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Abstract. In Description Logics, subsumption is regarded as one of the most promi-
nent reasoning services. It checks, relative to the logical definitions in the ontology,
whether one concept is more general/specific than another. When no subsumption
relationship is identified, however, no information about the two concepts can be
given. In several realistic Semantic Web applications, knowing the level of similarity
between two concepts, though lacking the subsumption relationship, is beneficial.
This work introduces a new method for measuring the degree of similarity be-
tween two concept descriptions in the DL ELH, despite not being in a subsumption
relation. Two algorithms are devised based on the known homomorphism-based
structural subsumption characterization. The first algorithm employs the top-down
approach, whereas the second is carried out in the reverse direction. A bottom-up
algorithm has better efficiency, making it more suitable to large-scale ontologies
developed using an inexpressive DL in the EL family, such as the renowned medical
ontology Snomed ct. The computational performance of the proposed measure is
intensively studied, and interesting findings in Snomed ct are reported.

Keywords: Similarity measure, Snomed ct, semantic web ontology, concept ma-
tching

1 INTRODUCTION

Description Logics (DLs) [3] are a family of logic-based knowledge representation
formalisms, which can be used to develop ontologies in a formally well-founded way.
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This is true both for expressive DLs, which are the logical basis of the Web Ontology
Language OWL 2, and for lightweight DLs of the ELH family [2], which are used
in the design of large-scale medical ontologies such as Systematized Nomenclature
of Medicine – Clinical Terms (Snomed ct) [26] and Gene Ontology [20], and form
one of the W3C-recommended tractable OWL profiles, OWL 2 EL [21]. One of
the main advantages of employing a logic-based ontology language is that reasoning
services can be used to derive implicit knowledge from one explicitly represented.
DL systems can, for example, classify a given ontology, i.e. compute all the sub-
sumption (i.e. subclass–superclass) relationships between the concepts defined in
the ontology and arrange these relationships as a hierarchical graph. The advantage
of using a lightweight DL in the ELH family is that classification is tractable, i.e.
a subsumption hierarchy of a given ontology can be computed in polynomial time.
Though inevitably useful in ontology design, the reasoning service of subsumption
merely gives a crisp response, i.e. a positive response concluding that one concept is
subsumed by the other or a negative response otherwise. In virtually every domain,
certain concepts may share commonality and as such can be perceived as similar to
one another, despite the fact that they are out of the subsumption relation.

Moreover, in several realistic Semantic Web applications, knowing the level of
similarity between two concepts, though lacking a subsumption relationship, is ben-
eficial. Examples include a health decision support system retrieving similar treat-
ment cases in the past as guidelines to treat the current patient, an object detection
scenario [31] that tries to identify an object of interest from its parts, and a natural
language processing tool in which technical terms are extracted from a full text. In
these applications, some information or keywords may be missing, but the existing
information still forms a level of relevance relative to a concept in question.

There has been a good number of works on similarity measures. The major-
ity, however, are either ineffective or lack desirable properties for similarity mea-
sure [15, 14, 8, 11, 7, 9]. For example, in [13], the author presents a simple similarity
measure. Despite fulfilling all the desirable properties (see more detail in Section 6),
it supports a language with concept conjunction while ontologies in practice are
modeled using at least ELH. An extended work of [13] by Lehman and Turhan [19]
proposes a generic framework for the DL ELH that satisfies most of the proper-
ties for similarity. However, as it is a very generic framework, the functions and
operators needed for the computation are left in question and rather described by
means of promising properties. In other words, the framework does not specify im-
plementation details and, to the best of our knowledge, has not been implemented
yet.

Our approach to similarity measure is driven by the structural subsumption
characterization by means of tree homomorphism. This is first proposed in [29] for
EL, and its desirable properties are investigated for the extended DL ELH in [30].
A preliminary study on this usability is reported in our proceedings paper [16].
Though similar to the measure in [19], our definition is more practical and suited
for implementation since homomorphism on trees can be computed in a bottom-up
fashion which is in practice three times faster than the counterpart recursive-based
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(top-down) method. With our extensive experiments of the implemented algorithm
on Snomed ct, not only can we ensure its practical computability, but we also
learn important characteristics in the design of this and other medical ontologies.

The rest of the paper is organized in the following order. The background on the
DL ELH, unfoldable TBoxes, and the structural subsumption algorithm is presented
in the next section. Sections 3, 4, and 5 introduce the notions of homomorphism
degree and the top-down algorithm, the bottom-up reasoning algorithm, and ELH
semantic similarity measure, respectively. Section 6 lists major similarity properties
and provides mathematical proofs. Experiments and their results are explained
in Section 7. The usability evaluation of the proposed reasoning system is further
explained in the subsequent section. The last section gives some concluding remarks.

2 BACKGROUND

In DLs, concept descriptions are inductively defined with the help of a set of con-
structors, starting with a set CN of concept names and a set RN of role names. ELH
concept descriptions are formed using the constructors shown in the upper part of
Table 1. Conventionally, r, s possibly with subscripts are used to range over RN,
A,B to range over CN, and C,D to range over concept descriptions.

Name Syntax Semantics

Top > ∆I

Concept name A AI ⊆ ∆I

Conjunction C uD CI ∩DI
Existential restriction ∃r.C

{
x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ CI

}
Primitive concept def B v D BI ⊆ DI
Full concept def B ≡ D BI = DI

Primitive role def r v s rI ⊆ sI

Table 1. Syntax and semantics of the Description Logic ELH

Concept names appearing on the left-hand side of a definition are called prim-
itively or fully defined concept names (in symbol CNdef). Other concept names are
called primitive concept names (denoted by CNpri). Therefore, CN = CNpri ∪ CNdef .
An ELH terminology box or TBox is a finite set of concept definitions, whose syntax
is shown in the lower part of Table 1. A TBox is called unfoldable if it is definitorial
(i.e. CNpri uniquely define CNdef) and acyclic (i.e., it does not refer to itself neither
directly nor indirectly).

Figure 1 depicts an example ELH unfoldable terminology, hitherto referred to
as Omed, that is extracted from Snomed ct. For convenience of further references,
an axiom ID is assigned to each concept definition in Omed. Primitively defined
concepts and primitive concept names are commonly found in realistic terminologies.
By introducing a set of fresh concept names, such concept names can easily be
transformed into semantically equivalent fully defined ones using the following steps:
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NeonatalAspirationOfAmnioticFluid ≡ NeonatalAspirationSyndromes
u∃roleGroup.(∃causativeAgent.AmnioticFluid)

NeonatalAspirationOfMucus ≡ NeonatalAspirationSyndromes
u∃roleGroup.(∃causativeAgent.Mucus)

NeonatalAspirationOfMilk ≡ NeonatalAspirationSyndromes u InhalationOfLiquid
u∃roleGroup.(∃causativeAgent.Milk)
u∃roleGroup.(∃associatedWith.Milk)

NeonatalAspirationOfMeconium ≡ NeonatalAspirationSyndromes
u∃roleGroup.(∃causativeAgent.MeconiumStool)

Hypoxia ≡ DisorderOfRespiratorySystem u DisorderOfBloodGas
u∃roleGroup.(∃interprets.OxygenDelivery)

Hypoxemia ≡ DisorderOfRespiratorySystem u DisorderOfBloodGas
u∃roleGroup.(∃interprets.OxygenDelivery)
u∃roleGroup.(∃findingSite.ArterialSystemStructure)

BodySecretion v BodySubstance

BodySubstance v Substance

Milk v DairyFoods

DairyFoods v FoodAllergen u Foods

BodyFluid v BodySubstance u LiquidSubstance

FoodAllergen v AllergenClass

AllergenClass v Substance

AmnioticFluid v BodyFluid

Mucus v BodySecretion

MeconiumStool v DigestiveSystemFluid

causativeAgent v associatedWith

Figure 1. Examples of ELH concept descriptions defined in Omed

1. For each A ∈ CNpri, add A ≡ F to O with F a fresh concept name.

2. For each B ∈ CNdef with B v D ∈ O, B v D is replaced by B ≡ G uD with
G, a fresh concept name.

For example, we can transform the concept AllergenClass as AllergenClass ≡ F13 u
Substance ≡ G13 u F8 where G13 and F8 are fresh concept names. Note that ev-
ery primitive concept A is subsumed by > (i.e. A v >). Hence, without loss of
generality, A can be likewise replaced by F .

Like any DLs, the semantics of ELH are defined in terms of interpretations
I = (∆I , ·I), where the domain ∆I is a non-empty set of individuals, and the in-
terpretation function ·I maps each concept name A ∈ CN to a subset AI of ∆I and
each role name r ∈ RN to a binary relation rI on ∆I . The extension of ·I to arbi-
trary concept descriptions is inductively defined, as shown in the semantics column
of Table 1. An interpretation I is a model of a TBox O if, for each concept defini-
tion and role hierarchy axiom in O, the conditions given in the semantics column
of Table 1 are satisfied. The main inference problem in DL is a concept subsumption.

Definition 1 (concept subsumption). Given two ELH concept descriptions C,D
and an ELH TBox O, C is subsumed by D w.r.t. O (written C vO D) if CI ⊆ DI
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ω1 NeonatalAspirationOfAmnioticFluid ω2 NeonatalAspirationOfMucus
ω3 NeonatalAspirationSyndromes ω4 NeonatalAspirationOfMilk
ω5 NeonatalAspirationOfMeconium ω6 BodySecretion
ω7 BodySubstance ω8 Substance
ω9 InhalationOfLiquid ω10 Milk
ω11 DairyFoods ω12 BodyFluid
ω13 FoodAllergen ω14 AllergenClass
ω15 AmnioticFluid ω16 LiquidSubstance
ω17 Mucus ω18 MeconiumStool
ω19 DigestiveSystemFluid ω20 Foods
ω21 Hypoxia ω22 DisorderOfRespiratorySystem
ω23 DisorderOfBloodGas ω24 OxygenDelivery
ω25 ArterialSystemStructure β1 associatedWith
β2 causativeAgent β3 interprets

Figure 2. List of the concept and role names in Omed

in every model I of O. Moreover, C,D are equivalent w.r.t. O (written C ≡O D) if
C vO D and D vO C.

Providing that the TBox is unfoldable (i.e. acyclic and definitorial), any ELH con-
cept can be expanded to an equivalent one Ĉ, consisting only of fresh concept names.
Hence, unless stated otherwise, we assume without loss of generality that an ELH
concept C is expanded and has the following form:

P1 u · · · u Pm u ∃r1.C1 u · · · u ∃rn.Cn (1)

where Pi ∈ CNpri, rj ∈ RN, and Cj are defined in a similar manner, for 1 ≤ i ≤
m and 1 ≤ j ≤ n. A terminology O can be dispensed with C vO D iff Ĉ v
D̂. For convenience, we denote by PC and EC the set of top-level concept names
{P1, . . . , Pm} and the set of top-level existential restrictions {∃r1.C1, . . . ,∃rn.Cn},
respectively. Also, we denote by Rr = {s|r v∗ s} the set of all r’s super roles where
r and s are role names and r v∗ s if r = s or ri v ri+1 ∈ O where 1 ≤ i ≤ n, r1 = r,
rn = s, and ∗ is a transitive closure. In [10, 1], a characterization of subsumption in
ELH w.r.t. an unfoldable TBox using homomorphism has been proposed. Instead
of directly considering concept descriptions, the characterization considers so-called
ELH description trees that structurally correspond to ELH concept descriptions and
can be constructed using Algorithm 1. In essence, the root v of the ELH concept
description tree T for the concept description in Formula (1) has {P1, . . . , Pm} as its
label, and has n outgoing edges, each labeled with Rrj to a vertex vj, for 1 ≤ j ≤ n.
Then, the subtree T |vj with the root vj is defined inductively based on the nested
concept Cj. The subsumption is then characterized by means of an existence of
a homomorphism in the reverse direction.
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Algorithm 1 ELH description tree construction

Input: PC and EC
Output: The description tree T
function build-tree(PC , EC)

1: Create a new tree T
2: Create a new vertex v ∈ V
3: `(v)← PC
4: for each ∃r.C ′ ∈ EC do
5: build-child-node(v, r,PC′ , EC′)
6: return T

function build-child-node(v, r,PC , EC)

1: Create a new vertex w ∈ V
2: `(w)← PC
3: Add a new edge (v, w) to E
4: ρ(v, w)← {r}
5: for each ∃s.C ′ ∈ EC do
6: build-child-node(w, s,PC′ , EC′)

Definition 2 (Homomorphism). Let T and T ′ be two rooted ELH concept descrip-
tion trees. For any T = (V,E, rt, `, ρ) where V is a set of nodes, E ⊆ V ×V is a set
of edges, rt is the root, ` : V → 2CNpri

is a node labeling function, and ρ : E → 2RN is
an edge labeling function. Given v ∈ V and v′ ∈ V ′, there exists a homomorphism
h from T to T ′, written h : T → T ′ iff the following conditions are satisfied:

1. h(rt) = rt′ and `(v) ⊆ `′(h(v))

2. For each successor w of v in T , h(w) is a successor of h(v) with ρ(v, w) ⊆
ρ′(h(v), h(w))

Theorem 3 ([18]). Let C,D be expanded ELH concept descriptions and TC and
TD are ELH description trees w.r.t. C and D. Then, C v D iff there exists a ho-
momorphism h : TD → TC that maps the root of TD to the root of TC .

Corollary 4. Let C and D be concept names. Then C v D iff PD ⊆ PC and for
each ∃r.D′ ∈ ED there exists ∃s.C ′ ∈ EC such that s v∗ r and C ′ v D′.

Corollary 5. Let C and D be concept names, then ED ∼= EC iff for each ∃r.D′ ∈ ED
there exists ∃s.C ′ such that s v∗ r, r v∗ s, C ′ v D′, and D′ v C ′. Moreover, C ≡ D
iff PD = PC (i.e. PD ⊆ PC and PC ⊆ PD) and ED ∼= EC .

Theorem 3 describes that if C is subsumed by D then there is a homomorphism
mapping in the reverse direction. Corollary 4 suggests that if C is subsumed by D
then, for each top-level concept name in D, it must also appear in C. Besides,
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each existential restriction (∃r.D′) in D has a counterpart existential restriction
(∃s.C ′) in C such that s v∗ r and C ′ v D′. Corollary 5 suggests further that ED
is congruent to EC (in symbol ED ∼= EC) then, each ∃r.D′ has a counterpart ∃s.C ′
such that s v∗ r, r v∗ s, C ′ v D′, and D′ v C ′. By using Theorem 3 together
with properties of homomorphism mapping defined in Definition 2, Corollary 4 and
Corollary 5 hold due to an associativity and commutativity of concept conjunction.

Consider the concept description NeonatalAspirationSyndromes (Nas),
NeonatalAspirationOfMilk (Nam), and NeonatalAspirationOfAmnioticFluid (Naaf)

defined in Omed. Let N̂as, ˆNam and ˆNaaf be the expanded concepts w.r.t. Nas,
Nam, and Naaf, respectively. By Theorem 3, this ensures that ˆNaaf v N̂as, and
that ˆNaaf 6v ˆNam. Though sharing some common features, the classical reasoning
of subsumption does not suffice to tell how similar they are.

Our similarity measure is based on the structural characterization. Given two
concept descriptions C and D, instead of merely giving either a positive or negative
result, the similarity measure computes a numerical value, suggesting their degree
of similarity such that 0 ≤ sim(C,D) = sim(D,C) ≤ 1. Intuitively, the larger the
number, the more similar the two concepts are. In particular, if the similarity degree
is 1, then the two concepts are logically equivalent.

3 HOMOMORPHISM DEGREE

Theorem 3 suggests that an existence of a homomorphism between ELH descrip-
tion trees implies the subsumption relationship between the corresponding concept
descriptions. We extend this idea to the case where no such homomorphism exists,
but there is some commonality.

Let C,D be unfolded ELH concept descriptions, PC , PD, EC , ED be as de-
fined in the previous section, TC , TD be the corresponding ELH description trees,
Rr, Rs be sets of super roles w.r.t. r, s, respectively. Then, the degree of having
a homomorphism from TD to TC is defined by Definition 6.

Definition 6 (Homomorphism degree). Let TELH be the set of all ELH description
trees. The homomorphism degree function hd : TELH ×TELH → [0, 1] is inductively
defined as follows:

hd(TD, TC) := µ · p-hd(PD,PC) + (1− µ) · e-set-hd(ED, EC) (2)

where 0 ≤ µ ≤ 1;

p-hd(PD,PC) :=

{
1 if PD = ∅,
|PD∩PC |
|PD| otherwise

(3)
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where | · | represents the set cardinality;

e-set-hd(ED, EC) :=


1 if ED = ∅,
0 if ED 6= ∅ and EC = ∅,∑

εi∈ED
max{e-hd(εi,εj):εj∈EC}

|ED| otherwise

(4)

where εi, εj are existential restrictions; and

e-hd(∃r.X,∃s.Y ) := γ(ν + (1− ν) · hd(TX , TY )) (5)

where γ = |Rr∩Rs|
|Rr| and 0 ≤ ν < 1.

Intuitively, the homomorphism degree Formula (2) is defined as the weighted
sum of the degree of the label set inclusion (p-hd) and the degree of the edge con-
dition matching (e-set-hd). Formula (3) calculates the proportion of the matched
primitive concepts to all the primitive concepts in the top level conjunction. For-
mula (5) measures the degree of an edge mapping in a potential homomorphism. If
the edge-labeling roles are the same or share some superroles, then part of the edge
matching conditions is satisfied, but the successors’ labels and structures have yet
to be checked. This is defined recursively as hd(TX , TY ). The values computed in
Formula (5) are collectively used to determine the degree of the edge matching con-
dition. Formula (4) calculates the maximum degree for each edge in ED representing
the best possible mapping and returns the average.

The weight µ in Formula (2) indicates how important the primitive concept

names are to be considered for similarity. It is recommended that µ = |PD|
|PD∪ED| , i.e.

the ratio of the primitive concept names to that of all the terms in the top level
conjunction. For the special case where D = > (i.e. PD = ED = ∅), the value of
µ is irrelevant as T> is the smallest ELH description tree with only one node and
hd(T>, TC) = 1 for all concepts C. The weight ν determines how important the roles
are to be considered for similarity between two existential restrictions.

The value of γ in Formula (5) is the ratio of a number of common superroles to
a number of all the supperroles of r. For the case where γ = 0, this means there is no
commonality between r and s, i.e., further computations for the degree of similarity
among their successors is irrelevant. Thus, the two existential restrictions are re-
garded as dissimilar. If 0 < γ ≤ 1, this reveals that there exists some commonality.
However, the case where γ = 1 implies that r and s are the same role name.

Let Ômed be an unfolded version of the example TBox from Figure 1.
The following demonstrates the computation of the homomorphism degree from
NeonatalAspirationOfAmnioticFluid (Naaf) to NeonatalAspirationOfMilk (Nam) and
vice versa using the top-down approach (see e.g. their definitions and relevant name
IDs in Figure 1 and Figure 2, respectively).
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Algorithm 2 ELH similarity measure

Input: Two ELH description trees TD and TC
Output: The homomorphism degree from TD to TC
function hd(TD, TC)

1: return µ · p-hd(PD,PC) + (1− µ)e-set-hd(ED, EC)

function p-hd(PD,PC)

1: if PD ← ∅ then
2: return 1
3: else
4: return |PD∩PC |

|PD|
function e-set-hd(ED, EC)

1: sum← 0
2: for each ei ∈ ED do
3: max← 0
4: for each ej ∈ EC do
5: if e-hd(ei, ej) > max then
6: max← e-hd(ei, ej)
7: sum← sum+max
8: return sum

|ED|

function e-hd(∃r.X,∃s.Y )

1: γ ← |Rr∩Rs|
|Rr|

2: if γ = 0 then
3: return 0
4: else
5: return γ(ν + (1− ν) · hd(TX , TY ))

Example Consider the expansion of the concept ˆNaaf and Nam defined in Ô:

ˆNaaf ≡ F3 u ∃rG.(∃cA.(G14 uG11 uG8 u F8 u F16)),

ˆNam ≡ F3 u F9 u ∃rG.(∃cA.(G9 uG10 uG12 uG13 u F8 u F20))

u ∃rG.(∃aW.(G9 uG10 uG12 uG13 u F8 u F20)).

Using ν = 0.4, the homomorphism degree from ˆNaaf to ˆNam can be computed using
Algorithm 2. The following shows the computation step by step1.

1 Obvious abbreviations are used here for the sake of succinctness.
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hd(T ˆNaaf , T ˆNam) :=
1

2
p-hd(P ˆNaaf ,P ˆNam) +

1

2
e-set-hd(E ˆNaaf , E ˆNam)

:=
1

2
[1] +

1

2
e-set-hd(E ˆNaaf , E ˆNam)

:=
1

2
[1] +

1

2

[
89

125

]
:= 0.856.

The computation for the sub-descriptions, corresponding with εi = ∃rG.(∃cA.(G14 u
G11 u G8 u F8 u F16)) and ε1j = ∃rG.(∃cA.(G9 u G10 u G12 u G13 u F8 u F20)), is as
follows:

e-hd(εi, ε
1
j) := [1]

[
2

5
+

3

5
hd(T∃cA.(G14uG11uG8uF8uF16), T∃cA.(G9uG10uG12uG13uF8uF20))

]
:= [1]

[
2

5
+

3

5

[
[1]

[
2

5
+

3

5
hd(TG14uG11uG8uF8uF16 , TG9uG10uG12uG13uF8uF20)

]]]
:= [1]

[
2

5
+

3

5

[
[1]

[
2

5
+

3

5

[
1

5

]]]]
:=

89

125
.

Another possibility is to map εi to ε2j = ∃rG.(∃aW.(G9uG10uG12uG13uF8uF20))

where γ = |RrG∩RrG|
|RrG| = 1. The computation in such a case is as follows:

e-hd(εi, ε
2
j) := [1]

[
2

5
+

3

5
hd(T∃cA.(G14uG11uG8uF8uF16), T∃aW.(G9uG10uG12uG13uF8uF20))

]
// where γ =

| RcA ∩RaW |
| RcA |

=
| {aW} |
| {cA, aW} | =

1

2

:= [1]

[
2

5
+

3

5

[
1

2

[
2

5
+

3

5
hd(TG14uG11uG8uF8uF16 , TG9uG10uG12uG13uF8uF20)

]]]
:= [1]

[
2

5
+

3

5

[
1

2

[
2

5
+

3

5

[
1

5

]]]]
:=

139

250
.

Since 89
125

> 139
250

and εi is the only existential restriction in E ˆNaaf , e-set-hd(E ˆNaaf , E ˆNam)
returns 89

125
. For the reverse direction, it can be computed by:
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hd(T ˆNam, T ˆNaaf) :=
2

4
p-hd(P ˆNam,P ˆNaaf) +

2

4
e-set-hd(E ˆNam, E ˆNaaf)

:=
2

4

[
1

2

]
+

2

4
e-set-hd(E ˆNam, E ˆNaaf)

:=
2

4

[
1

2

]
+

2

4

[
7

10

]
:= 0.6.

The computation for the sub-descriptions, corresponding with ε1i = ∃rG.(∃cA.(G9 u
G10 u G12 u G13 u F8 u F20)), εj = ∃rG.(∃cA.(G14 u G11 u G8 u F8 u F16)), and

γ = |RrG∩RrG|
|RrG| = 1 is as follows:

e-hd(ε1i , εj) := [1]

[
2

5
+

3

5
hd(T∃cA.(G9uG10uG12uG13uF8uF20), T∃cA.(G14uG11uG8uF8uF16))

]
// where γ =

| RcA ∩RcA |
| RcA |

=
| {cA, aW} |
| {cA, aW} | = 1

:= [1]

[
2

5
+

3

5

[
2

2

[
2

5
+

3

5
hd(TG9uG10uG12uG13uF8uF20 , TG14uG11uG8uF8uF16)

]]]
:= [1]

[
2

5
+

3

5

[
2

2

[
2

5
+

3

5

[
1

6

]]]]
:=

7

10
.

The other edge matching w.r.t. ε2i = ∃rG.(∃aW.(G9 u G10 u G12 u G13 u F8 u F20))
and εj = ∃rG.(∃cA.(G14 uG11 uG8 u F8 u F16)), can be computed by:

e-hd(ε2i , εj) := [1]

[
2

5
+

3

5
hd(T∃aW.(G9uG10uG12uG13uF8uF20), T∃cA.(G14uG11uG8uF8uF16))

]
:= [1]

[
2

5
+

3

5

[
1

1

[
2

5
+

3

5
hd(TG9uG10uG12uG13uF8uF20 , TG14uG11uG8uF8uF16)

]]]
:= [1]

[
2

5
+

3

5

[
1

1

[
2

5
+

3

5

[
1

6

]]]]
:=

7

10
.

The e-set-hd(E ˆNam, E ˆNaaf) :=
7
10

+ 7
10

2
:= 7

10
is thus the average of the maximum.
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Since 89
125

> 139
250

and ϵi is the only existential restriction in E ˆNaaf , e-set-hd(E ˆNaaf , E ˆNam)
returns 89

125
. For the reverse direction, it can be computed by:

hd(T ˆNam, T ˆNaaf) := 2
4
p-hd(P ˆNam, P ˆNaaf) + 2

4
e-set-hd(E ˆNam, E ˆNaaf)

:= 2
4
[1
2
] + 2

4
e-set-hd(E ˆNam, E ˆNaaf) := 2

4
[1
2
] + 2

4
[ 7
10

] := 0.6

The computation for the sub-descriptions, corresponding with ϵ1
i = ∃rG.(∃cA.(G9 ⊓

G10 ⊓ G12 ⊓ G13 ⊓ F8 ⊓ F20)), ϵj = ∃rG.(∃cA.(G14 ⊓ G11 ⊓ G8 ⊓ F8 ⊓ F16)), and

γ = |RrG ∩ RrG|
|RrG| = 1 is as follows:

e-hd(ϵ1
i , ϵj) := [1][2

5
+ 3

5
hd(T∃cA.(G9⊓G10⊓G12⊓G13⊓F8⊓F20), T∃cA.(G14⊓G11⊓G8⊓F8⊓F16))]

// where γ = |RcA ∩ RcA|
|RcA| = |{cA, aW}|

|{cA, aW}| = 1

:= [1][2
5

+ 3
5
[2
2
[2
5

+ 3
5
hd(TG9⊓G10⊓G12⊓G13⊓F8⊓F20 , TG14⊓G11⊓G8⊓F8⊓F16)]]]

:= [1][2
5

+ 3
5
[2
2
[2
5

+ 3
5
[1
6
]]]] := 7

10

The other edge matching w.r.t. ϵ2
i = ∃rG.(∃aW.(G9 ⊓ G10 ⊓ G12 ⊓ G13 ⊓ F8 ⊓ F20))

and ϵj = ∃rG.(∃cA.(G14 ⊓G11 ⊓G8 ⊓ F8 ⊓ F16)), can be computed by:

e-hd(ϵ2
i , ϵj) := [1][2

5
+ 3

5
hd(T∃aW.(G9⊓G10⊓G12⊓G13⊓F8⊓F20), T∃cA.(G14⊓G11⊓G8⊓F8⊓F16))]

:= [1][2
5

+ 3
5
[1
1
[2
5

+ 3
5
hd(TG9⊓G10⊓G12⊓G13⊓F8⊓F20 , TG14⊓G11⊓G8⊓F8⊓F16)]]]

:= [1][2
5

+ 3
5
[1
1
[2
5

+ 3
5
[1
6
]]]] := 7

10

The e-set-hd(E ˆNam, E ˆNaaf) :=
7
10

+ 7
10

2
:= 7

10
is thus the average of the maximum.

u0 : {F3}

u1 : ∅

u2 : {G14, G11, G8, F8, F16}

v0 : {F3, F9}

v1 : ∅ v2 : ∅

v3 : {G9, G10, G12, G13, F8, F20} v4 : {G9, G10, G12, G13, F8, F20}

{rG}

{cA, aW}

{rG}

{cA, aW}

{rG}

{aW}

(hd=0.6)

(hd=0.3)

(hd=0.167)

(hd=0.167)

(hd=0.3)

Fig. 3: A homomorphism degree that maps the root of T ˆNam (v0) to the root of T ˆNaaf

(u0) (see dotted arrows).

Hence, the degree of having a homomorphism from ˆNaaf to ˆNam is 0.856, and that
from the opposite direction is 0.6. The hd values for other pairs of concepts in Omed

can be obtained in an analogous manner and are shown in Table 2. Figure 3 shows
the example of the homomorphism degree mapping the root of T ˆNam to that of T ˆNaaf .

Figure 3. A homomorphism degree that maps the root of T ˆNam (v0) to the root of T ˆNaaf
(u0) (see dotted arrows)

Hence, the degree of having a homomorphism from ˆNaaf to ˆNam is 0.856, and
that from the opposite direction is 0.6. The hd values for other pairs of concepts in
Omed can be obtained in an analogous manner and are shown in Table 2. Figure 3
shows the example of the homomorphism degree mapping the root of T ˆNam to that
of T ˆNaaf .

Neonatal Aspiration of

hd(↓,→) Milk AF Mucus Mec HPX HPM

Milk 1.00 0.60 0.60 0.57 0.20 0.20
AmnioticFluid 0.85 1.00 0.89 0.82 0.20 0.20
Mucus 0.86 0.91 1.00 0.82 0.20 0.20
Meconium 0.82 0.82 0.82 1.00 0.20 0.20
Hypoxia 0.13 0.13 0.13 0.13 1.00 1.00
Hypoxemia 0.20 0.20 0.20 0.20 0.85 1.00

Table 2. Homomorphism degree among the defined concepts in Omed

Using a proof by induction, together with Theorem 3 [10, 1], it is not difficult
to obtain the correspondence between the homomorphism degree and subsumption.
Proposition 7 describes the property of a concept subsumption. We say that C is
a subconcept of D if the homomorphism degree of the corresponding description
tree TD to TC is equal to 1 and vice versa (see the proof in Appendix).

Proposition 7. Let C,D be expanded ELH concept descriptions, and TC , TD be
their corresponding description tree, respectively. Then, the following are equivalent:

1. C v D,

2. hd(TD, TC) = 1.
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In fact, the closer the hd(TD, TC) value is to 1, the more likely the corresponding
subsumption may hold. More precisely, the label and edge constraints in TD can
likely be simulated by those in TC .

Consider the case where the two description trees are identical and all the suc-
cessors have similar edges of the same role names. In such a case, the complexity of
the function hd is O(|V ||V |) where V is the set of vertices of the description tree.
Intuitively, with the recursive implementation detail of the function hd (see Algo-
rithm 2), vertices of the description trees at the same level have to be recursively
compared. The similarity degree obtained from each node is then propagated and
returned back to the caller once the algorithm reaches the leaves of the two descrip-
tion trees. Though, it is suited for implementation, the time required for similarity
measure using Algorithm 2 is sometimes prohibitive. This is due to the nature of
recursion which is usually slow since all function calls need to be pushed onto a stack
(i.e., a block of memory has to be newly allocated for each call) and popped when
returned back.

The homomorphism degree function hd we introduced is quite similar to simia
proposed in [19] in the sense that they are both recursive definitions for the same
DL ELH. In fact, the operators that represent the t-conorm, and fuzzy connec-
tor are relatively used but differently defined. However, unlike the work proposed
by [19], the use of µ and the way it is weighted, which determines how important the
primitive concepts are to be considered, is defined. One another potential drawback
of [19] can be an abstract framework that solely describes the desirable properties
of their proposed similarity measure. For example, rather than providing exact def-
initions of the operators required for computation, merely promising properties are
given. This is unclear and makes it difficult to implement. The other is obviously
the distinction of their inspirations. While simia is inspired by the Jaccard In-
dex [13], the function hd proposed in this work is, on the other hand, motivated by
the homomorphism-based structural subsumption characterization. With hd, con-
cept names are transformed into an ELH concept description trees. Taking this as
an advantage, in the next section, a bottom-up approach, which is in practice three
times faster than the counterpart top-down based algorithm, is introduced (see more
detail about the average computation time reported in Section 7.2). In addition to
the advantage, the proposed bottom-up algorithm does away with costly recursive
calls by making use of solutions to subproblems. As a natural step of enhancement,
dynamic programming that conceptually takes benefit of overlapping subproblems,
can be invented.

4 A BOTTOM-UP ALGORITHM

This section describes how the computation of the homomorphism degree based
on Definition 6 can be alternatively achieved in a bottom-up manner. Let T and
T ′ be the corresponding ELH description trees for two concepts of interest, and
hdtab : V × V ′ → [0, 1] be a memory table storing the homomorphism degree from
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v ∈ V to v′ ∈ V ′. Then, a computation for the homomorphism degree mapping
the root of T to the root of T ′ can be achieved using Algorithm 3. For any ELH
description trees, we denote by children(·) the function that returns all children of
a given node, nodesAtDepth(·) the function that returns a set of all nodes at a certain
depth, and depth(·) the function that returns the depth of a tree.

In contrast to the recursive approach as previously described in Section 3, Propo-
sition 9 suggests that the bottom-up algorithm can begin by finding the lower depth d
between the two description trees in question. Further computation for nodes below
the level d+1, i.e. a computation for e-set-hd, is irrelevant (see a proof in Appendix).
In addition, at level d of both trees, only the computation for the degree of the label
set inclusion p-hd is relevant. The computed value is then kept in the memory table
hdtab and lately referred to by a parent node. With this technique, the homomor-
phism degrees of parent nodes can be iteratively computed by reusing the computed
value of their children.

In what follows, Tcutoff=c is the rooted tree obtained from T by removing the
vertices at the depth > c.

Definition 8. Let T = (V,E, rt, `, ρ) be a rooted tree of depth d. A rooted cutoff
tree of depth c of T , with c ≤ d, is a rooted tree Tcutoff=c = (V ′, E ′, rt′, `′, ρ′) where
rt′ = rt, V ′ = {v ∈ V | v is of depth ≤ c}, E ′ = E ∩ (V ′×V ′), `′ and ρ′ are induced
functions from `, ρ w.r.t. V ′ and E ′, respectively.

For any pair of ELH description trees, the degree of similarity can be computed in
a bottom-up manner starting from the depth of the shortest description tree.

Proposition 9. Let T , T ′ be the rooted ELH description trees of a depth d and d′,
respectively, where d ≤ d′. Then,

1. hd(T , T ′) = hd(T , T ′cutoff=d+1) and

2. hd(T ′, T ) = hd(T ′cutoff=d+1, T ).

Runtime Analysis. As shown in Algorithm 3, the complexity of bu-e-set-hd(v, v′)
is proportional to O(bu-e-set-hd(v, v′)) = O(|children(v)| · |children(v′)|). Since all
nodes except the root are child nodes, it always holds that O(bu-e-set-hd(v, v′)) ≤
O(|V | · |V ′|). Let d be as defined in Algorithm 3, and Vi,V

′
i be a set of all ver-

tices at level i of T ,T ′, respectively. The time complexity required for comput-
ing degree among the nodes at level i of the two given ELH description trees is
O(
∑

v∈Vi
∑

v′∈V ′
i
(|children(v)|·|children(v′)|)). Therefore, the complexity of the entire

algorithm O(bu-hd(T , T ′)) is proportional to O(
∑d

i=0

∑
v∈Vi

∑
v′∈V ′

i
(|children(v)| ·

|children(v′)|)). Consider the following:
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∑d
i=0

(∑
v∈Vi

∑
v′∈V ′

i
(|children(v)| · |children(v′)|)

)
=

∑d
i=0

(∑
v∈Vi(|children(v)| ·∑v′∈V ′

i
(|children(v′)|))

)
// since children of all vertices at level i are the vertices at level i+ 1, this infers

=
∑d+1

i=1 (|Vi| · |V ′i |).

Therefore, if d = depth(T ) ≤ depth(T ′), the complexity is O(|V ||V ′cutoff=d+1|) where
V ′cutoff=d+1 is a set of all vertices of T ′cutoff=d+1. Intuitively, it is possible to say that
only the set of edges and vertices at the depth ≤ d+ 1 is relevant to the complexity
of the bottom-up approach.

5 ELH SEMANTIC SIMILARITY

The homomorphism degree function provides a numerical value that represents
structural similarity of one concept description when compared against another con-
cept description. As illustrated by the example in Section 3, the direction of the ho-
momorphism degree matters, viz., hd(TNaaf , TNam) = 0.856, whereas hd(TNam, TNaaf)
= 0.6. Since both directions constitute the degree of the two concepts being equiv-
alent, our similarity measure for ELH concept descriptions is defined by means of
these values.

Definition 10. Let C,D be expanded ELH concept descriptions. The degree of
similarity between C and D is defined as:

sim(C,D) :=
hd(TC , TD) + hd(TD, TC)

2
. (6)

Intuitively, the degree of similarity between two concepts is the average of the de-
gree of having homomorphisms in both directions, thus sim(C,D) = sim(D,C) as
required. Note that one could adopt an alternative definition, e.g. based on the mul-
tiplication simmult(C,D) or the root mean square simrms(C,D) [29]. These would give
rather unsatisfactory values for extreme cases such as the concepts A and >, where
simmult(A,>) = 0 and simrms(A,>) = 0.856. Since simmult(C,D) ≤ sim(C,D) ≤
simrms(C,D), we believe that the average-based definition given above is most ap-
propriate.

Based on the homomorphism degree values in Table 2, the degrees of similar-
ity among the defined concepts in the example ontology Omed can be obtained; see
Table 3. Observe that there are two mutually exclusive clusters of similar concepts
{Hypoxia,Hypoxemia} and a set of neonatal aspiration causing by different agents
including {NA-Milk, NA-AmnioticFluid, NA-Mucus, NA-Meconium}. Observe that
concepts from the same clusters are relatively similar (i.e. sim ≥ 0.69) and those
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Algorithm 3 ELH similarity measure using the bottom-up approach

Input: Two ELH description trees T and T ′
Output: The homomorphism degree from T to T ′
function bu-hd(T , T ′)

1: hd← 0
2: d← i← min(depth(T ), depth(T ′))
3: while i ≥ 0 do
4: Vi ← T .nodesAtDepth(i)
5: V ′i ← T ′.nodesAtDepth(i)
6: for each v ∈ Vi do
7: for each v′ ∈ V ′i do
8: if i = d then
9: hd← phd← |`(v)∩`(v′)|

|`(v)|
10: hdtab(v, v′)← hd
11: else
12: if | `(v) |= 0 then
13: phd← 1
14: else
15: phd← |`(v)∩`(v′)|

|`(v)|
16: ehd← bu-e-set-hd(v, v′)

17: µ← |`(v)|
|`(v)|+|children(v)|

18: hd← µ · phd+ (1− µ) · ehd
19: hdtab(v, v′)← hd
20: i← i− 1
21: return hd

function bu-e-set-hd(v, v′)

1: W ← children(v)
2: W ′ ← children(v′)
3: sumEHD ← 0
4: for each w ∈ W do
5: maxEHD ← 0
6: curEHD ← 0
7: for each w′ ∈ W ′ do
8: γ ← |ρ(v,w)∩ρ(v′,w′)|

|ρ(v,w)|
9: curEHD ← γ(v + (1− v) · hdtab(w,w′))

10: if curEHD > maxEHD then
11: maxEHD ← curEHD
12: sumEHD ← sumEHD + maxEHD
13: return sumEHD

|W |
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hd(↓,→)
Neonatal Aspiration of

HPX HPM
Milk AF Mucus Mec

Milk 1.00 0.72 0.73 0.69 0.16 0.20
AmnioticFluid – 1.00 0.90 0.82 0.16 0.20
Mucus – – 1.00 0.82 0.16 0.20
Meconium – – - 1.00 0.16 0.20
Hypoxia – – – – 1.00 0.92
Hypoxemia – – – – – 1.00

Table 3. Similarity degrees among the defined concepts in Omed

from different clusters are apparently dissimilar (i.e. sim ≤ 0.20). Note that there is
some similarity between these two clusters due to their share of the special-purpose
role called roleGroup [24, 27] (more detail in Subsection 7.1). Note that, though not
included in Table 2 and 3, the similarity involving primitive concepts like Substance
and Foods can also be computed. Nevertheless, the pairwise similarity degree be-
tween any two primitive concepts is zero by our definition since there is absolutely
no commonality between them apart from both being subsumed by >.

6 DESIRABLE PROPERTIES FOR CONCEPT SIMILARITY
MEASURE

This section describes desirable properties for concept similarity measure and pro-
vides corresponding mathematical proofs. At the end of the section, a comparison of
satisfactory properties between our similarity measure and other works is presented.

Definition 11 summarizes important properties for concept similarity measure
introduced in [19]. These are believed to be desirable features.

Definition 11. Let C, D and E be ELH concept, the similarity measure is

1. symmetric iff sim(C,D) = sim(D,C),

2. equivalence closed iff sim(C,D) = 1⇐⇒ C ≡ D,

3. equivalence invariant if C ≡ D then sim(C,E) = sim(D,E),

4. subsumption preserving if C v D v E then sim(C,D) ≥ sim(C,E),

5. reverse subsumption preserving if C v D v E then sim(C,E) ≤ sim(D,E),

6. structurally dependent Let Ci and Cj be atoms in C where Ci 6v Cj, the concept
D′ :=

d
i≤nCi uD and E ′ :=

d
i≤nCi u E satisfies the condition

limn→∞ sim(D′, E ′) = 1,

7. satisfying triangle inequality iff 1 + sim(D,E) ≥ sim(D,C) + sim(C,E).

Theorem 12 states the characteristics of sim.
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Theorem 12. The similarity-measure sim is 1) symmetric, 2) equivalence closed,
3) equivalence invariant, 4) subsumption preserving, 5) structurally dependent,
6) not reverse subsumption preserving, and 7) not satisfying triangle inequality.

Proof.

1. By Definition 10, it is obvious that sim(C,D) = sim(D,C).

2. (=⇒) By Definition 6, sim(C,D) = 1 iff hd(TC , TD) = 1 and hd(TD, TC) = 1. By
Proposition 7, these imply that C v D and D v C. Therefore, C ≡ D. (⇐=)
Assume C ≡ D, then C v D and D v C. Using the same proposition, this
ensures that hd(TC , TD) = 1, and hd(TD, TC) = 1, which means sim(C,D) = 1.

3. C ≡ D iff C v D and D v C. By using Corollary 5, we have PC = PD and
EC ∼= ED. Therefore, TC = TD, and this implies hd(TC , TE) = hd(TD, TE) and
hd(TE, TC) = hd(TE, TD), such that sim(C,E) = sim(D,E).

4. We need to show that hd(TC ,TD)+hd(TD,TC)
2

≥ hd(TC ,TE)+hd(TE ,TC)
2

.

Since C v D and D v E, then C v E. By Proposition 7, hd(TE, TC) = 1 and
hd(TD, TC) = 1, we need to show that hd(TC , TD) ≥ hd(TC , TE). That means it
is adequate to show that p-hd(PC ,PD) ≥ p-hd(PC ,PE) and e-set-hd(EC , ED) ≥
e-set-hd(EC , EE). For the first part, we show that |PC∩PD|

|PC | ≥
|PC∩PE |
|PC | . By Corol-

lary 4, C v D v E means PE ⊆ PD ⊆ PC . Therefore | PD |≥| PE | and
|PC∩PD|
|PC | ≥

|PC∩PE |
|PC | is true. For the second part, we show that

∑
εi∈EC

max{e-hd(εi, εj) : εj ∈ ED}
| EC |

≥
∑
εi∈EC

max{e-hd(εi, εj) : εj ∈ EE}
| EC |

, (7)

∑
εi∈EC

max{e-hd(εi, εj) : εj ∈ ED} ≥
∑
εi∈EC

max{e-hd(εi, εj) : εj ∈ EE}.

Let ε̂j ∈ EE such that e-hd(εi, ε̂j) = max{e-hd(εi, εj) : εj ∈ EE}, but since
ε̂j ∈ EE ⊆ ED, then max{e-hd(εi, εj) : εj ∈ ED} ≥ e-hd(εi, ε̂j). Therefore,
Equation (7) is true.

5. Let D′ :=
d
i≤nCi uD, E ′ :=

d
i≤nCi u E, and n = nP + nE be the number of

all atom sequences in C where nP and nE be the number of primitive concepts
and the number existential restrictions, respectively. To prove this, we consider
the following case distinction.

(a) if nP → ∞ and nE is finite, it suffices to show that limnP→∞ µ = 1 and
limnP→∞ p-hd(PD′ ,PE′) = 1. Therefore, hd(D′, E ′) = hd(E ′, D′) = 1 and
these imply that sim(D′, E ′) = 1. From Equation (3), we have:

µ =
| PD′ |

| PD′ ∪ ED′ | =
| PD′ |

| PD′ | + | ED′ | =
| PC | + | PD |

| PC | + | PD | + | ED′ |

=
nP+ | PD |

nP+ | PD | + | ED′ | . (8)
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Since | PD | and | ED′ | are constant, limnP→∞ µ = limnP→∞
nP+|PD|

nP+|PD|+|ED′ | = 1.

For the second part, we have:

p-hd(PD′ ,PE′) =
| PD′ ∩ PE′ |
| PD′ | =

| PC | + | PD ∩ PE |
| PC | + | PD |

=
nP+ | PD ∩ PE |
nP+ | PD |

where | PD ∩ PE | and | PD | are constant. Thus,

lim
nP→∞

p-hd(PD′ ,PE′) = lim
nP→∞

nP+ | PD ∩ PE |
nP+ | PD |

= 1. (9)

(b) if nE → ∞ and nP is finite, it suffices to show that limnE→∞ µ = 0 and
limnE→∞ e-set-hd(ED′ , EE′) = 1 which implies hd(D′, E ′) = hd(E ′, D′) = 1,
and sim(D′, E ′) = 1. From Equation (8), the value of µ is as follows:

µ =
| PC | + | PD |

| PC | + | PD | + | ED′ | =
| PC | + | PD |

| PC | + | PD | +nE+ | ED |
.

Since | PC |, | PD | and | ED | are constant, by taking limit, we have:

lim
nE→∞

µ = lim
nE→∞

| PC | + | PD |
| PC | + | PD | +nE+ | ED |

= 0.

To show that limnE→∞ e-set-hd(ED′ , EE′) = 1, we have:

e-set-hd(ED′ , EE′)

=
∑
ei∈ED′

max{e-hd(ei, ej) : ej ∈ EE′}
| ED′ |

=

∑
ei∈ED′ max{e-hd(ei, ej) : ej ∈ EE′}

| ED′ |

=

∑
ei∈EC max{e-hd(ei, ej) : ej ∈ EE′}+

∑
ei∈ED max{e-hd(ei, ej) : ej ∈ EE′}

| EC ∪ ED |
.

Since EC ⊆ EE′ , for each εi ∈ EC there is εj ∈ EE′ such that εi = εj. Thus,

e-set-hd(ED′ , EE′) =
nE + p

| EC | + | ED |
=

nE + p

nE+ | ED |

where p =
∑

ei∈ED max{e-hd(ei, ej) : ej ∈ EE′}, and p ≤| ED |. Therefore,

lim
nE→∞

e-set-hd(ED′ , EE′) = lim
nE→∞

nE + p

nE+ | ED |
= 1. (10)
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(c) if nP →∞ and nE →∞, it suffices to show that limnP→∞ p-hd(PD′ ,PE′) = 1
and limnE→∞ e-set-hd(ED′ , EE′) = 1. These follow from Equations (9)
and (10).

6. Consider a counter example defined in Figure 4. It is obvious that C v D v E.
By definition, sim(C,E) = 0.7125 and sim(D,E) = 0.6667. Apparently, there
exists the case sim(C,E) 6≤ sim(D,E).

E ≡ ∃r.(F u G)
D ≡ ∃r.(F u G) u ∃s.F u ∃s.G
C ≡ ∃r.(F u G) u ∃s.F u ∃s.G u ∃r.(F u H)

Figure 4. Examples of ELH concept descriptions

7. Providing the concept description C, D, and E defined in Figure 4, the following
demonstrates the case 1 + sim(D,E) 6≥ sim(D,C) + sim(C,E). Here, we have
sim(D,E) = 0.6667, sim(D,C) = 0.9625 and sim(C,E) = 0.7125. By applying
a summation, it is obvious that 1.6667 6≥ 1.675 .

�

To ensure that our proposed method reaches the performance, Table 4 compares
desirable properties of our similarity measure sim against those previously reported
in other works. Besides the work proposed by [13], which allows only concept con-
junction, our approach and the one proposed in [19] apparently hold significant
features.
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Our measure sim ELH 3 3 3 3 3

d’Amato et al. [8] ALC
d’Amato et al. [7] ALC 3 3 3 3

d’Amato et al. [9] ALE 3 3 3 3

Fanizzi and d’Amato [11] ALN 3 3 3 3

Jaccard [13] L0 3 3 3 3 3 3 3

Janowicz and Wilkes [15] SHI 3 3

Janowicz [14] ALCHQ 3 3

Lehmann and Turhan [19] ELH 3 3 3 3 3

Table 4. A comparison on concept-similarity properties [19]
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7 EXPERIMENTS AND RESULTS

To measure the reasoning performance, in this work, one of the most well-known life
science ontologies that has been developed based on an inexpressive DLs of the ELH
family, Snomed ct is selected. Among a variety of clinical ontologies, Snomed ct
provides a standard terminology such that clinical and medical concepts are formally
defined and are related to each other not only by the subsumption relation but also
by other domain-specific relations by means of roles. In our experiments, we employ
a DL version released in January 2005 which contains 379 691 concept names and
62 role names, hitherto referred to as OSnomed. In the version of Snomed ct,
the defined concepts are broadly categorized as subconcepts of one of 18 mutually
exclusive top-level concepts. Hence, in a sense of subsumption relation, the concepts
that belong to different categories are likely more dissimilar than those that belong
to the same category.

The experiments are performed on a laptop with a 1.7 GHz Intel Core i5 CPU,
and 4 GB of memory. Though our optimized bottom-up algorithm takes less com-
putation time, the overall number of pairs of concepts in OSnomed is approximately
1011. Assuming the similarity measure between each pair of concepts can be com-
puted in a millisecond, we still need about 1 157 days. For this reason, we consider
well-representative samples of pairs of concepts in Snomed ct [27]. For each top-
level category Ci where 1 ≤ i ≤ 18, 0.05 % of all concepts in category Ci are sampled
(the way we sample is similar to that reported in [5]). Hitherto, they are called stem
concepts and denoted by c-sample(Ci). For each category Ci and each stem concept
D in c-sample(Ci), we do the following:

1. Extract all stated and inferred superconcepts2 E of D, i.e. D vOSnomed
E. Let

k be the number of superconcepts E.

2. Sample k non-subsumers F of D, i.e. D 6vOSnomed
F and F 6vOSnomed

D.

3. Sample k non-subsumers G from category Cj, where j 6= i and j is randomized
for every sampling.

For each category Ci, we systematically and semantically measure the degrees
of similarity between the following concepts:

1. D and E (i.e. similarity between two concepts in the subsumption relation).

2. D and F (i.e. similarity between two concepts that belong to the same category
but are not in the subsumption relation).

3. D and G (i.e. similarity between concepts from different categories, and thus
known not to be in the subsumption relation).

For later references, let δ1
i , δ

2
i and δ3

i denote sets of concept pairs defined in (1),
(2) and (3), respectively. We denote by test-set(Ci) = (δ1

i , δ
2
i , δ

3
i ) the test set for

top-level category Ci in OSnomed.

2 All superconcepts E used in the experiments are obtained by exploiting the CEL
reasoner [4].
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7.1 Snomed ct-Specific Similarity Measure

The use of relation group was inherent in Snomed ct. However, by using the so-
called roleGroup [24, 25] to represent a group of existential restrictions, this would
unintentionally increase the degree of similarity due to role commonality (i.e. the
increasing of γ). For example, although there is neither implicit nor explicit rela-
tionship between the concept Hypoxia and the concept NeonatalAspirationOfMucus
(see Table 3), there still exists some degrees of similarity between the two concepts
(0.167 degrees), but since roleGroup occurs preceding every existential restriction, it
is meaningless to regard co-occurrence of this role in two Snomed concepts as being
similar. The similarity measuring of roleGroup in such a case is therefore ignored. If
roleGroup is found, we set ν = 0 (i.e., the similarity of roleGroup is not considered).

hd(↓,→)
Neonatal Aspiration of

HPX HPM
Milk AF Mucus Mec

Milk 1.0 0.63 0.6375 0.575 0.0 0.0
AmnioticFluid – 1.0 0.835 0.7 0.0 0.0
Mucus – – 1.0 0.7 0.0 0.0
Meconium – – – 1.0 0.0 0.0
Hypoxia – – – – 1.0 0.875
Hypoxemia – – – – – 1.0

Table 5. Similarity degree among the defined concepts in Omed using the augmented al-
gorithm for Snomed ct

Another point to take into account is a share of the Snomed top concept
SCT-Top in every expanded description. In Snomed ct, defined concepts are cat-
egorized under the 18 top-level concepts. Intuitively, without loss of commonality,
SCT-Top can be presumably neglected and rather we can treat all those 18 top-level
concepts as direct sub-concepts of >. Based on this justification and the omission
of roleGroup, the adjustment of Algorithm 2 for Snomed ct can be adopted.

Table 5 depicts the new degrees of similarity among the defined concepts in Omed

after applying the augmented algorithm for Snomed ct. Note that the degrees
of similarity among the concepts within the same cluster whose descriptions are
nestedly defined using roleGroup are slightly reduced and likewise for those from
mutually exclusive clusters (i.e, the concepts are totally dissimilar). Further to
the augmented algorithm, the illustrative concept NeonatalAspirationOfMucus are
completely dissimilar (i.e. having a degree of 0) to both the concept Hypoxia and the
concept Hypoxemia, as desired.

7.2 Experimental Results on Snomed ct

In this section, we describe results obtained from a test set test-set(Ci) where 1 ≤
i ≤ 18. Table 6 shows extensive results from the described experiments. The first
two columns show the top-level concept categories and the number of sampled stem
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concepts D. The third column shows the number of superconcepts. The next three
columns depict the degrees of similarity between each stem conceptD and each of the
concepts E, F , G described above (i.e. concept pairs in δ1

i , δ
2
i , δ

3
i , respectively). In all

three columns, the average, median, and max values are provided. The last column
describes the number of recursive calls required by Algorithm 2. The overall results
for all samples of all categories are shown in the last row of the table. On average, the
bottom-up algorithm requires 0.157, 0.297, and 0.047 milliseconds, whereas the top-
down algorithm requires 0.554, 0.974, and 0.099 milliseconds for each comparison in
δ1
i , δ

2
i , δ

3
i , respectively. More specifically, the average time required by the bottom-

up algorithm for each computation is merely 0.167 milliseconds. This is three times
faster than the counterpart top-down algorithm, which requires 0.542 milliseconds
on average.

As shown in Table 6, due to a commonality of the top-level concept categories
(i.e. a share of top-level primitive concepts), it is not surprising that the degrees
of similarity among the concepts within the same category (see e.g. the average,
median, and mean of sim(D,E) and sim(D,F )) are obviously higher than those of
the concepts from different categories (see e.g. the average, median, and mean of
sim(D,G)); likewise, the similarity between the concepts having more commonality
(i.e. subsumees and subsumers) are higher than those between non-subsumption
related concepts (sim(D,E) > sim(D,F )).

Being sampled from different categories and having no commonality, those pairs
in δ3

i are mostly judged as totally dissimilar. Interestingly, there are few cases
where the degree is nonzero. For example, the similarity between the concepts
HemorrhageIntoBladderLumen (HBL) and IrrigationOfGingivalOperculum (IGO) whose
categories are Body Structure and Procedure respectively (see definitions in Fig-

ure 5) can be computed as sim( ˆHBL, ˆIGO) =
hd(T ˆHBL,T ˆIGO)+hd(T ˆIGO,T ˆHBL)

2
= 0.56462+0.02892

2
=

0.29677. Here the obtained degrees reveal the hidden knowledge that there exists
some relationship between the two concepts. However without considering the de-
grees of similarity, it is still possible to argue that these concepts are related in terms
of plain medical definitions. Consider the concept HemorrhageIntoBladderLumen
which is a disorder in the urinary system. As a consequence of bleeding in the
bladder lumen, in many cases, there is a chance that the blood will clot and block
the flow of urine. A common curing procedure in such a case is to open a uri-
nary catheter and insert a saline into the catheter in order to remove the clot using
a sterile fluid, so that the urine can drain from the bladder clearly. This procedure
is commonly known as an irrigation procedure. Not only is irrigation applicable for
hemorrhaging into bladder lumen, but it is also applicable to any disorders where the
cleaning of organs using sterile fluid is needed, i.e. ears, gingival operculum, bowel,
etc. Based on this supportive argument, it is thus possible to conclude that the con-
cepts HemorrhageIntoBladderLumen and IrrigationOfGingivalOperculum are relevant.
Hence, the proposed system is capable of revealing hidden knowledge.

As shown in column six and seven in Table 6, the average time required by the
bottom-up approach is evidently less than that required by the top-down approach.
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HemorrhageIntoBladderLumen v DisorderOfUrinaryBladder u BladderHemorrhage
u∃roleGroup.(∃findingSite.UrinaryBladderStructure
u∃associatedMorphology.Hemorrhage)

IrrigationOfGingivalOperculum v OralIrrigation u PeriodonticProcedure u ∃roleGroup.(
∃procedureSite.StructureOfGumAndSupportingStructureOfTooth
u∃method.IrrigationAction)
u∃roleGroup.(∃directSubstance.IrrigatingSolution)

Figure 5. Examples of Snomed ct concept definitions extracted from different categories

As pre-process, it is to be mentioned that the time taken for constructing the ELH
description trees that is required by Algorithm 1 is excluded from those of the
execution time reported in the sixth and seventh column.

Overall Min Max Avg

Time (ms) 256 306 < 1 3 013 3.512

Table 7. Time required by the system in order to construct the ELH description trees for
the c-sample(Ci)

Table 7 reports the time taken by the system, which is obviously low. The
information about all related factors of the ELH description trees is reported in
Table 8.

Related Factor Min Max Avg

Maximum branching factor 0 231 3.599

Average branching factor 0 4.142 0.787

Maximum label size 1 87 13.068

Average label size 0.667 87 7.538

Tree depth 0 10 0.992

Average branch depth 0 6.363 0.958

Number of nodes 1 917 9.506

Table 8. The minimum, maximum, and average values of each related factor of the ELH
description tree construction

8 RELATED WORKS

In Table 4, we have compared the desirable properties of our method with those
achieved in the state-of-the-art works. Apart from the work of [13] that supports
mere the concept conjunction, it should be sufficient to remark that our work, to-
gether with that of [19], outperforms the others [7, 8, 9, 11, 14, 15]. This should
make a comparison of the similarity degree obtained from the two methods sound
promising. However, the similarity measure defined in [19] is merely a broad frame-
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work with no implementation detail (i.e., there is no actual algorithm suggested by
the authors). This makes a comparison obviously impossible.

In [7], a semantic similarity measure for the DL ALC is proposed. The sim-
ilarity is calculated based on a number of shared instances of two concepts. One
drawback of this method is that it cannot be applied to an ontology without in-
stances, e.g. Snomed ct. A similar work of the same idea is subsequently proposed
in [8]. Extensions that support DL ALE and ALN are proposed in [9] and [11],
respectively.

Apart from the DL-based similarity measures shown in Table 4, there is a se-
mantic-based method suggested in [28], in which the effort for deducing certain
relationships such as subsumption can be regarded as a distance between the two
concepts in question. This was in contrast to the path distance approach that ignores
such information. The limitation of this reasoning effort approach is that any pair
of concepts out of the subsumption relation are always treated as totally dissimilar.

In [17], a new reasoning service for measuring a probabilistic degree, which spec-
ifies how likely one concept is subsumed by one another, is proposed. Despite its
usefulness, one major drawback of the method is that it requires a probabilistic ter-
minology. This makes it inapplicable to many ontologies which are usually modeled
based on the W3C-recommended OWL.

Another category of similarity measure is a syntactic-based approach. Many
of these works can be applied with concepts that mostly emphasize their hierarchy
rather than meaning. These works are likely to have an inefficient measure as
more complex concepts are defined. However, for an ontology in which a hierarchy
of concepts is mandatory, these methods seem to be applicable to several specific
scenarios. Herewith, we give a review on major related works.

The Rada distance introduced in [22] is a directed-graph-based similarity mea-
sure which represents concepts as a set of nodes. The method averages all possible
paths between a pair of concepts and returns a numerical value, which indicates how
similar the two concepts are, as a result.

In [23], a distance function called Ontology Structure based Similarity (OSS) is
introduced. To measure the degree of similarity between concepts, the cost required
for a transformation from one concept to one another is computed. The distance is
measured based on the cost estimated in the early step. One disadvantage of this
method is that it is variant to a number of descendants of the compared concepts.
Therefore, a decreasing of the similarity as the deeper the concepts being compared.

Wu and Palmer [32] introduce a scaled metric that allows measuring similar-
ity between a pair of words defined in WordNet. The method, called conceptual
similarity, measures a depth of two given concepts in an is-a hierarchy. To en-
able similarity measure, a distance to a least common ancestor (LCA) of the two
concepts is computed. The similarity measure, which in this case is a summation
of the path lengths from the two concepts to the LCA, is returned as an output.
Just like other distance-based similarity, the method has a disadvantage in which
it totally relies on a skeleton of a taxonomy rather than semantic descriptions of
terms.
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A similar approach to that of [32], proposed by Ge and Qiu [12], adjusts the
idea and applies it to an ontology. With the adjustment, in an initial step, different
numerical weights are first assigned to different is-a edges and uniformly decreased
as they are far away from the root. In the next step, all possible paths from the
root to the two concepts are investigated. The similarity is calculated based on
a summation of the weights of the shortest path.

Caviedes and Cimino [6] introduced a similarity measure called CDist. Similar
to [32], the method is invented for a concept that relates to one another via the
is-a relation. The degree of similarity, which in this case is a distance, is computed
based on a number of nodes between the two concepts.

9 CONCLUSIONS AND FUTURE DEVELOPMENT

This paper introduces a new similarity measure between two concepts, w.r.t. an ELH
ontology. It presents top-down and bottom-up algorithm and reports on extensive
evaluation results of the implemented similarity reasoner on Snomed ct. Though
two concepts are not in the subsumption relation, the measure is capable of inform-
ing their relationship based on the common and discriminant features. Our intensive
experiments on Snomed ct show that the proposed non-standard reasoner is capa-
ble of revealing hidden knowledge that the standard one [27] cannot, and yet merely
requires an inexpensive computation time by employing the bottom-up algorithm.

Apart from computability evaluation, we have also conducted a usability evalu-
ation of the proposed measure through manual assessment by medical practitioner
and specialists. The idea is to calculate the agreement between concept similarity
rankings from the domain experts and such rankings from our implemented rea-
soner. Of course, completeness and quality of Osnomed also have a great impact on
the ranking results. Nevertheless, the study reveals a promising level of agreement
between the system and human expert. For more details about the evaluation, we
direct interested readers to our proceedings paper [16].

In [16], a näıve top-down algorithm has been implemented for use with a Web
service application, for reporting. In this extended work, several improvements
and addendums have been made which can be summarized in order. First, we
introduce a more efficient bottom-up algorithm (see Algorithm 3), which is at least
three times faster than the näıve algorithm. Second, after an inspection under
scrutiny, it is uncovered that fixing the value of ν (in Equation (5)) for all roles
in the original measure deems inappropriate due to the presence of roleGroup and
some Snomed’s modeling discipline (see Section 7.1). This results in a more general
similarity measure for the DL ELH. Additionally, proofs of desirable properties,
extensive experimental results on Snomed ct, and efficiency analysis regarding the
description trees shapes and properties are reported and discussed.

The proposed non-standard reasoning service is believed to be useful in real-
world applications, in which concept descriptions may not be formed manually by
domain experts but rather automatically from abundant data. For example, one



760 S. Tongphu, B. Suntisrivaraporn

could extract technical terms from a text and use them to create a concept descrip-
tion. This description may not be related via the subsumption relation to a reference
concept in the ontology but could hold certain information facets pertinent to the
ontology and user’s interest. Another promising application of the ELH semantic
similarity measure is visualization. Traditionally, concepts are visualized with equal
distances. More intuitive visualization tools could employ the degree of similarity
to determine the most appropriate placement of each concept. Classical ontology
debugging merely looks at logical inconsistency or unintended subsumption rela-
tionship. Such a reasoning service cannot give any useful suggestion regarding two
consistent concepts that are out of subsumption relation. With similarity measure,
the ontology designers will have more information while authoring concept defini-
tions. For instance, two seemingly different concepts “Hemorrhage into Bladder
Lumen” and “Irrigation of Gingival Operculum” with an unusually high similarity
degree may be flagged for in-depth inspection by the designers.

There are a few directions for future work. Firstly, it appears to be a natural
next step to consider tractable extensions to a terminology with cyclic concepts defi-
nitions. Secondly, though regarded as a pre-processing step, the overall computation
time for the ELH description tree reconstruction is high (about 2.6 minutes as re-
ported in the experiments). We therefore aim at reducing such a computation time.
One possible way to achieve this is through a representation of an entire TBox
as a forest of inter-dependent ELH partial description trees. Thirdly, we aim at
extending more reasoning services, especially for a non-standard instance checking
service. We believe that this can be done in a similar manner, i.e. the calculation of
the homomorphism degree. However, to carry out this, a small modification of the
algorithms appears to be required. One approach is to transform an instance prob-
lem to a concept problem, and the other is to represent the ABox as a graph such
that the proposed membership homomorphism measure could be applied. Lastly,
we also aim at improving the proposed method to support a more expressive DL
family, i.e. handling for negation, disjunction, etc.
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APPENDICES

Proof for Proposition 7.

1 =⇒ 2: To prove this, we need to show that for each v ∈ VD, there exists h(v) ∈ VC
such that p-hd(·, ·) = 1 and e-set-hd(·, ·) = 1 (only for those non-leaf nodes). Let
d be the depth of TD. Since C vO D, by Theorem 3 there exists a homomorphism
from TD to TC . For the induction base case where d = 0 and C = P1 u . . .uPm,
there exists a mapping from rtD to rtC such that `D(v) ⊆ `C(h(v)) (i.e. hd =
p-hd = 1). For the induction step where C = P1u . . .uPmu∃r1C1u . . .u∃rnCn
there exists a mapping from each v to h(v) such that `D(v) ⊆ `C(h(v)) (i.e.
p-hd(·, ·) = 1) and ρD(v, w) ⊆ ρC(h(v), h(w)) (i.e. e-set-hd(·, ·) = 1) where w
and h(w) are successors of v and h(v), respectively. For the case where v is
a leaf, this is similar to the base case (i.e. p-hd(·, ·) = 1).

2 =⇒ 1: By Definition 6, hd(TD, TC) = 1 means p-hd(PD,PC) = 1 and e-set-hd
(ED, EC) = 1, therefore for each P ∈ PD there exists P ∈ PC (i.e. PD ⊆ PC)

and for each ∃r.D′ ∈ ED there exists ∃s.C ′ ∈ EC such that |Rr ∩ Rs|
|Rr| = 1 and

hd(TD′ , TC′) = 1. The former implies Rr ⊆ Rs which means that s v∗ r. The
latter implies that C ′ v D′. By Corollary 4, this means C vO D.

Proof for Proposition 9. Let W , W ′ be sets of all nodes at level d in T and
T ′, and let w ∈ W and w′ ∈ W ′. To prove (1) and (2), we need to show that
(1 − µ) · e-set-hd(E , E ′) and (1 − µ) · e-set-hd(E ′, E) are all zero for every mapping
from w to w′ and from w′ to w. At the level d, for the first case, we have µ = 1 and
this implies the case. For the latter, we have | children(w) |= 0. Since E = ∅ and
E ′ 6= ∅, by Equation (4), we have e-set-hd(E ′, E) = 0.


