
Computing and Informatics, Vol. 36, 2017, 705–732, doi: 10.4149/cai 2017 3 705

IMPROVED ANNEALING-GENETIC ALGORITHM
FOR TEST CASE PRIORITIZATION

Zan Wang, Xiaobin Zhao, Yuguo Zou

School of Computer Software
92 Weijin Rd, Tianjin University
Tianjin, 300072, China
e-mail: {wangzan, zhaoxiaobin, zouyuguo}@tju.edu.cn

Xue Yu?

College of Management and Economic
92 Weijin Rd, Tianjin University
Tianjin, 300072, China
e-mail: yuki@tju.edu.cn

Zhenhua Wang

American Electric Power
700 Morrison Rd
Gahanna, OH, 43230, USA
e-mail: vincent@tju.edu.cn

Abstract. Regression testing, which can improve the quality of software systems,
is a useful but time consuming method. Many techniques have been introduced
to reduce the time cost of regression testing. Among these techniques, test case
prioritization is an effective technique which can reduce the time cost by process-
ing relatively more important test cases at an earlier stage. Previous works have
demonstrated that some greedy algorithms are effective for regression test case pri-
oritization. Those algorithms, however, have lower stability and scalability. For

∗ Corresponding author

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computing and Informatics (E-Journal - Institute of Informatics,...

https://core.ac.uk/display/267942138?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


706 Z. Wang, X. Zhao, Y. Zou, X. Yu, Z. Wang

this reason, this paper proposes a new regression test case prioritization approach
based on the improved Annealing-Genetic algorithm which incorporates Simulated
Annealing algorithm and Genetic algorithm to explore a bigger potential solution
space for the global optimum. Three Java programs and five C programs were em-
ployed to evaluate the performance of the new approach with five former approaches
such as Greedy, Additional Greedy, GA, etc. The experimental results showed that
the proposed approach has relatively better performance as well as higher stability
and scalability than those former approaches.

Keywords: Regression testing, test case prioritization, meta-heuristics, genetic
algorithm, simulated annealing algorithm, annealing-genetic algorithm (AG)

Mathematics Subject Classification 2010: 68N30

1 INTRODUCTION

Regression testing is a type of software testing that seeks to uncover new faults in
existing software systems after changes have been made. It is a frequent testing
activity and often time consuming [1, 2]. Research shows that the time cost of
regression testing would account for more than one third of the total time cost of
software maintenance [3, 4]. At present, the way to reduce the cost of this work
has attracted much attention not only from software engineers but also academic
researchers. More and more techniques to pursue lower cost in regression testing have
been proposed and these methods can be summarized as three categories which are
test case selection techniques [5], test suite minimization techniques [6] and test case
prioritization techniques [7]. As for lossless aspect of the testing capability method,
the test case prioritization does not discard any test cases and assumes that different
test cases have different contributions for the testing goals. Those test cases which
are more important for the testing goals will be higher scored and executed earlier.
Previous researches have showed that test case prioritization techniques can improve
the efficiency of regression testing by the early stopping when goals are achieved.
As a result, it reduces testing time and costs [8, 9, 10, 11].

The formal definition of the test case prioritization problem given by Rothermel
et al. is widely accepted in literature [11]. They first employ a function f(T ) to yield
an award value for each ordering T of test cases, and then describe the problem as
to find an ordered test suite with the highest award value. Rothermel et al. also
discussed five possible improvement goals which testers intended to achieve by the
test cases prioritization. They are the rate of fault detection of a test suite, the
coverage of coverable code, their confidence in the reliability of the system, the rate
at which high risk faults are detected and the likelihood of revealing faults related
to specific code changes respectively [11]. To evaluate prioritization techniques
in meeting these different goals, however, we need different evaluation criteria. If



Improved AG for Test Case Prioritization 707

we focus on the first goal listed above, increasing the rate of fault detection of
a test suite, APFD (Average of the Percentage of Faults Detected) should be used
which is the widely used and effective prioritization technique evaluation criterion.
But if our goal is to increase the coverage of coverable code in the system under
test at a faster rate, coverage based evaluation criteria such as APSC (Average
Percentage Statement Coverage), APBC (Average Percentage Block Coverage) and
APDC (Average Percentage Decision Coverage) should be taken. In this work, we
aim at the second goal listed above – the increasing the coverage of coverable code
in the system under test at a faster rate and the APSC will be selected as the
evaluation criterion to compare the performance of prioritization techniques. The
APSC for ordering T ′ is given as follows [10]:

APSC = 1− TB1 + TB2 + . . . + TBm

nm
+

1

2n
(1)

where we assume that a test suite T containing n test cases that covers a set S
including m statements and TBi is the first test case in the order T ′ of T that
covers statement i.

Heuristic algorithms can be employed to solve the test case prioritization prob-
lem. In the previous work, many heuristics based techniques for regression test case
prioritization have been proposed. In [11, 12, 13, 14, 15, 16, 17, 18], Rothermel et al.
investigated several prioritization techniques, such as total statement/branch cov-
erage prioritization and additional statement/branch coverage prioritization, which
try to maximize the rate of fault detection. Li et al. applied various meta-heuristic
algorithms for test case prioritization [10]. They compared random algorithm, Hill
Climbing algorithm, Genetic Algorithm, Greedy algorithm, Additional Greedy al-
gorithm and two-optimal Greedy algorithm and found that Additional Greedy al-
gorithm can achieve better results than other four algorithms.

T
Statement

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 X X X X X X X X
2 X X X X X X
3 X X X
4 X X
5 X X X X X X X

Table 1. A case in which Additional Greedy algorithm will not produce an optimal solu-
tion

Despite of the efficiency of Additional Greedy algorithm, some issues remained
about reliability and scalability of additional greedy algorithm, especially when the
coverage data matrix is sparse. To illustrate this problem, a simple example based
on statement coverage is employed and shown in Table 1. If the aim is to increase
the coverage of coverable code at a faster rate and the evaluation criterion is APSC,



708 Z. Wang, X. Zhao, Y. Zou, X. Yu, Z. Wang

Additional Greedy algorithm may select 1-2-3-4-5 as the “optimal” solution. How-
ever, the optimal test case ordering for this example is 5-2-3-4-1 because the APSC
value of test suite 5-2-3-4-1 is bigger than that of test suite 1-2-3-4-5 (the APSC
value of test suite 5-2-3-4-1 is 72.3529 while the APSC value of test suite 1-2-3-
4-5 is 71.1765). Additional Greedy algorithm does not work well in this example
mainly because greedy based algorithms are a type of avariciously searching algo-
rithm and expect to find the global optimum by making the locally optimal choice
at each stage. Unfortunately, they can only explore a smaller space and have less
probability to achieve the optimal solution than global searching algorithms such as
Genetic Algorithm (GA). We call this problem as “Local Optima Syndrome (LOS)”.
However, previous experiments showed that Additional Greedy algorithm had bet-
ter results than Genetic Algorithm in many common cases. It is necessary to find
a better algorithm which can not only explore the global searching space but also
have at least equal performance compared with Additional Greedy algorithm.

In this paper, we propose an improved AG algorithm for test case prioritization.
The new proposed algorithm is a robust optimizing algorithm which can overcome
the shortcomings of Additional Greedy algorithm as well as to achieve good perfor-
mance as Additional Greedy algorithm by three following ways. Firstly, Metropolis
operator of SA will be incorporated into the iterative process to maintain diversity
of the searching space of GA to alleviate the premature convergence problem. As
a result, the hybrid algorithm will have more chances to achieve better results. More-
over, the optimization reserved strategy will be hired to accelerate the convergence
rate by retaining the optimum of each generation. Thirdly, a local search operator
will be employed with GA to improve the local search capability of the algorithm.
These three improvement ways of GA will not only increase the performance of the
algorithm but also accelerate its convergence speed.

The rest of this paper is organized as follows. Section 2 describes related work.
Section 3 describes the improved AG algorithm for regression test case prioritization.
Then we evaluate the proposed algorithm and compare it with other five algorithms
in Section 4. Section 5 concludes and Section 6 gives the future works.

2 RELATED WORK

From the perspective of software testers who wish to meet the goal of regression test
case prioritization, previous research can be roughly categorized into two classes,
namely those for rate of fault detection and the other for code coverage, respectively.

2.1 Prioritization for Rate of Fault Detection

In the previous work on optimizing the fault detection, researchers focused on
the first goal listed in Section 1: increasing the rate of fault detection of a test
suite. Rothermel et al. explored some empirical studies of several prioritization
techniques [11, 12, 13, 14, 15, 16, 17, 18] to reach this goal. They applied Greedy



Improved AG for Test Case Prioritization 709

algorithm and Additional Greedy algorithm with different fault detection rate surro-
gates. The considered surrogates were: branch-total, branch-additional, statement-
total, statement-additional, Fault Exposing Potential (FEP)-total, and FEP-addi-
tional. They also conducted several experiments to compare these techniques with
no prioritization, random prioritization and optimal prioritization. The results
showed that all the proposed techniques get higher APFD values than random or no
prioritization, which means these techniques can improve the rate of fault detection.

Although Additional Greedy algorithm has relatively better performance, Zhang
et al. found that there is a weakness in the additional strategy. Because of the
situation in which a test case covers a statement but does not reveal a fault in the
statement, the additional strategy may greatly postpone the detection of those faults
covered but not revealed. In contrast, the total strategy does not have this weakness.
Therefore, they proposed a test case prioritization approach that unifies the total
strategy and the additional strategy [19]. They also performed an empirical study to
compare their approach with greedy and additional greedy based approaches. The
results demonstrate that the proposed approach can significantly outperform both
the total and additional strategies.

2.2 Prioritization for Code Coverage

Research on prioritization for code coverage aimed to increase the coverage of exe-
cutable code at a faster rate. Li et al. investigated various meta-heuristics methods
to test case prioritization for faster coverage [10]. They conducted an experiment to
compare random prioritization, Hill Climbing algorithm, Genetic Algorithm, Greedy
algorithm, Additional Greedy algorithm and two-optimal Greedy algorithm. Rather
than APFD, three coverage based metrics including APBC, APDC and APSC with
Siemens suite programs and the program space were hired to evaluate the perfor-
mance of each technique. The results indicated that Additional Greedy algorithm
is the most efficient in general. The studies also showed that the applications of
meta-heuristics, especially Genetic Algorithm, are effective for regression test case
prioritization.

Maia et al. applied another well-known meta-heuristic, GRASP (Greedy Ran-
domized Adaptive Search Procedures), for test case prioritization and conducted
an empirical evaluation to compare GRASP based approach with other four search
based algorithms [20]. Their experimental results showed that the proposed ap-
proach performed significantly better than Genetic Algorithm, Simulated Anneal-
ing algorithm, and similarly to Additional Greedy algorithm in terms of coverage
performance.

Previous research of test case prioritization for code coverage mainly focus on
greedy algorithms and meta-heuristics. However, seldom work has examined the
adaption and flexibility of these algorithms. In addition, greedy algorithms are
local search based algorithms and have lower scalability and stability as shown in
Section 1. Thus, we need a better test case prioritization technique which can
explore the global searching space and has good performance as Additional Greedy



710 Z. Wang, X. Zhao, Y. Zou, X. Yu, Z. Wang

algorithm. In this paper, we propose a hybrid algorithm for test case prioritization
to achieve better result with high stability and scalability. In addition, this paper
will verify some primary findings in the previous research to some extent and analyze
the limitation of several widely used heuristic algorithms.

3 IMPROVED AG FOR TEST CASE PRIORITIZATION

Genetic algorithm can achieve the global optimum by exploring a global candidate
space rather than obtaining only local optimum for each stage. It has shown effec-
tiveness and robustness for test case prioritization problem [10]. However, there are
some insufficiencies. One of the major problems for GA is weaker performance com-
pared with Additional Greedy algorithm. This issue is mainly because the premature
convergence to some local optima often occurs with GA. The term of premature con-
vergence means that a population for an optimization problem converges too early
and leads to suboptimal results. This problem is mainly due to the loss of diversity
of the GA’s population, being the cause of a decrease on the quality of solutions.
To alleviate this problem and improve the performance of GA, Lin et al. proposed
a hybrid algorithm Annealing-Genetic (AG) by combining the local stochastic search
from simulated annealing algorithm and the global genetic operations especially the
crossover operation from Genetic Algorithm effectively [21]. In this paper, the hy-
brid algorithm AG will be hired to maintain a certain degree of genetic diversity
for better test case prioritization. Moreover, two further strategies will be hired to
accelerate the computing process for faster convergence. Firstly, local searching in
each iterative evolution will be employed to search the local optimum much faster.
And secondly, optimization reserved strategy will be adopted to hold the optimal
solution in each step.

To illustrate, consider Figure 1, and Table 2 that represent the computational
framework and pseudo codes of the improved AG algorithm. As described in Ta-
ble 2, the proposed hybrid algorithm has six important parts: individual generation
and population initiation, fitness function, Metropolis criterion determination, ge-
netic operators, optimization reserved strategy and stopping criteria. The detailed
descriptions of these parts are listed as follows.

3.1 Individual Generation and Population Initialization

Like GA, the new hybrid algorithm evolves a population including candidate solu-
tions (called individuals) toward better individuals by an iterative process, too. Each
individual in the population is a candidate solution for the optimization problem.
For TCP, one candidate solution can be represented as a string which is comprised
of the executing sequence of test cases in a test suite. For example, “5-3-4-2-1”
denotes an executing sequence of five test cases in a test suite, where the testing
process follows a sequence of fifth, third, fourth, second and first test cases. After
generating a fix number of individuals randomly, the algorithm will initialize the
population.



Improved AG for Test Case Prioritization 711

Pseudo code: Improved Annealing-Genetic

Parameters:
Initial Temperature – T0

Cooling Rate – q
Frozen Temperature – Tend

Population Size – NIND
Generation Gap – GGAP
Crossover Rate – Pc

Mutation Rate – Pm

1 initialize population P0

2 evaluate individuals in P0

3 current point ← the individual with the highest evaluation value in P0

4 solution point ← current point
5 current population ← P0

6 T ← T0

7 while (T > Tend) do
8 begin
9 no of point ← 0
10 candidates ← {}
11 while (no of point < NIND) do
12 begin
13 generate next point from current point
14 // Metropolis criterion determination
15 df ← f(next point)− f(current point)
16 if min[1, exp(df/T )] > random[0, 1) then
17 candidates ← {candidates,next point}
18 current point ← next point
19 no of point ← no of point + 1
20 else
21 pick another point from current population as current point
22 end
23 select from candidates
24 crossover
25 mutate
26 reverse
27 re-insert to get new population Pnew

28 evaluate individuals in Pnew

29 current point ← the individual with the highest evaluation value in Pnew

30 if f(current point) > f(solution point) then
31 solution point ← current point
32 current population ← Pnew

33 T = q ∗ T
34 end

Table 2. Pseudo code of Improved Annealing-Genetic algorithm



712 Z. Wang, X. Zhao, Y. Zou, X. Yu, Z. Wang

Figure 1. Flow chart of improved AG

3.2 Fitness Function and Evaluation Criteria

After each round of the iterative process, some worst solutions will be replaced by
the new breeds. Therefore, each candidate solution needs to be awarded a measure
indicator representing the distance from achieving the goal. The measure indica-
tor can be generated by a fitness function and be employed to evaluate how good
a candidate solution is. As described in Section 1, there are different evaluation
criteria to meet different goals for TCP and different criteria leads different fitness
function. Because increasing the coverage of coverable code in the system under
test at a faster rate is the goal of this paper, APSC will be hired as the fitness
function to evaluate each solution. The fitness function can be defined by For-
mula (1).

3.3 Metropolis Criterion Determination

As described above, GA has a shortage that it usually converges to some local
optimum and has difficulty to reach the global one. This problem is usually be-
cause the searching space is not large enough to achieve the optimum and does
not have enough variance. To address this problem, the Metropolis criterion of SA
will be introduced to accept some worse individuals with a probability to maintain
the diversity of the population. The acceptance probability is defined as follows:



Improved AG for Test Case Prioritization 713

P =

{
1, df > 0,

exp
(
df
T

)
, df ≤ 0

(2)

where T is the current temperature, and df is the fitness difference of two individ-
uals.

3.4 Genetic Operators

Like GA, improved AG has similar genetic operators which make the individuals
in the population go through a process of evolution. As an improved GA, it has
four types of operators: selection, crossover, mutation and local search, respectively.
Selection is the stage of a genetic algorithm in which individuals are chosen with
a selecting probability from a population for further breeding operators such as
crossover and mutation. Crossover is a genetic operator used to produce child solu-
tions from parent individuals which were chosen by the selection operator. Mutation
alters one or more gene values in a chromosome to maintain the genetic diversity of
the population. In this paper, we redefine the traditional three operators for TCP
and incorporate a local search operator before the computational process proceed
to the next generation for better performance. Detailed operators are described as
follows:

Selection. The roulette wheel selection strategy is employed in this paper to select
potentially useful solutions for recombination. Let NIND be the population size
and fitness(i) be the fitness value of individual i in the population, its probability
of being selected is Pi = fitness(i)/

∑NIND
j=1 fitness(j).

Crossover. There are two steps of crossover in this paper. Firstly, two points to be
selected on the parent strings will exchange each other. Everything between the
two points will be swapped between the parent strings and two child individuals
will be rendered. Unlike binary strings, a candidate solution for TCP is a se-
quence string and there may be conflict numbers in the child individuals. After
that, an extra process to amend the child individuals will be lunched to deal with
the conflict for legal child individuals. For example, there are ten test cases in
a test suite. Two executing sequences of the test suite, 1-5-7-2-3-4-9-6-8-10 and
10-2-8-3-6-5-9-1-7-4 are selected for crossover. After exchange the substrings be-
tween the third and sixth locus of the two parents in this example, the algorithm
will give two child chromosomes, 1-*-8-3-6-5-9-*-*-10 and 10-*-7-2-3-4-9-1-*-*.
There are some conflict numbers in the two child individuals and partial map-
ping method is hired to amend the child individuals. Then the amended child
individuals are 1-4-8-3-6-5-9-2-7-10 and 10-6-7-2-3-4-9-1-8-5, respectively.

Mutation. The mutation is performed by exchanging the locations of two selected
points randomly.

Local search. The interest on local search operators comes from the fact that they
may effectively and quickly explore the basin of attraction of optimal solutions,



714 Z. Wang, X. Zhao, Y. Zou, X. Yu, Z. Wang

achieving optimum more accurate and quickly. GA based algorithms, on the
contrast, explore the global space by evolving the population for optimum and
have low speed for evolution. In this paper, we will incorporate a neighbor-
hood based local search operator – reverse – into AG for better individual after
crossover and mutation. This operator could improve the local searching abil-
ity of Genetic Algorithm and it is evolutionary because it is a single direction
operation. That is, only accept the individual whose fitness has increased after
reverse operation. Reverse means to select two positions in the test suite and
then to reverse the suite between these two positions. The introduction of local
searching into AG will not only improve the performance of the algorithm but
also compensates the time which AG consumes for exploring a larger space.

3.5 Optimization Reserved Strategy

Re-insert operator constructs the new population using the optimal individuals in
the parent population and offspring produced by genetic operators. This operator
ensures the realization of the optimization reserved strategy and keeps the popula-
tion size constant.

3.6 Stopping Criteria

As a hybrid algorithm of SA and GA, the new algorithm will stop when it reaches
some stopping conditions. In this paper, the algorithm first assigns an initial tem-
perature and then lowers the temperature in a decreasing rate for each generation.
After exceeding the temperature threshold, the algorithm will stop.

4 EMPIRICAL EVALUATION

In order to evaluate the performance of the proposed test case prioritization approach
based on improved AG, several empirical experiments are conducted. This section
describes those studies, including experiments design, subjects’ description, results
discussion and some shortcomings.

4.1 Research Questions

We are interested in the following research questions.

[RQ1:] Can improved AG based test case prioritization approach improve the ro-
bustness?

[RQ2:] How does the new proposed algorithm compare to some former algorithms
in terms of performance?

[RQ3:] How does the new proposed algorithm compare to some former algorithms
in terms of the convergence speed?



Improved AG for Test Case Prioritization 715

These three questions concern the robustness, performance and convergence
speed of the new proposed algorithm. For RQ1, the improved AG algorithm pro-
posed in this paper is a global optimizing algorithm. It will explore a larger candidate
space for the optimum. Individuals who have higher fitness values will survive in the
evolve process. Let us review the example were the Additional Greedy algorithm
does not work well in Section 1. Because the APSC value of test suite 5-2-3-4-1
is bigger than that of test suite 1-2-3-4-5, test suite 5-2-3-4-1 will be regarded as
a better solution and will survive. As a result, improved AG is a robust optimizing
algorithm which can explore a larger candidate space and overcome the shortcom-
ings of Additional Greedy algorithm. To answer RQ2 and RQ3, more experiments
will be investigated.

4.2 Experiments Setup

4.2.1 Evaluation Target

This experiment is designed to compare the proposed improved AG algorithm based
approach with other heuristic algorithm based approaches, including Greedy algo-
rithm, Additional Greedy algorithm, Genetic Algorithm (GA), Simulated Annealing
algorithm (SA) and Hill Climbing algorithm (HC), in terms of coverage rate and
time performance.

4.2.2 Subjects and Test Suites

In our study, three open sources Java programs (see Table 3) and five C programs
(see Table 4) are used to evaluate the improved AG algorithm with some related
algorithms.

Java subjects and JUnit test suites. Jtopas, xml-security and jmeter are the
three java programs to be used in our study. Jtopas is a Java library for the
common problem of parsing arbitrary text data. Xml-security, supplied by the
XML subproject of the well-known open source Apache project, is a compo-
nent library implementing XML signature and encryption standards. Jmeter is
a Java desktop application for functional behavior load test and performance
measurement. All these programs are assembled with their corresponding JUnit
test suites. Each test suite contains several unit test case classes which have one
or more test methods in each of them. Because of this feature of JUnit, two
types of test case granularity, the test-class level and the test-method level are
considered. Each JUnit class is a test case at the test-class level while a test
method will be regarded as the test case at the test-method level. Details of
the three programs and their corresponding test suites are listed in Table 3. In
our study, for stochastic searching algorithms such as GA, SA and HC, each of
them will be executed 10 times on every test suite against the three programs.

C subjects and test suites. In order to evaluate the prioritization performance
of the proposed approach on C programs, we use four small programs from the



716 Z. Wang, X. Zhao, Y. Zou, X. Yu, Z. Wang

Subject KLoC
Number Number Class-Level Method-Level

of Classes of Methods Tests Tests
jtopas v0 1.83 21 263 7 120
jtopas v1 1.89 19 284 10 126
jtopas v2 2.03 21 302 11 128
jtopas v3 5.36 50 748 18 209
xml-security v0 17.4 167 1 537 11 78
xml-security v1 18.3 179 1 627 15 92
xml-security v2 19.0 180 1 629 15 94
xml-security v3 16.9 145 1 398 13 84
jmeter v0 29.5 319 2 467 25 70
jmeter v1 33.7 334 2 919 26 78
jmeter v2 33.1 319 2 838 29 80
jmeter v3 37.3 373 3 445 33 78
jmeter v4 38.4 380 3 536 33 78
jmeter v5 41.1 389 3 613 37 97

Table 3. Experimental Java subjects

Siemens suite [22] and a relatively large program (space). Tcas is an aircraft
system for collision avoidance. Tot info is a program designed to compute statis-
tics of input data. The print tokens program is a lexical analyzer. Replace is
used for pattern matching and substitution. Space, developed for the European
Space Agency, is one of the most common subjects of analysis for evaluating
the prioritization techniques. Each of these programs has a test pool designed
to test them. Table 4 depicts the five C programs in detail. To generate test
suites for these five C programs, we use a manner which is similar to the manner
used in [10]. Test suites of space are generated to achieve branch coverage in
a somewhat minimal fashion – continually picking test cases from the test pool
and adding them to the test suite as long as they add branch coverage, until all
branches are covered. Test suites of the four small programs are also generated
for branch coverage, but not in a very minimal manner – for each branch, we
pick up a test case that hit the branch from the test pool randomly. The rea-
son why we do not generate test suites for these small programs in the minimal
manner is because that the size of test suites generated in the minimal manner is
too small to use meta-heuristic prioritization techniques. We generate 100 test
suites for each of the four small programs and 70 test suites for space program.
Each algorithm is executed 10 times for the four small programs and 1 time for
the space program, for each test suite.

4.2.3 Coverage Information

As Java is an object-oriented programming language while C is process oriented, the
coverage information of Java and C programs is collected at different granularities
with different tools.



Improved AG for Test Case Prioritization 717

Subject LoC
Number of Executable Test Pool Average Test

Statements Size Suite Size

tcas 174 73 1 608 83
tot info 568 138 2650 199
print tokens 726 203 4 130 318
replace 564 273 5 542 401
space 9 564 3 814 13 585 155

Table 4. Experimental C subjects

Coverage information of Java programs. “Cobertura” [23] is used to collect
the coverage information of the three Java programs at method level. It reports
the coverage information whether each method in the program is executed by
each test case or not. Then we write a conversion program in Python to read
in the method coverage information from Cobertura and represent the method
coverage matrix as output. Each element in the method coverage matrix repre-
sents whether a method in which one or more lines of code are executed by a test
case or not, where “1” represents executed but “0” means not. Only executable
methods will be considered.

In our experiment, collecting the method coverage information using Cobertura
is conducted on a Dell desktop with a 3.10 GHz Intel Core i5-2400 CPU and
4 GB physical memory, running Windows 8 and JDK 1.7.0.

Coverage information of C programs. Different from collecting coverage infor-
mation on Java programs, coverage information of C programs is collected by
a tool named “gcov”. gcov reports the frequency of each statement in the pro-
gram executed by each test case. Then we write another conversion tool by
Python script. This tool reads in the statement coverage information from gcov
and represents the statement coverage matrix as output. Each element in the
statement coverage matrix represents whether a statement is executed one or
more times by a particular test case or not. Similarly, “1” denotes executed and
“0” means not. Those statements that are not executable are not considered.

In our experiment, collecting the statement coverage information by gcov is
conducted on a Dell desktop with a 3.10 GHz Intel Core i5-2400 CPU and 4 GB
physical memory, running SunOS 5.10 (a.k.a. Solaris 10) and GCC 3.4.3.

4.2.4 Evaluation Measure

An effective evaluation measure is needed to evaluate these test case prioritization
approaches. Although some researches on the effectiveness of the coverage report
irrelevance between coverage and capability of fault detection, coverage is still an im-
portant concern in various testing standards. As our focus in this paper is the sec-
ond goal listed in Section 1: increasing the coverage of coverable code in the system
under test at a faster rate and our coverage information is collected at different
granularities, we choose two different but very similar coverage evaluation metrics –



718 Z. Wang, X. Zhao, Y. Zou, X. Yu, Z. Wang

APSC (Average Percentage Statement Coverage) for C programs and APMC (Aver-
age Percentage Method Coverage) for Java programs. Higher APSC/APMC values
mean faster statement/method coverage rates. Like APSC, APMC can be defined
as follows:

Consider a test suite T containing n test cases that covers a set S including
m methods. Let TBi be the first test case in the order T ′ of T that covers method i.
The APMC for ordering T ′ is given as follows:

APMC = 1− TB1 + TB2 + . . . + TBm

nm
+

1

2n
. (3)

4.2.5 Parameter Settings

All the algorithms including improved AG algorithm, Greedy algorithm, Additional
Greedy algorithm, GA, Hill Climbing algorithm and SA algorithm are implemented
with MATLAB.

For Simulated Annealing algorithm and improved Annealing-Genetic algorithm,
the initial temperature is to be determined in a manner which is similar to the
manner used in [21]. For sake of the efficiency of the algorithm, we define the initial
acceptance probability of detrimental move to be 0.6. From the Metropolis criterion,

P = exp

(
df

T

)
, df ≤ 0 (4)

we obtain
T = df/ lnP = df/ ln 0.6 ∼= −2df. (5)

The largest detrimental move in the initial population is

df = (fmin − fmax) /population size (6)

where fmax is the maximum value of the APSC/APMC values of individuals in the
initial population and fmin is the minimum. Thus, the initial temperature T0 can
be defined as follows:

T0 =
fmax − fmin

population size/2
. (7)

For Genetic Algorithm, the max generation – Maxgen is equal to the number of
iterations of SA and improved AG algorithms.

Other parameters of these algorithms are shown in Table 5.

4.3 Results Analysis and Discussion

4.3.1 The improved Annealing-Genetic Algorithm
Has Good Performance as Additional Greedy Algorithm
for Test Case Prioritization

Figure 2 shows the boxplots of the fitness metrics APMC for all three Java pro-
grams at test-class level. Each subfigure indicates the results for one program. Like



Improved AG for Test Case Prioritization 719

Algorithm SA GA Improved AG

Cooling Rate 0.9 – 0.9
Frozen Temperature 0.01 – 0.01
Length of Metropolis Chain 50 – –
Population Size – 50 50
Generation Gap – 0.9 0.9
Crossover Probability – 0.8 0.8
Mutation Probability – 0.1 0.1

Table 5. Parameter Settings

Figure 2, Figure 3 depicts the boxplots of the similar fitness metrics at test-method
level. Figure 4 is a summary of boxplots for all three programs. The subfigures in
Figures 2, 3 and 4 indicate that the Greedy algorithm is the worst and the Additional
Greedy algorithm is slightly better than the others. The improved AG algorithm
ranks on the second higher fitness metric value regardless of test case granularity
and programs under test.

For C programs, Figure 5 shows the boxplots of the fitness metrics APSC for tcas,
tot info, print tokens and replace, respectively. Figure 6 is a summary of boxplots
for all small C programs. Figure 7 presents the corresponding boxplots for space.
Similar to Java programs, these figures show that the improved AG algorithm has
achieved the second best performance for all five C programs. Moreover, with the
increase of C program size, the differences between improved AG and other four
approaches including Greedy algorithm, Genetic Algorithm, Simulated Annealing
algorithm and Hill Climbing algorithm become more significant.

For both Java and C programs, improved AG obtains the best performance when
compared to the meta-heuristics based approaches including Genetic Algorithm,
Simulated Annealing algorithm and Hill Climbing algorithm.

Figures 2, 3 indicate that although Additional Greedy algorithm achieves the
best performance overall, the improved AG algorithm gives a little higher APMC
values than Additional Greedy algorithm for jtopas at both the test-class and the
test-method level. This observation demonstrates that greedy base algorithms may
not work well in some cases, but the proposed AG algorithm always works well and
has higher stability than five other algorithms.

To investigate the statistical significance of the differences between six algo-
rithms, a non-parametric statistical test named the Friedman test [24] rather than
ANOVA will be conducted at 0.05 significance level. The testing results exhibited in
Table 6 and Table 8 are for Java programs at the test-class/test-method level. The
testing results exhibited in Table 10 and Table 12 are for all small C programs and
space respectively. The “null hypothesis” is that the means of the APMC/APSC
values for the six algorithms are equal. The Significance value (p-value) will be
calculated to decide acceptance of the “null hypothesis”. If the p-value is less than
0.05, the “null hypothesis” should be rejected. Otherwise, the “null hypothesis”
should be accepted. The smaller the p-value (< 0.05) is, the stronger the evidence



720 Z. Wang, X. Zhao, Y. Zou, X. Yu, Z. Wang

65

70

75

80

85

90

Greedy Add Greedy Improved AG GA SA Hill Climbing

a) jtopas

60

65

70

75

80

85

Greedy Add Greedy Improved AG GA SA Hill Climbing

b) xml-security

60

65

70

75

80

85

90

Greedy Add Greedy Improved AG GA SA Hill Climbing

c) jmeter

Figure 2. Boxplots of APMC for Java programs at the test-class level, by program and
by approach

will be against the “null hypothesis”. The reason to use Friedman test rather than
Fisher’s ANOVA (Analysis of Variance) is that the distributions of each data set
obtained by different approaches are not normal and the variances are not all equal
for all programs.

The results of the Friedman test show that the means of the APMC/APSC
values for the six algorithms are not all equal. This means that the performances
of these algorithms are significantly different. In order to locate the differences, we
performed the LSD (Least Significant Difference) test, which is a method of multiple
comparisons. The significance level of LSD test is also set at 0.05. The results are
presented in Tables 7, 9 for Java programs and 11, 13 for C programs. If the interval
between lower confidence limit and the upper confidence limit does not include zero,
we can believe the difference between the two algorithms is significant.

At the test-class level of Java programs, there is no significant difference be-
tween the improved AG algorithm and Additional Greedy algorithm. However, at



Improved AG for Test Case Prioritization 721

78

80

82

84

86

88

90

92

94

96

Greedy Add Greedy Improved AG GA SA Hill Climbing

93.5

94

94.5

95

95.5

96

96.5

Add Greedy Improved AG GA SA

a) jtopas

75

80

85

90

95

Greedy Add Greedy Improved AG GA SA Hill Climbing

94.5

95

95.5

96

96.5

97

97.5

Add Greedy Improved AG GA SA

b) xml-security

65

70

75

80

85

90

95

Greedy Add Greedy Improved AG GA SA Hill Climbing

89

90

91

92

93

94

95

Add Greedy Improved AG GA SA

c) jmeter

Figure 3. Boxplots of APMC for Java programs at the test-method level, by program and
by approach



722 Z. Wang, X. Zhao, Y. Zou, X. Yu, Z. Wang

60

65

70

75

80

85

90

Greedy Add Greedy Improved AG GA SA Hill Climbing

a) test-class level

65

70

75

80

85

90

95

Greedy Add Greedy Improved AG GA SA Hill Climbing

b) test-method level

Figure 4. Boxplots of APMC for all three Java programs

the test-method level, the difference between improved AG and Additional Greedy is
significant. Regardless of test case granularity, the improved AG algorithm outper-
forms Greedy algorithm, Genetic Algorithm, Hill Climbing algorithm and Simulated
Annealing algorithm in terms of coverage, although the difference between improved
AG and SA is not significant.

91

92

93

94

95

96

97

98

99

Greedy Add Greedy Improved AG GA SA Hill Climbing

99.08

99.09

99.1h

99.11

99.12

99.13

99.14

99.15

99.16

99.17

99.18

Add Greedy Improved AG GA SA

a) tcas

97.6

97.8

98.0

98.2

98.4

98.6

98.8

99.0

99.2

99.4

99.6

Greedy Add Greedy Improved AG GA SA Hill Climbing

99.56

99.58

99.6h

99.62

99.64

99.66

99.68

Add Greedy Improved AG GA SA

b) tot info



Improved AG for Test Case Prioritization 723

97.8

98.0

98.2

98.4

98.6

98.8

99.0

99.2

99.4

99.6

99.8

Greedy Add Greedy Improved AG GA SA Hill Climbing

99.5h

99.55

99.6h

99.65

99.7h

99.75

99.8h

Add Greedy Improved AG GA SA

c) print tokens

95.5

96.0

96.5

97.0

97.5

98.0

98.5

99.0

99.5

100.0

Greedy Add Greedy Improved AG GA SA Hill Climbing

99.5h

99.55

99.6h

99.65

99.7h

99.75

99.8h

Add Greedy Improved AG GA SA

d) replace

Figure 5. Boxplots of APSC for the four small C programs by program and by approach

91

92

93

94

95

96

97

98

99

100

Greedy Add Greedy Improved AG GA SA Hill Climbing

98.4

98.6

98.8

99.0

99.2

99.4

99.6

99.8

Add Greedy Improved AG GA SA Hill Climbing

Figure 6. Boxplots of APSC for all small C programs

Sum of Squares df Mean Square Chi-sq Significance

Between Groups 1 776.99 5 355.398 580.31 .000
Within Groups 366.51 695 0.527

Total 2,143.5 839

Table 6. Friedman test for all three Java programs at the test-class level



724 Z. Wang, X. Zhao, Y. Zou, X. Yu, Z. Wang

89

90

91

92

93

94

95

Greedy Add Greedy Improved AG GA SA Hill Climbing

92

92.5

93

93.5

94

94.5

95

95.5

Add Greedy Improved AG GA SA

Figure 7. Boxplots of APSC for space program

Algorithm (x) Algorithm (y)
Lower Confidence Mean Difference Upper Confidence

Limit (x− y) Limit

Greedy

Add Greedy −3.8425 −3.2464(*) −2.6504
Improved AG −3.5817 −2.9857(*) −2.3897
GA −2.7960 −2.2000(*) −1.6040
SA −3.3067 −2.7107(*) −2.1147
Hill Climbing −0.1675 0.4286 1.0246

Add Greedy

Improved AG −0.3353 0.2607 0.8567
GA 0.4504 1.0464(*) 1.6425
SA −0.0603 0.5357 1.1317
Hill Climbing 3.0790 3.6750(*) 4.2710

Improved AG
GA 0.1897 0.7857(*) 1.3817
SA −0.3210 0.2750 0.8710
Hill Climbing 2.8183 3.4143(*) 4.0103

GA
SA −1.1067 −0.5107 0.0853
Hill Climbing 2.0325 2.6286(*) 3.2246

SA Hill Climbing 2.5433 3.1393(*) 3.7353

(*) The mean difference is significant at 0.05 level.

Table 7. Multiple comparison (LSD) for all three Java programs at the test-class level

A little different from Java programs, improved AG significantly outperforms the
other three meta-heuristics based approaches including SA on four small C programs,
considering the APSC results.

4.3.2 The Improved AG Algorithm Can Explore
the Global Searching Space

Figure 8 a) shows a sample of the optimization process of Genetic Algorithm on
Java program jtopas at the test-class level, and Figure 8 b) shows the optimization
process of the improved AG algorithm with the same test suite. As we can see, GA
achieves the final result after about 25 generations while improved AG achieves its



Improved AG for Test Case Prioritization 725

Sum of Squares df Mean Square Chi-sq Significance

Between Groups 2 167.5 5 433.499 636.43 .000
Within Groups 216.5 695 0.312
Total 2 384 839

Table 8. Friedman test for all three Java programs at the test-method level

Algorithm (x) Algorithm (y)
Lower Confidence Mean Difference Upper Confidence

Limit (x− y) Limit

Greedy

Add Greedy −4.9107 −4.2821(*) −3.6536
Improved AG −4.1393 −3.5107(*) −2.8821
GA −2.3643 −1.7357(*) −1.1071
SA −3.5571 −2.9286(*) −2.3000
Hill Climbing −0.8571 −0.2286 0.4000

Add Greedy

Improved AG 0.1429 0.7714(*) 1.4000
GA 1.9179 2.5464(*) 3.1750
SA 0.7250 1.3536(*) 1.9821
Hill Climbing 3.4250 4.0536(*) 4.6821

Improved AG
GA 1.1464 1.7750(*) 2.4036
SA −0.0464 0.5821 1.2107
Hill Climbing 2.6536 3.2821(*) 3.9107

GA
SA −1.8214 −1.1929(*) −0.5643
Hill Climbing 0.8786 1.5071(*) 2.1357

SA Hill Climbing 2.0714 2.7000(*) 3.3286

(*) The mean difference is significant at 0.05 level.

Table 9. Multiple comparison (LSD) for all three Java programs at the test-method level

final result after about 35 generations. However, GA achieves its final APMC result
91.6267 %, but improved AG achieves 91.6533 % finally. This means that population
premature appeared in GA after about 25 generations while improved AG can jump
out of the local optimization after about 25 generations. Figure 9 a) shows a sample
of the optimization process of Genetic Algorithm on C program tcas. Figure 9 b)
shows the optimization process of improved AG on program tcas with the same test
suite. In this case, GA also trapped into a local optimal solution, but improved AG
jumped out of the trap and got the global optimization.

Improved AG employs the advantages of Simulated Annealing algorithm effec-
tively into Genetic Algorithm by introducing the local stochastic search from SA

Sum of Squares df Mean Square Chi-sq Significance

Between Groups 6 678.13 5 1 335.63 1 942.73 .000
Within Groups 196.87 1 995 0.1
Total 6 875 2 399

Table 10. Friedman test for all small C programs



726 Z. Wang, X. Zhao, Y. Zou, X. Yu, Z. Wang

Algorithm (x) Algorithm (y)
Lower Confidence Mean Difference Upper Confidence

Limit (x− y) Limit

Greedy

Add Greedy −5.1923 −4.8187(*) −4.4452
Improved AG −4.3011 −3.9275(*) −3.5539
GA −3.6123 −3.2387(*) −2.8652
SA −2.3886 −2.0150(*) −1.6414
Hill Climbing −1.3736 −1.0000(*) −0.6264

Add Greedy

Improved AG 0.5177 0.8912(*) 1.2648
GA 1.2064 1.5800(*) 1.9536
SA 2.4302 2.8037(*) 3.1773
Hill Climbing 3.4452 3.8187(*) 4.1923

Improved AG
GA 0.3152 0.6888(*) 1.0623
SA 1.5389 1.9125(*) 2.2861
Hill Climbing 2.5539 2.9275(*) 3.3011

GA
SA 0.8502 1.2237(*) 1.5973
Hill Climbing 1.8652 2.2387(*) 2.6123

SA Hill Climbing 0.6414 1.0150(*) 1.3886

(*) The mean difference is significant at 0.05 level.

Table 11. Multiple comparison (LSD) for all small C programs

Sum of Squares df Mean Square Chi-sq Significance

Between Groups 1 193.86 5 238.771 341.1 .000
Within Groups 31.14 345 0.09
Total 1 225 419

Table 12. Friedman test for space program

0 5 10 15 20 25 30 35 40
89

89.5

90

90.5

91

91.5

92
Optimization Process

generation

A
P

M
C

a) optimization process of GA

0 5 10 15 20 25 30 35 40 45
86

87

88

89

90

91

92

generation

A
P

M
C

Optimization Process

b) optimization process of improved AG

Figure 8. A sample of optimization process of Java program jtopas at test-class level



Improved AG for Test Case Prioritization 727

Algorithm (x) Algorithm (y)
Lower Confidence Mean Difference Upper Confidence

Limit (x− y) Limit

Greedy

Add Greedy −5.8012 −4.9000(*) −3.9988
Improved AG −4.6440 −3.7429(*) −2.8417
GA −2.8012 −1.9000(*) −0.9988
SA −3.9583 −3.0571(*) −2.1560
Hill Climbing −1.7012 −0.8000 0.1012

Add Greedy

Improved AG 0.2560 1.1571(*) 2.0583
GA 2.0988 3.0000(*) 3.9012
SA 0.9417 1.8429(*) 2.7440
Hill Climbing 3.1988 4.1000(*) 5.0012

Improved AG
GA 0.9417 1.8429(*) 2.7440
SA −0.2154 0.6857 1.5869
Hill Climbing 2.0417 2.9429(*) 3.8440

GA
SA −2.0583 −1.1571(*) −0.2560
Hill Climbing 0.1988 1.1000(*) 2.0012

SA Hill Climbing 1.3560 2.2571(*) 3.1583

(*) The mean difference is significant at 0.05 level.

Table 13. Multiple comparison (LSD) for space program

0 5 10 15 20 25 30 35 40 45
99.03

99.04

99.05

99.06

99.07

99.08

99.09

99.1

99.11

99.12

99.13

generation

A
P

S
C

Optimization Process

a) optimization process of GA

0 5 10 15 20 25 30 35 40
98.85

98.9

98.95

99

99.05

99.1

99.15
Optimization Process

generation

A
P

S
C

b) optimization process of improved AG

Figure 9. A sample of optimization process of C program tcas

into GA. This not only maintains the diversity of population to alleviate the pre-
mature problem, but also improves the local search capability to accelerate the
convergence.

After analyzing the algorithms mentioned above, we can find that improved AG
can explore a global searching space and have more probability to achieve the global
optimization. Unlike the improved AG, greedy algorithms can only search in a local
space and have lower scalability and stability as shown in Table 1, Section 1.



728 Z. Wang, X. Zhao, Y. Zou, X. Yu, Z. Wang

4.3.3 The Improved AG Algorithm Takes a Longer Execution Time

Table 14 and 15 summarize the results of Java programs and C programs respec-
tively. From these two tables, we know that in terms of execution time, greedy
algorithms perform more efficiently than meta-heuristics based approaches. The
proposed approach performs not so well because it explores a global searching space.
The larger the searching space an approach explores, the longer the execution time
it takes.

Algorithm APMC Ranking Execution Time Ranking

Greedy 5 1
Additional Greedy 1 2
Genetic Algorithm 4 5
Hill Climbing 6 3
Simulated Annealing 3 4
Improved AG 2 6

Table 14. Summary of results for Java programs

Algorithm APSC Ranking Execution Time Ranking

Greedy 6 1
Additional Greedy 1 2
Genetic Algorithm 3 5
Hill Climbing 5 3
Simulated Annealing 4 4
Improved AG 2 6

Table 15. Summary of results for C programs

In addition, the experimental results also verify several conclusions which have
already been demonstrated in previous works by other people, including Li et al. [10].
They are:

1. Additional Greedy algorithm has the best performance,

2. Hill Climbing algorithm is very unstable, which is easy to yield suboptimal
results that are merely locally optimal, but not globally optimal,

3. In the early stage of Genetic Algorithm running, it is likely to cause the popu-
lation precocity.

In the later stage, the advantage of excellent individuals is not obvious because
of consistency in the fitness value, resulting in the entire population evolutionary
stagnation.



Improved AG for Test Case Prioritization 729

5 CONCLUSIONS

Regression testing is a frequent and time consuming process. As an important
technique for improving the efficiency in using test cases, regression test case pri-
oritization techniques focus on the execution order of test case used in regression
testing. As an optimization problem, regression test case prioritization problem can
be solved by heuristics. However, as mentioned above, the greedy based algorithms
are not stable and scalable when the problem is complex.

To alleviate the problem, this paper proposed a new regression test case priori-
tization technique based on the improved Annealing-Genetic (AG) algorithm. The
improved AG algorithm, firstly, combines Simulated Annealing algorithm and Ge-
netic algorithm to explore a larger searching space, secondly, employs a local search
operator to search the local optimum much faster, and thirdly, hires optimization
reserved strategy to hold the optimal solution in each iteration. As a result, im-
proved AG has more probability to achieve the better and stable optimum. After
introducing the detail of improved AG, an experiment was conducted to evaluate the
performance of the proposed approach in terms of coverage and execution time. The
Friedman test [24] rather than ANOVA has been launched to compare the results of
different algorithms. The test results showed that the performance of the proposed
approach is equal to Additional Greedy algorithm and it performs significantly bet-
ter than Greedy algorithm, Genetic Algorithm and Hill Climbing algorithm for all
programs used. Improved AG also outperforms Simulated Annealing algorithm, al-
though the difference between them is not significant in terms of coverage. In short,
improved AG can not only avoid population premature of Genetic Algorithm but
also can have higher stability and scalability. However, the proposed approach per-
forms not so well in terms of execution time because of the global searching space
it explores.

6 FUTURE WORK

We have found two main research directions for the future work. First, the improved
AG algorithm will be evaluated with different parameter settings in the future. This
will elucidate whether its good performance is due to algorithm itself or parameter
settings. Second, some work should be done to improve the proposed approach so
that it can have a better performance in terms of execution time. Besides these
two directions, we plan to conduct some further experiments with much larger size
programs.

7 ACKNOWLEDGEMENTS

This work is partly supported by a project from National Natural Science Foundation
of China, with the project number ‘61202030’ and ’71502125’. The authors also
thank anonymous reviewers for their constructive comments.



730 Z. Wang, X. Zhao, Y. Zou, X. Yu, Z. Wang

REFERENCES

[1] Jeya Mala, D.—Ruby, S.—Mohan. V.: A Hybrid Test Optimization Frame-
work – Coupling Genetic Algorithm with Local Search Technique. Computing and
Informatics, Vol. 29, 2010, No. 1, pp. 133–164.

[2] Rothermel, G.—Harrold, M. J.: Analyzing Regression Test Selection Tech-
niques. IEEE Transactions on Software Engineering, Vol. 22, 1996, No. 8, pp. 529–551,
doi: 10.1109/32.536955.

[3] Schach, S.: Software Engineering. Boston, MA, Aksen Associates, 1992.

[4] Leung, H.K.N.—White, L. J.: Insights into Regression Testing. Proceedings of
the International Conference on Software Maintenance, 1989, pp. 60–69.

[5] Rothermel, G.—Harrold, M. J.: A Safe, Efficient Regression Test Selection
Technique. ACM Transactions on Software Engineering and Methodology, Vol. 6,
1997, No. 2, pp. 173–210, doi: 10.1145/248233.248262.

[6] Chen, T.Y.—Lau, M.F.: On the Divide-and-Conquer Approach Towards Test
Suite Reduction. Journal of Information Sciences, Vol. 152, 2003, No. 1, pp. 89–119,
doi: 10.1016/s0020-0255(03)00060-4.

[7] Wong, W.E.—Horgan, J. R.—London, S. et al.: A Study of Effective Regres-
sion Testing in Practice. Proceedings of IEEE International Symposium on Software
Reliability Engineering, 1997, pp. 264–274, doi: 10.1109/issre.1997.630875.

[8] Kim, J.M.—Porter, A.: A History-Based Test Prioritization Technique for Re-
gression Testing in Resource Constrained Environments. Proceedings of the In-
ternational Conference on Software Engineering, May, 2002, pp. 119–129, doi:
10.1145/581339.581357.

[9] Srikanth, H.—Williams, L.—Osborne, J.: System Test Case Prioritization of
New and Regression Test Cases. Proceedings of the International Symposium on
Empirical Software Engineering, 2005, pp. 62–71, doi: 10.1109/isese.2005.1541815.

[10] Li, Z.—Harman, M.—Hierons, R.M.: Search Algorithms for Regression Test
Case Prioritization. IEEE Transactions on Software Engineering, Vol. 33, 2007, No. 4,
pp. 225–237, doi: 10.1109/TSE.2007.38.

[11] Rothermel, G.—Untch, R.H.—Chu, C.—Harold, M. J.: Prioritizing Test
Cases for Regression Testing. IEEE Transactions on Software Engineering, Vol. 27,
2001, No. 10, pp. 929–948, doi: 10.1109/32.962562.

[12] Elbaum, S.—Malishevsky, A.G.—Rothermel, G.: Test Case Prioritization:
A Family of Empirical Studies. IEEE Transactions on Software Engineering, Vol. 28,
2002, No. 2, pp. 159–182, doi: 10.1109/32.988497.

[13] Rothermel, G.—Untch, R.H.—Chu, C.—Harold, M. J.: Test Case Prioriti-
zation: An Empirical Study. Proceedings of the International Conference on Software
Maintenance, Oxford, UK, 1999, pp. 179–188, doi: 10.1109/icsm.1999.792604.

[14] Elbaum, S.G.—Malishevsky, A.G.—Rothermel, G.: Prioritizing Test Cases
for Regression Testing. Proceedings of the International Symposium on Soft-
ware Testing and Analysis, Portland, Oregon, USA, 2000, pp. 102–112, doi:
10.1145/347324.348910.

https://doi.org/10.1109/32.536955
https://doi.org/10.1145/248233.248262
https://doi.org/10.1016/s0020-0255(03)00060-4
https://doi.org/10.1109/issre.1997.630875
https://doi.org/10.1145/581339.581357
https://doi.org/10.1109/isese.2005.1541815
https://doi.org/10.1109/TSE.2007.38
https://doi.org/10.1109/32.962562
https://doi.org/10.1109/32.988497
https://doi.org/10.1109/icsm.1999.792604
https://doi.org/10.1145/347324.348910


Improved AG for Test Case Prioritization 731

[15] Elbaum, S.—Gable D.—Rothermel, G.: Understanding and Measuring the
Sources of Variation in the Prioritization of Regression Test Suites. Proceedings
of the Seventh International Software Metrics Symposium, London, England, 2001,
pp. 169–179.

[16] Elbaum, S.G.—Malishevsky, A.G.—Rothermel, G.: Incorporating Varying
Test Costs and Fault Severities into Test Case Prioritization. Proceedings of the
International Conference on Software Engineering, Toronto, Ontario, Canada, 2001,
pp. 329–338, doi: 10.1109/icse.2001.919106.

[17] Malishevsky, A.—Rothermel, G.—Elbaum, S.: Modeling the Cost-Benefits
Tradeoffs for Regression Testing Techniques. Proceedings of the International Con-
ference on Software Maintenance, Montreal, Canada, 2002, pp. 204–213, doi:
10.1109/icsm.2002.1167767.

[18] Rothermel, G.—Elbaum, S.—Malishevsky, A.—Kallakuri, P.—
Davia, B.: The Impact of Test Suite Granularity on the Cost-Effectiveness of
Regression Testing. Proceedings of the 24th International Conference on Software
Engineering, Orlando, USA, 2002, pp. 130–140, doi: 10.1145/581356.581358.

[19] Maia, C. L. B.—do Carmo, R.A. F.—de Freitas, F.G.—Lima de Cam-
pos, G.A.—de Souza, J. T.: Automated Test Case Prioritization with Reactive
GRASP. Advances in Software Engineering, 2010, Vol. 2010, Article ID 428521, doi:
10.1155/2010/428521.

[20] Zhang, L.M.—Hao, D.—Zhang, L.—Rothermel, G.—Mei, H.: Bridging the
Gap Between the Total and Additional Test-Case Prioritization Strategies. Proceed-
ings of the 2013 International Conference on Software Engineering, 2013, pp. 192–201,
doi: 10.1109/icse.2013.6606565.

[21] Lin, F.-T.—Kao, C.-Y.—Hsu, C.-C.: Applying the Genetic Approcah to Simu-
lated Annealing in Solving Some NP-Hard Problems. IEEE Transactions on Systems,
Man and Cybernetics, Vol. 23, 1993, No. 6, pp. 1752–1767, doi: 10.1109/21.257766.

[22] Hutchins, M.—Foster, H.—Goradia, T.—Ostrand, T.: Experiments of the
Effectiveness of Dataflow- and Controlflow-Based Test Adequacy Criteria. Proceed-
ings of the 16th International Conference on Software Engineering, 1994, pp. 191–200.

[23] Cobertura. Availaible on: http://cobertura.github.io/cobertura/.

[24] Friedman, M.: The Use of Ranks to Avoid the Assumption of Normality Implicit
in the Analysis of Variance. Journal of the American Statistical Association, Vol. 32,
pp. 675–701, 1937, doi: 10.1080/01621459.1937.10503522.

Zan Wang received his B.Sc. degree in applied mathematics in
2000, his M.Sc. degree in computer science in 2004 and Ph.D.
degree in information management and information systems in
2009 from Tianjin University, Tianjin, China. Now, he serves
as Associate Professor in the Department of Software Engineer-
ing of Tianjin University, Tianjin, China. His current research
interests include software quality, machine learning, random op-
timization algorithms and social network.

https://doi.org/10.1109/icse.2001.919106
https://doi.org/10.1109/icsm.2002.1167767
https://doi.org/10.1145/581356.581358
https://doi.org/10.1155/2010/428521
https://doi.org/10.1109/icse.2013.6606565
https://doi.org/10.1109/21.257766
http://cobertura.github.io/cobertura/
https://doi.org/10.1080/01621459.1937.10503522


732 Z. Wang, X. Zhao, Y. Zou, X. Yu, Z. Wang

Xiaobin Zhao received his B.E. degree in software engineer-
ing from Tianjin University, Tianjin, China. Currently, he is
an M.E. student of Tianjin University. His research interests
include software quality, software testing and optimization, and
machine learning.

Yuguo Zou received his B.E. degree in software engineering
from Tianjin University, Tianjin, China. He is studying in Tian-
jin University for his Master’s degree. He published a paper in
an international journal. His research interests include software
engineering, software testing and automatic fault localization.

Xue Yu received her B.Sc. degree in computer science in 2000
from Tianjin University, Tianjin, China, her M.Sc. degree in
computer science in 2003 from University of Wollongong, Wol-
longong, N.S.W., Australia, and Ph.D. degree in information
management and information systems in 2009 from Tianjin Uni-
versity, Tianjin, China. She is Associate Professor in the De-
partment of Information Management and Information Systems,
Tianjin University, Tianjin, China. Her current research inter-
ests are optimization algorithms, information filtering, collabora-
tive filtering, recommendation systems and business intelligence.

Zhenhua Wang received his Ph.D. degree from Clemson Uni-
versity, South Carolina, USA. He is currently working at Amer-
ican Electric Power, Ohio, USA. His research interests include
power system optimization using genetic algorithms, smart grid,
renewable energy and power system stability.


