition for each Xi(i = 1, 2, . . . ,K) using Equation (4) to
obtain the concatenated dictionary D;

Step 2: Calculate the coefficient vector s̃i under the dictionary Di for each sample based
on Equation (6) to obtain the sparse coefficient vector s and then calculate S;

Step 3: Calculate LΩ and LB by Equations (14) and (15), respectively;

Step 4: Calculate the projecting vectors by the generalized eigenvalue problem in Equa-
tion (19).

versions are adopted. In particular, the neighbor mode in LPP and NPE is set to be
“supervised”; the weight mode in LPP is set to be “Cosine”. ε in SPP is set to be
0.05 as indicated in [35] and µ in DSNPE is empirically set to be 10 as shown in [39].
The trade-off parameter α in DLSP is set to be 0.01 as indicated in [40]. σ in SSPP
is set as the standard deviation value of the samples and the trade-off parameters
(λ1, λ2) are set to be (0.94, 0.25), (0.72, 0.36), and (0.90, 0.20) for Yale, ORL, and
Extended Yale B, respectively, by the tenfold cross-validation where λ1 and λ2 are
selected from {0.01, 0.02, . . . , 0.99}. Since the dimensionality of the face vector space
is considerably larger than the number of training samples, LPP, NPE, SPP, DLSP,
and DSNPE all include a PCA preprocessing phase; that is, projecting the training
set X onto a PCA subspace spanned by the leading eigenvectors. For Yale and ORL,
which are relatively small databases, 100 % energy is kept in the PCA preprocessing
phase; for Extended Yale B, which are relatively large-scale databases, to obtain the
experimental results in a reasonable time, 98 % energy is maintained in the PCA
preprocessing phase. The nearest neighbor classifier (1−NN) is employed to predict
the classes of the test data. All experiments are accomplished with Matlab R2013a
on a personal computer with Intel R© CoreTM i7-4770K 3.50 GHz CPU, 16.0 GB main
memory, and the Windows 7 operating system.

4.1 Experiment on Yale Face Database

The Yale face database contains 165 face images of 15 individuals. There are 11 im-
ages per individual. These images were collected under different facial expressions
(normal, happy, sad, surprised, sleepy, and winky); configurations (left-right, center-
light, and right-light); and with or without glasses. All the images are cropped to
a size of 32 × 32 and then normalized to have a unit norm. Samples from this
database are presented in Figure 2. For each person, k (k varies from 2 to 8) images
are randomly selected as the training samples and the remaining 11−k for the test.
For each k, the results are averaged over 50 random splits. Table 1 presents the
best recognition rate and the associated standard deviation of the eight algorithms
under the different sizes of the training set. Figure 3 a) presents the best recog-
nition rate versus the variation of the size of the training set. Figure 3 b) shows
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the variation rules of the recognition rates of the eight algorithms under different
reduced dimensions when the size of the training samples from each class is fixed as
six. It deserves to be noted that the upper bound for the dimensionality of LDA is
K − 1 (K is the number of categories) because there are at most K − 1 generalized
non-zero eigenvalues [13]; similar situations will occur in other experiments in this
paper. Figures 3 c) and 3 d) describe the relationship of the classification accuracy
versus the trade-off parameters λ1 and λ2 corresponding to Figure 3 b). Hence, one
can see that the SSPP algorithm significantly outperforms the other methods and
it is robust to the parameters λ1 and λ2; that is to say, SSPP is not sensitive to the
facial expression and configuration changes.

Figure 2. Some face samples from the Yale database

Method k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
SSPP 0.7376 (±0.027) 0.8356 (±0.031) 0.9335 (±0.029) 0.9669 (±0.026) 0.9827 (±0.033) 0.9899 (±0.035) 0.9976 (±0.029)
DSNPE 0.6072 (±0.033) 0.7035 (±0.029) 0.7763 (±0.037) 0.8256 (±0.035) 0.8485 (±0.033) 0.8715 (±0.031) 0.8927 (±0.028)
DLSP 0.6823 (±0.022) 0.7769 (±0.018) 0.8381 (±0.021) 0.8838 (±0.026) 0.9125 (±0.022) 0.9297 (±0.025) 0.9458 (±0.021)
PCA 0.4389 (±0.027) 0.4895 (±0.035) 0.5514 (±0.037) 0.5838 (±0.048) 0.6241 (±0.038) 0.6561 (±0.043) 0.6727 (±0.046)
LDA 0.5354 (±0.061) 0.6486 (±0.052) 0.7222 (±0.036) 0.7792 (±0.047) 0.8132 (±0.037) 0.8375 (±0.040) 0.8613 (±0.044)
LPP 0.5783 (±0.041) 0.6814 (±0.044) 0.7469 (±0.036) 0.8025 (±0.035) 0.8139 (±0.027) 0.8244 (±0.014) 0.8392 (±0.018)
NPE 0.5635 (±0.025) 0.6811 (±0.019) 0.7455 (±0.027) 0.7593 (±0.023) 0.8112 (±0.017) 0.8284 (±0.025) 0.8463 (±0.023)
SPP 0.5202 (±0.038) 0.6425 (±0.027) 0.7098 (±0.033) 0.7471 (±0.033) 0.7653 (±0.026) 0.7827 (±0.032) 0.8037 (±0.035)

Table 1. The best recognition rate and the corresponding standard deviation of the eight
algorithms under the different size of the training set on Yale (k is the training sample
size)

4.2 Experiment on ORL Face Database

There are 400 images of 40 people in the ORL face data set, where each one has
10 different pictures. The images were collected at different time points, under dif-
ferent lighting conditions, varying facial expressions. In our experiment, each image
is cropped to a resolution of 32 × 32 as show in Figure 4. We randomly select k
(k varies from 2 to 8) pictures from each person for training; the remaining ones
are used for testing. We repeat these splits 50 times and report the average results.
Table 2 displays the best classification accuracy of the eight algorithms under the
different sizes of the training set; the number in parentheses is the corresponding
standard deviation. Figure 5 a) presents the best recognition rate versus the varia-
tion of the size of the training set. Figure 5 b) is the variation rules of the recognition
rates of the eight algorithms under different reduced dimensions when the size of the
training samples from each class is fixed as five. The relationship of the classification
accuracy versus the trade-off parameters λ1 and λ2 corresponding to Figure 5 b) are
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Figure 3. Recognition rates of the eight algorithms on the Yale database: a) the best
recognition rates versus the different size of the training set, b) the average recognition
rates versus the variation of dimensions when the size of per class is fixed as six, c) influence
of λ1 on the performance of SSPP on Yale, and d) influence of λ2 on the performance of
SSPP on Yale

described in Figures 5 c) and 5 d). It can be seen that SSPP is superior to other
compared methods, especially when the size of the training set is small.

Figure 4. Some face samples from the ORL database
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Method k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
SSPP 0.8415 (±0.031) 0.8990 (±0.019) 0.9431 (±0.027) 0.9646 (±0.019) 0.9823 (±0.023) 0.9921 (±0.022) 0.9975 (±0.018)
DSNPE 0.8272 (±0.023) 0.8935 (±0.027) 0.9363 (±0.022) 0.9596 (±0.018) 0.9755 (±0.026) 0.9890 (±0.024) 0.9935 (±0.020)
DLSP 0.8192 (±0.035) 0.8898 (±0.031) 0.9331 (±0.029) 0.9543 (±0.033) 0.9758 (±0.030) 0.9822 (±0.028) 0.9889 (±0.031)
PCA 0.6709 (±0.026) 0.7576 (±0.035) 0.8204 (±0.036) 0.8626 (±0.023) 0.8866 (±0.027) 0.9045 (±0.033) 0.9116 (±0.026)
LDA 0.7241 (±0.021) 0.8276 (±0.022) 0.8958 (±0.031) 0.9231 (±0.027) 0.9360 (±0.033) 0.9465 (±0.041) 0.9563 (±0.044)
LPP 0.7833 (±0.023) 0.8657 (±0.019) 0.9060 (±0.016) 0.9289 (±0.022) 0.9432 (±0.027) 0.9527 (±0.025) 0.9546 (±0.026)
NPE 0.7869 (±0.015) 0.8689 (±0.017) 0.9047 (±0.022) 0.9331 (±0.023) 0.9469 (±0.021) 0.9565 (±0.028) 0.9584 (±0.023)
SPP 0.7324 (±0.028) 0.8055 (±0.022) 0.8442 (±0.025) 0.8704 (±0.031) 0.8935 (±0.026) 0.9162 (±0.035) 0.9397 (±0.034)

Table 2. The best recognition rate and the corresponding standard deviation of the eight
algorithms under the different size of the training set on ORL (k is the training sample
size)

4.3 Experiment on Extended Yale B Face Database

The Extended Yale B consists of over 2 414 front-view face images of 38 subjects,
with approximately 64 pictures under various laboratory-controlled lighting condi-
tions for each subject. We crop the images to 32×32; Figure 6 presents some pictures
of one subject. A random subset with k (= 10, 20, 30, 40, 50) pictures per subject
is selected with labels to form the training set; the remaining pictures are used for
testing. For each given k, we average the classification accuracies over 50 random
splits. Table 3 presents the best recognition rate and the associated standard de-
viation in brackets of the eight algorithms under the different size of the training
set. Figure 7 a) presents the best recognition rate versus the variation of the size
of the training set. Figure 7 b) is the variation rules of the recognition rates of the
eight algorithms under different reduced dimensions when the size of the training
samples from each class is fixed as 30. Figures 7 c) and 7 d) indicate the influence of
the classification accuracy versus the trade-off parameter λ1 and λ2 corresponding
to Figure 7 b). It can be observed that the proposed SSPP provides superior recog-
nition performance compared to the other feature extraction methods such as PCA,
LDA, LPP, NPE, SPP, DSNPE,and DLSP regarding lighting changes.

Method k = 10 k = 20 k = 30 k = 40 k = 50
SSPP 0.8965 (±0.029) 0.9655 (±0.027) 0.9814 (±0.019) 0.9895 (±0.025) 0.9979 (±0.027)
DSNPE 0.8815 (±0.033) 0.9532 (±0.031) 0.9698 (±0.029) 0.9805 (±0.034) 0.9859 (±0.037)
DLSP 0.8906 (±0.025) 0.9587 (±0.023) 0.9755 (±0.022) 0.9833 (±0.026) 0.9916 (±0.027)
PCA 0.7496 (±0.012) 0.7877 (±0.016) 0.8041 (±0.021) 0.8248 (±0.023) 0.8406 (±0.014)
LDA 0.8642 (±0.021) 0.9475 (±0.032) 0.9647±0.026) 0.9816 (±0.028) 0.9871 (±0.035)
LPP 0.8780 (±0.043) 0.9642 (±0.039) 0.9591 (±0.037) 0.9729 (±0.038) 0.9818 (±0.041)
NPE 0.8306 (±0.022) 0.9309 (±0.019) 0.9471 (±0.026) 0.9686 (±0.024) 0.9752 (±0.021)
SPP 0.8379 (±0.034) 0.9197 (±0.028) 0.9473 (±0.025) 0.9583 (±0.030) 0.9639 (±0.029)

Table 3. The best recognition rate and the corresponding standard deviation of the eight
algorithms under the different size of the training set on Extended Yale B (k is the training
sample size)

4.4 Comparison of Time Cost for Acquiring the Discriminant Vectors
of SPP with SSPP

In this subsection, the time cost for acquiring the discriminant vectors of SSPP is
compared with that of SPP. Table 4, Table 5, and Table 6 list the average time costs
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Figure 5. Recognition rates of the eight algorithms on the ORL database: a) the best
recognition rates versus the different size of the training set, b) the average recognition
rates versus the variation of dimensions when the size of per class is fixed as five, c) influ-
ence of λ1 on the performance of SSPP on ORL, and d) influence of λ2 on the performance
of SSPP on ORL

for acquiring the discriminant vectors of SPP and SSPP versus the different sizes of
the training set on the three face data sets. It is demonstrated that SSPP is signif-
icantly faster than SPP in acquiring the embedding functions in our experiments,
especially in the large-scale problems such as Extended Yale B.

The critical factor of the above phenomenon is that the approaches of SPP and
SSPP to obtain the sparse representation structure are entirely different. In SPP,

Figure 6. Some face samples from the Extended Yale B database
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Figure 7. Recognition rates of the eight algorithms on the Extended Yale B database:
a) the best recognition rates versus the different size of the training set, b) the average
recognition rates versus the variation of dimensions when the size of per class is fixed as
thirty, c) influence of λ1 on the performance of SSPP on Extended Yale B, and d) influence
of λ2 on the performance of SSPP on Extended Yale B

Method k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

SPP 0.3729 0.6387 1.0335 1.5506 2.1609 2.9087 4.0471
SSPP 0.3245 0.6098 0.6672 0.7367 0.7895 0.8758 0.9569

Table 4. Time (s) for acquiring the discriminant vectors of SPP and SSPP on Yale (k is
the training sample size)

Method k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

SPP 1.1933 2.5641 5.1679 8.4467 13.0688 19.7787 29.4638
SSPP 0.3013 0.3796 0.4931 0.6062 0.7905 0.9536 1.1375

Table 5. Time (s) for acquiring the discriminant vectors of SPP and SSPP on ORL (k is
the training sample size)
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Method k = 10 k = 20 k = 30 k = 40 k = 50

SPP 33.4459 42.9977 190.0017 418.6019 602.6975
SSPP 0.5286 1.8159 3.9985 6.9359 10.7869

Table 6. Time (s) for acquiring the discriminant vectors of SPP and SSPP on Extended
Yale B (k is the training sample size)

n time consuming `1 norm minimization problems are required to be solved to con-
struct the sparse weight matrix, whose computational cost is O(n4) [47]; whereas,
SSPP can achieve this significantly faster through only K PCA decompositions
and n least square methods. Because K PCA decompositions can be completed
in O(m2∑K

i=1 li) according to the more efficient algorithm [48], the time cost for
learning the sparse coefficient vector of each sample, which only involves the least
square method, is O(mli) and the sparse weight matrix S can be calculated with
O(m

∑K
i=1 nili) , the computational complexity of SSPP to learn the sparse rep-

resentation structure is O(m2∑K
i=1 li + m

∑K
i=1 nili). In general, ni � n, li � n,

and K � n; hence, SSPP performs considerably faster than SPP as indicated in
Tables 4, 5 and 6.

4.5 Overall Observations and Discussions

Several observations and analysis can be concluded from the above experimental
results.

1. From Tables 1, 2, 3 and Figures 3 a), 5 a), and 7 a), we can draw a conclusion that
the proposed algorithm consistently outperforms the other compared methods,
especially when the number of the training data is particularly small. The reason
is that SSPP simultaneously considers both the sparse representation structure
and the separability of the different sub-manifolds. Further, this indicates that
SSPP can capture more inherent information that is hidden in the data compared
to the other compared methods.

2. From Figures 3 b), 5 b), and 7 b), it can be observed that the reduction di-
mensions for SSPP to achieve the best recognition rate are less than those of
the other compared algorithms. This saves a considerable amount of time and
storage space after obtaining the optimal embedding functions.

3. From Tables 4, 5, and 6, it is indicated that SSPP is considerably faster than
SPP in obtaining the discriminant vectors. This is because the method SSPP
uses to learn the sparse representation structure is more effective than that of
SPP as analyzed in Section 4.4.

4. According to the experimental results in Figures 3 c) d), 5 c) d), and 7 c) d), the
performance of SSPP does not fluctuate significantly based on the variation of
λ1 and λ2 on all three tested data sets; therefore, it is robust to the regular
parameters λ1 and λ2.
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5 CONCLUSIONS

This paper proposed a new supervised learning method called SSPP, by combining
manifold learning and sparse representation. First, SSPP constructs a concatenated
dictionary using class-wise PCA decompositions and learns the sparse representa-
tion structure of each sample under the constructed dictionary quickly using the
least squares method. Then, it defines a Laplacian discriminant function to char-
acterize the separability of the samples in different sub-manifolds. Subsequently,
SSPP integrates the sparse representation information into the Laplacian discrimi-
nant function. Thus, SSPP preserves the sparse representation structure of the data
and simultaneously maximizes the separability of different sub-manifolds. Finally,
the proposed method is transformed into a generalized eigenvalue problem. Exten-
sive experiments on three publicly available face data sets confirmed the promising
performance of the proposed SSPP approach.
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