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Abstract. This paper presents a new approach of dynamic clustering based on
improved Particle Swarm Optimization (PSO) and which is applied to image seg-
mentation (called DCPSONS). Firstly, the original PSO algorithm is improved by
using diversity mechanism and neighborhood search strategy. The improved PSO is
then combined with the well-known data clustering k-means algorithm for dynamic
clustering problem where the number of clusters has not yet been known. Finally,
DCPSONS is applied to image segmentation problem, in which the number of clus-
ters is automatically determined. Experimental results in using sixteen benchmark
data sets and several images of synthetic and natural benchmark data demonstrate
that the proposed DCPSONS algorithm substantially outperforms other competi-
tive algorithms in terms of accuracy and convergence rate.
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1 INTRODUCTION

Data clustering is a process of identifying natural groupings or clusters, within mul-
tidimensional data, based on some similarity measures (e.g. Euclidean distance).
Due to raising amount of data from wide variety fields, clustering has become
an increasingly important topic in recent years. Clustering is a method of un-
supervised learning where the whole objective is to group a set of elements into
a cluster and the elements within that cluster have a high degree of similarity,
whereas elements belonging to different clusters have a high degree of dissimilarity.
Hierarchical and partitioning methods are the most popular clustering techniques.
Hierarchical clustering finds a sequence of partitions where the algorithm starts
from one group with all objects and is executed until it finds singletons groups,
or vice versa, whereas partitioning clustering directly divides data objects into
some fixed number of clusters [1, 2, 3, 4, 5, 6] using a suitable objective func-
tion. An advantage of partitioning method is its ability to manipulate large data
sets. When the number of clusters is known a priori clustering may be formu-
lated as distribution of objects in multi-dimensional space among groups in such
a way that objects in the same cluster are more similar in some sense than those in
different clusters. This involves minimization of some extrinsic optimization crite-
rion.

The k-means clustering algorithm was developed by Hartigan [1] which is one
of the most popular and widely used clustering techniques because it is easy to
implement and efficient, with linear time complexity. However, k-means algorithm
can only discover spherical clusters and it is sensitive to the selection of initial points,
which causes that it may converge to local optimum solution.

In the last decade, various clustering methods based on intelligent optimization
algorithms have been introduced to overcome the above mentioned problems [6, 7,
8, 9]. Particle swarm optimization (PSO) was first proposed by Kennedy et al. [10],
and it is one of swarm intelligent optimization algorithms. This algorithm sim-
ulates bird flocking or fish schooling behavior to achieve a self-evolution system.
It can search automatically the optimum solution in the vector space. However,
there exists a drawback of premature convergence in the PSO. To improve the
PSO algorithm over the drawback, many literatures presented its approaches, some
of them employed method of neighborhood search and diversity mechanism [11,
12].

An alternative approach is to apply evolutionary algorithms (EAs) to clus-
tering, yielding EA-based clustering algorithms. Unlike k-means clustering, they
simultaneously optimize a population of candidate solutions, which gives them
the ability to escape from local optima. Various EA-based clustering algorithms
have been developed, including genetic algorithm [13], differential evolution [14,
15], ant colony optimization [16], artificial bee colony [17], and particle swarm
optimization [18, 19, 20, 21]. In details, Neshat et al. [7] proposed a method
called PSOK, in which improved PSO algorithm and k-means algorithm were com-
bined. A method called CPSOII was proposed by Zhang et al. [8], in this ap-
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proach the authors used the dynamic crossover to enhance the PSO algorithm.
In [22], Jiang et al. proposed an approach called PSOAG, in which the authors
proposed a concept of age to measure the search ability of each particle in local
area.

Most clustering algorithms, like k-means, require the number of clusters to be
specified in advance. Finding the optimum number of clusters in a data set is usually
a challenge since it requires a priori knowledge, and/or ground truth about the
data, which is not always available. The problem of finding the optimum number
of clusters in a data set has been the subject of several research efforts [9, 22,
23, 24], however, despite the amount of research in this area, the outcome is still
unsatisfactory [25]. An alternative solution for this problem is to use dynamic
clustering techniques. Dynamic clustering techniques have two general objectives,
finding the optimal number of clusters and partitioning the data objects into clusters.
Several approaches based on EAs such as PSO, ABC, ACO were presented, namely,
Omran et al. [9] proposed an approach called DCPSO, in which the binary PSO
was employed for the first phase of finding the number of clusters, then k-means
was applied to refine the chosen clusters. To improve the idea of DCPSO, Kuo
et al. [26] presented the DCPG approach, in which the hybrid of PSO and GA
was used. Further, Masoud et al. [27] presented a new approach CPSOII which
automatically finds the best number of clusters and simultaneously categorizes data
objects.

The proposed approach in this paper is called DCPSONS, in the approach we
improve the idea presented in [9, 26] which first uses the binary PSO to find the num-
ber of clusters, k-means is then applied to refine the centers of the chosen clusters.
Further, with the aim to improve the performance of PSO, the proposed DCPSONS
approach employs the neighborhood search strategy and diversity mechanism, and
combines with the k-means clustering technique. Thus, DCPSONS can automati-
cally determine the optimal number of clusters and cluster the data set with minimal
user interference.

Image segmentation is a fundamental component in many computer vision ap-
plications [5]. Image segmentation is defined as the process of subdividing an image
into its constituent parts and extracting desired parts. There are many methods for
image segmentation in the literature [28, 29], of which one of the popular method
is to use a clustering algorithm (such as k-means). In this paper, taking the advan-
tage of the clustering algorithm based on EAs, the proposed DCPSONS algorithm
is applied to image segmentation where several synthetic and natural images were
used to evaluate the algorithm performance.

The rest of the paper is organized as follows: Section 2 briefly reviews the
preliminaries and related works of the proposed approaches. The details of proposed
DCPSONS approach will be described in Section 3. The experimental results of
dynamic clustering will be presented and analyzed in Section 4. The results of
application in image segmentation will be demonstrated in Section 5. Finally, in
Section 6 the conclusion will be drawn.
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2 RELATED WORKS

In partitioning clustering problems, we need to divide a set of N objects into K clus-
ters. Let O(o1, o2, . . . , oN) be the set of N objects of data set. Each object has D
features, and each feature is quantified with a real-value. Let SN×D be the feature
data matrix with N rows and D columns. Each row Si presents a data vector and
sij corresponding the jth feature of ith data vector (i = 1, 2, . . . , N , j =, 1, 2, . . . , D).
Let C = (C1, C2, . . . , CK) be the K clusters. Then Ci 6= φ, Cj∩Ci 6= φ, ∪Kj=1Ci = O,
i, j = 1, 2, . . . , K, i 6= j. The goal of clustering algorithm is to find such a C which
makes the objects in the same clusters are as similar as possible while other objects
in the different clusters as dissimilar, which can be measured by some criterions.

The brief reviews of k-means, PSO, and related techniques of neighborhood
search strategy and diversity mechanism are described in the following sections.

2.1 K-Means Clustering

One of the most important components of a clustering algorithm is the measure of
similarity used to determine how close two patterns are to each other. K-means
clustering [1] groups data vectors into a pre-specified number of clusters, based on
Euclidean distance as similarity measure. Euclidean distances among data vectors
are small for data vectors within a cluster as compared with distances to other
data vectors in different clusters. Vectors of the same cluster are associated with
one centroid vector, which represents the “midpoint” of that cluster and is the
mean of the data vectors that belong together. The classical k-means algorithm is
summarized as follows:

Step 1. Randomly choose K cluster centroids from N objects.

Step 2. For each data vector, assign the vector to the cluster with the closest
centroid, where the distance to the centroid is determined by Equation (1).

d(Si, Zj) =

√√√√ D∑
p=1

(sip − zjp)2. (1)

Step 3. Recalculate the cluster centroids, using Equation (2) as follows:

Zj =
1

NCj

∑
∀Sp∈Cj

Sp (2)

where NCj
is the number of data vectors in cluster j and Cj is the subset of

data vectors that form cluster j, if stopping criterion is not satisfied then return
Step 2.

The k-means clustering procedure terminates when any of the following criteria
is satisfied: when the maximum number of iterations has been exceeded, when there
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is a small change in the centroid vectors over a number of iterations, or when there
are no cluster membership changes. For the purpose of this research, the algorithm
terminates when a user-specified number of iterations has been exceeded.

2.2 Particle Swarm Optimization

Similar to other evolutionary algorithms, PSO [10, 31] is also a population based
search algorithm and starts with an initial population of randomly generated solu-
tions called particles. Each particle in PSO has a velocity and a position vector.
PSO remembers both the best position found by all particles and the best positions
found by each particle in the search process. For a search problem in D-dimensional
space, a particle represents a potential solution. The velocity vij and position xij of
the jth dimension of the ith particle are updated according to Equations (3) and (4)
as follows:

vij(t+ 1) = w · vij(t) + c1 · rand1 ij · (pbest ij(t)− xij(t))
+ c2 · rand2 ij · (gbestj(t)− xij(t)), (3)

xij(t+ 1) = xij(t) + vij(t+ 1) (4)

where i = 1, 2, . . . , NP is the particle’s index, NP is the population size, Xi =
(xi1, xi2, . . . , xiD) is the position of the ith particle, Vi = (vi1, vi2, . . . , viD) repre-
sents the velocity of ith particle, pbest i = (pbest i1, pbest i2, . . . , pbest iD) is the best
previous position yielding the best fitness value for the ith particle; and gbest =
(gbest1, gbest2, . . . , gbestD) is the global best particle found by all particles so far,
rand1 ij and rand2 ij are two random numbers independently generated within the
range of [0, 1], c1 and c2 are two learning factors which control the influence of the
social and cognitive components, w is the inertia factor, and t = 1, 2, . . . indicates
the iterations.

2.3 Particle Swarm Optimization with Neighborhood Search

Implementing with neighborhood, various types of connected graphs or topologies
may be used, like Ring, Four clusters, Pyramid, Square, etc. Mendes et al. [32] de-
signed four different population topologies, including circle, wheel, star, and random.
For PSO, the ring topology is simple and easy to implement.

A k-neighborhood radius in the ring topology, consisting of vector (Xi−k, . . . , Xi,
. . . , Xi+k), for ith particle, where k is an integer within

{
1, 2, . . . , NP−1

2

}
, as the

neighborhood size must be smaller than the population size 2 ·k+1 ≤ NP . Figure 1
illustrates the k-neighborhood radius, where k = 2.

By employment of local neighborhood search and global neighborhood search
strategies, H. Wang et al. [11] proposed DNSPSO approach to enhance PSO algo-
rithm. In DNSPSO, for each particle, its neighborhood may cover better solutions.
To improve the ability of exploitation, a local neighborhood search (LNS) strategy
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Figure 1: The k-neighborhood in a ring topology, where k = 2

is proposed. During searching the neighborhood of a particle Pi, a trial particle
Li = (LXi, LVi) is generated by Equations (5), (6) as follows:

LXi = r1 ·Xi + r2 · pbesti + r3 · (Xc −Xd), (5)

LVi = Vi (6)

where Xi is the position vector of the ith particle, pbest i is the previous best particle
of Pi, Xc and Xd are the position vectors of two random particles in the k-neigh-
borhood radius of Pi, c, d ∈ [i− k, i+ k]∧ c 6= d 6= i, r1, r2 and r3 are three uniform
random numbers within (0,1), and r1 + r2 + r3 = 1. The random numbers r1, r2
and r3 are the same for all j = 1, 2, . . . , D, and they are generated anew in each
generation. The pbest i is the previous best particle of Xi, so it is not on the circle
topology. To keep the flying direction of Pi, the trial particle Li keeps the same
velocity of Pi.

Besides the LNS, a global neighborhood search (GNS) strategy is proposed to
enhance the ability of exploration. When searching the neighborhood of a particle Pi,
another trial particle Gi = (GXi, GVi) is generated by Equations (7), (8) as follows:

GXi = r4 ·Xi + r5 · gbest+ r6 · (Xe −Xf ), (7)

GVi = Vi (8)

where gbest is the global best particle, Xe and Xf are the position vectors of two
random particles chosen for the entire swarm, e, f ∈ [1, NP ] ∧ e 6= f 6= i, r4, r5
and r6 are three uniform random numbers within (0, 1), and r4 + r5 + r6 = 1. The
random numbers r4, r5 and r6 are the same for all j = 1, 2, . . . , D, and they are
generated anew in each generation.
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From the idea of DNSPSO, in our previous research [12] we proposed an approach
EPSODNS, in which the local search strategy is modified by Equation (9) as follows:

LXi = r1 ·Xi + r2 · (pbest i −Xi) + r3 · nbest i (9)

where pbest i is the best previous particle of Xi, nbest i is the best particle of Xi

neighborhood. r1, r2 and r3 are three mutually different uniform random numbers
within (0, 1), and r1+r2+r3 = 1. In EPSODNS, the improvement is the employment
of local best particle nbest i in the updating position equation. By using local best
particle, the exploitation ability of search strategy will be improved. The results
of EPSODNS on several benchmark functions show that the modified local search
strategy is effective and robust in solving numerical global optimization problem.

2.4 Diversity Mechanism

In PSO algorithm, many literatures express that the diversity is very important in
searching process. In 2002, Reget et al. [33] presented a diversity-guided particle
optimizer, called ARPSO, purposes the attractive and repulsive PSO (ARPSO)
in trying to overcome the problem of premature convergence. It uses a diversity
measure to control the swarm. The basic PSO algorithm only employs an attraction
phase, in which particles are attracted by pbest and gbest. All particles in the swarm
move quickly to the same direction and similarities among particles increase very
fast, so the diversity of swarm drops below a lower bound, ARPSO switch to the
repulsion phase.

Like DNSPSO [11] and EPSODNS [12] approaches, the diversity mechanism was
employed. In these approaches, for each particle Pi(t) a new particle Pi(t+ 1) is
generated by the PSO’s velocity and position updating equations. By recombining
Pi(t) and Pi(t+ 1), a trial particle TPi(t+1) = (TXi(t+1), TVi(t+1)) is generated
by Equations (10), (11) as follows:

TXij(t+ 1) =

{
Xij(t+ 1) if rand j(0, 1) < Pr,

Xij(t) otherwise,
(10)

TVij(t+ 1) = Vij(t+ 1) (11)

where Pr is a user-defined value of greedy selection probability. After recombination,
a greedy selection is used as follows:

Pi(t+ 1) =

{
TPi(t+ 1) if f(TPi(t+ 1)) < f(Pi(t+ 1)),

Pi(t+ 1) otherwise.
(12)

In PSO, particles tend to move the same position during the search process. It
means that particles become similar with increasing of iterations. When the trial
particle TP i(t+ 1) is selected into the next generation, the dissimilarities between
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TP i(t+ 1) and Pi(t+ 1) will determine the dissimilarities among Pi(t+ 1) and the
rest particles of the swarm.

3 PROPOSED METHOD

This section will describe the proposed DCPSONS approach for dynamic clustering.
The proposed DCPSONS approach in this paper is referred to the DCPSO [9] and
DCPG [26], where the binary PSO algorithm presented by Kennedy et al. [38] was
first employed to find the optimal number of clusters, k-means was then applied to
find the best clustering result. In binary PSO, the position value xi is restricted to
set {0, 1}. The velocity vi is as a probability to change a bit from 0 to 1, or from 1
to 0 when updating the position of particles. This can be done by using a sigmoid
function defined as follows:

sigmoid(x) =
1

1 + e−x
. (13)

Hence, the equation for updating positions of Equation (4) is replaced by the prob-
abilistic update equation [39] as follows:

xij =

{
0 if randj ≥ sigmoid (vij) ,

1 if randj ≺ sigmoid (vij)
(14)

where rand j ∼ U(0, 1). Similar to DCPSO [9], DCPSONS also makes use of a binary
PSO to optimize the number of clusters. But, in order to improve the algorithm
performance in terms of the accuracy and pull out from local optima, in DCPSONS
the neighborhood search strategy and diversity mechanism are employed with binary
PSO.

The algorithm works as follows: a pool of cluster centroids, M , is randomly
chosen from data set S. The swarm of particles, P , is then randomly initialized
according to Equation (15) as follows:

xij =

{
0 if rand j ≥ Pini,

1 if rand j ≺ Pini

(15)

where Pini is a user-specified probability defined by [40] which is used to initialize
a particle position. The length of particle is equal to number of cluster centroids,
Nc = |M |. If the position of particle, xij, is “1” that means the corresponding point
is a centroid; otherwise, it is not selected as centroid. Then, the improved PSO with
neighborhood search strategy and diversity mechanism is applied to find the best
cluster centroids, Ma, from M through a specified number of iterations. k-means
is then employed to refine the found center centroids. Similar to DCPSO [9] and
DCPG [26], after implementing of k-means, M is set to Ma ∪ Mb, where Mb is
randomly chosen set of centroids from data set S. The algorithm is then repeated
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using new M . When the terminal criteria is met, Ma will be the resulting “optimum”
set of cluster centroids, and the number of elements of Ma will be the “optimum”
number of clusters in data set S. The main steps of DCPSONS algorithm are
summarized in Table 1. In Table 1, two loops called inner loop and outer loop
are structured, the main purpose of inner loop is to find the number of clusters
and initial state for k-means to refine the cluster centroids by using the modified
binary PSO algorithm, while the outer loop including the inner loop is to implement
k-means algorithm on the global best solution gbest found from the inner loop. The
loop number of inner and outer is experimentally defined. In particular, steps from 1
to 4 are to set the parameter values and initialize the population, the fitness values
of particles in population are implemented at steps from 5 to 8, the binary PSO
process is implemented at steps of 11 and 12, steps from 13 to 15 are the process of
diversity mechanism, and steps from 18 to 28 are to implement the neighborhood
search strategy process.

3.1 Validity Indices

Similar to [26, 9], in our proposed dynamic clustering approach the distances within
each cluster and the distances between clusters were considered in the measurement
index, which was proposed by [41] as follows:

V I = (c×N(0, 1) + 1)× intra

inter
(16)

where (c × N(0, 1) + 1) is regarded as a punishment value to avoid having too few
clusters, c is a constant set to 30, and N(0, 1) stands for the Gaussian function of
the number of clusters with mean of zero and standard deviation of one. Turi [41]
indicated that dynamic clustering results falling in the interval of [2, maximum
number of clusters]. The intra term is the average of all the distances between each
data point and its cluster centroid mk is defined as follows:

intra =
1

Np

K∑
k=1

∑
u∈Ck

‖u−mk‖2. (17)

Its purpose is to calculate the intensity of intra-clusters. The approach is to
calculate the Euclidean distance of the data point and the center of cluster, sum up
all the shortest distance of each data point and the center of cluster, and then divide
by the total data tuples (Np). If the intra value is smaller (larger), the clustering
efficiency for algorithm is considered better (worse). Lastly, the inter is the distance
between two clusters and the formula is shown as Equation (18).

inter = min{‖mk −mkk‖2} (18)

where ∀k = 1, 2, . . . , K − 1 and kk = k + 1, . . . , K.
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1 Initialize parameters of the algorithm;
2 Generate randomly Nc centers of clusters to form the pool of cluster centroids M

from data set S;
3 Initialize the swarm P with the position of particle xik ∼ U(0, 1), i = 1, 2, .., NP ,

k = 1, 2, .., Nc using Equation (15);
4 Randomly initialize the velocity of each particle in S such that vik ∈ [−Vmax, Vmax];

/*Calculate the fitness of particle*/
5 For each particle in P do
6 Partition data based on the centroids shown in the particle by assigning each

data point to the closest (in term of Euclidean distance) cluster;
7 Calculate the fitness value of each particle according to Equation (16);
8 End
9 Update pbest and gbest ;

10 For each particle in P do
11 Update the velocity and position of particle according to Equations (3) and (14),

respectively;
12 Calculate the fitness value of particle similar to steps of 3, 4;

/*Diversity mechanism*/
13 Generate a new trial particle TP i by Equations (10), (11);
14 Calculate the fitness value of TP i;
15 Select a fitter one between Pi and TP i as the new Pi by Equation (12);
16 Update pbest and gbest ;
17 End

/* Neighborhood search strategy */
18 For each particle in P do
19 If rand(0, 1) ≤ Pns then
20 Select the best particle nbest from the local neighborhood of current particle

(ith particle);
21 Generate a trial particle Li according to Equations (6), (9), the position of par-

ticle is then changed to a bit of {0, 1} by using Equation (14) on its position;
22 Calculate the fitness value of Li;
23 Generate a trial particle Gi according to Equations (7), (8), the position of par-

ticle is then changed to a bit of {0, 1} by using Equation (14) on its position;
24 Calculate the fitness value of Gi;
25 Select the best one among Pi, Li, Gi as the new Pi;
26 End
27 Update pbest and gbest ;
28 End
29 Return to Step 10 until the pre-specified number of iterations is satisfied

(called inner loops);
30 Refine the best cluster centroids Ma by applying k-means

where Ma is formed according to gbest and the pool of cluster centroids M ;
31 Randomly reinitialize Mb from data set S where M = Ma ∪Mb;
32 Return Step 10 until termination criteria are met (called outer loops);

Table 1: The main steps of DCPSONS
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3.2 Time Complexity

The time complexity of DCPSONS is based on the complexity of three main pro-
cesses, namely, the binary PSO with diversity mechanism (steps of 10 to 17), the
binary PSO with neighborhood search (steps of 18 to 28), and applying k-means
process. Assuming T1 if the number of iterations taken by the PSO to converge
(step 29 of the algorithm), and T2 is the number of iterations taken by DCPSONS
to converge (step 32 of the algorithm).

In the first process of the binary PSO with diversity mechanism, the complexity
consists of the complexity of partitioning of X and calculating the quality of parti-
tion. So, the complexity of this process will be O(T1×T2× (NP + pr×NP )×Nc×
N ×D), where the diversity process is O(T1 × T2 × (pr ×NP )×Nc ×N ×D). So,
the complexity of this process will be O(T1 × T2 ×NP ×Nc ×N ×D).

Similar to the first process, the complexity of the second process is O(T1× T2×
(pns ×Nc ×NP )×N ×D). So, it will be O(T1 × T2 ×NP ×Nc ×N ×D).

In the third process, the complexity of k-means algorithm in T1 iterations is
O(T1×N). From the complexity of three processes, the complexity of the algorithm
will be O(T1× T2×NP ×Nc×N ×D). The parameters T1, T2, Nc, NP , D can be
fixed in advance, and T1, T2, Nc, NP , D � N . Let ς be the multiplication of T1, T2,
Nc, NP , D (i.e. ς = T1 × T2 ×Nc ×NP ×D). If ς � N then the time complexity
of the algorithm will be O(N). However, if ς ≈ N then it will be O(N2).

4 EXPERIMENTS FOR DYNAMIC CLUSTERING

To evaluate the performance of DCPSONS algorithm, in this section the simulation
results will be shown and analysed. In this case, we use the benchmark data sets
described, four of them were used in [26], to test and compare to some dynamic
clustering algorithm of DCPSO [9] and DCPG [26]. Because DCPSO and DCPG also
employ the binary PSO to find out the best number of clusters through a specified
number of iterations and the results are then refined by k-means, and DCPSONS
is improved from their ideas. On the other hand, in the literature of presenting
DCPSO and DCPG, several other dynamic clustering algorithms were compared to.

4.1 Benchmark Data Sets

In order to evaluate the performance of the proposed DCPSONS algorithm, artificial
data sets and real-world data sets are used, the details of properties are described
in Table 2 [34] and Table 3 [35]. Note that:

1. in Table 2, just Dataset1 has no overlapping clusters,

2. the data sets shown in Table 3 are used as a benchmark for the evaluation of
clustering methods in recent years.
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In addition, the data set sonar has the number of features that the complexity of the
algorithm is O(N2) (described in Section 3.2), and the data set pendigits is a high
size big data set.

Data Set Size Features Number of Clusters

1 Dataset1 400 3 4
2 Dataset2 250 2 5
3 Dataset3 300 2 6
4 Dataset4 500 2 10

Table 2: The main properties of artificial data sets used in [27, 24, 36, 37]

Data Set Size Features Number of Clusters

1 Iris 150 4 3
2 Wine 178 13 3
3 Glass 214 10 6
4 Ecoli 336 7 8
5 Liver disorder 345 6 2
6 Vowel 871 3 6
7 Vowel2 528 10 11
8 Pima 768 8 2
9 WDBC 569 30 2
10 CMC 1 473 10 3
11 Sonar 208 60 2
12 Pendigits 10 992 16 10

Table 3: The main properties of real-world data sets used in [27, 26, 22, 7]

4.2 Parameters Setting

The parameters of DCPSONS algorithm were empirically set as in Table 4, and all
of algorithms run over 20 times, the parameters of two other algorithms DCPSO
and DCPG were set according to their experiments. For fair comparison, in this test
all of competitive algorithms have the same total number of training (MaxFEs).

The parameter of the maximum number of clusters must initially be set, after
which, the optimal solution can be found by dynamic clustering. Zhang et al. [42]
suggested that the maximum number of clusters should not exceed the square root of
the number of data. Thus, the maximum number of clusters was set to the rounded
number of square root of the number of its data.

4.3 Results and Analysis

As above description, tests of each clustering algorithms were implemented over
20 times on all of sixteen benchmark data sets which consist of four artificial data
sets and twelve real-world data sets. The average and standard deviation of fitness
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Description of Parameter Value

MaxFEs (inner × outer loops) 500 (100× 5)
Population size (NP) 20
Inertia weight (w) 0.72
Learning factor (c1, c2) c1 = c2 = 1.49
Vmax 5
Pini 0.75
Pr 0.9
Pns 0.6

Table 4: The setting of parameter values for DCPSONS algorithm

values over 20 tests were used as the experimental results. Through the number of
clusters and VI value as the measurement indexes with the average and deviation
values recorded, the performance of competitive algorithms will be assessed.

The results of clusters numbers of competitive algorithms on artificial and real-
world data sets are shown in Tables 5 and 6, respectively, where Avg stands for
Average, SD stands for Standard Deviation (no loss of generality, in the results
if the standard deviation value is less than 10−8, it is considered as zero), where
the best value is written in bold. The VI measures of competitive algorithms on
artificial and real-world data sets are in Tables 7 and 8, respectively. The VI value
indicates that the training process of the algorithm reaches convergence. Regarding
the number of clusters, the algorithm, which has results of the cluster number found
be closer to the actual number of clusters of the benchmark data set, is better. The
convergence curves of algorithms are illustrated in Figure 2 on the artificial data
sets, and Figure 3 on real-world data sets. In order to compare the performance of
multiple algorithms on the test suite, we conduct Friedman test according to the
suggestions of [44, 45]. Table 9 shows the average ranking of DCPSO, DCPG, and
DCPSONS on fourteen data sets. The highest ranking, which belongs to DCPSONS
in term of convergence speed, is written in bold.

From the tables of results and figures of convergence it is clear that on the
artificial data sets, the performance of DCPSONS is better than DCPSO and DCPG
in majority of data sets for finding the best number of clusters. But, on Dataset4,
the found numbers of clusters of all of competitive algorithm are quite far from the
actual number, the best is DCPSONS of 7.70, while the actual is 10. In terms of
fitness value VI, the best results belongs to DCPSONS, but one belongs to DCPG,
Dataset2. In general, three algorithms has the same results in Dataset1 (which is
the non-overlap data set), and the convergence speed of DCPSONS is the fastest
and smallest of VI value.

On real-world data sets, DCPSONS has the best performance of finding the best
number of clusters on nine data sets, and three other data sets belong to DCPG
and DCPSO algorithms. From Table 8, it can be seen that DCPSONS has the
best convergence on all of data sets. Despite DCPSONS is worse in finding number
of clusters of Vowel2, Pima, CMC data sets, but DCPSONS significantly different



650 D.C. Tran, Z. Wu

from other algorithms. From Figures of convergence curves, the proposed DCPSONS
algorithm has faster convergence speed on majority of data sets, but only on Ecoli
data set DCPSONS was slower at first, and at last it was better.

Data Set Actual Number DCPSO DCPG DCPSONS
of Clusters Avg Avg Avg

SD SD SD

Dataset1 4 4.00 4.00 4.00
0 0 0

Dataset2 5 5.05 5.00 5.00
0.22 0 0

Dataset3 6 5.90 6.15 6.00
0.31 0.37 0.00

Dataset4 10 6.75 6.95 7.70
1.12 1.28 1.49

Table 5: Comparison of clusters number for artificial data sets

Regarding the computational time, though the DCPSONS algorithm is more
complicated than DCPSO, but quite simpler than DCPG, hence DCPSONS needs
less than DCPG. In particular, DCPG costs much time in the performance of elitist
selection for population 1 and population 2 to generate the next iterative population.
The results of computational time on benchmark datasets are expressed in Table 10.
From the results in Table 10, it is clear that DCPSO consumes less time than others,
but DCPG costs little more than the proposed DCPSONS algorithm. However, all
of competitive algorithms cost much more on big dataset (pendigits).

5 APPLICATION IN IMAGE SEGMENTATION

In this section, we will describe the results of applying the proposed algorithm in
image segmentation. As mentioned above, the existing methods of image segmen-
tation can be roughly divided into threshold, edge detection, region splitting and
merging, and segmentation based on clustering algorithms. Among them, segmen-
tation methods based on clustering algorithms are to partition the similar regions
of an image into one class as much as possible, and divide the dissimilar regions
into different categories, through certain criteria. In the proposed method, like to
dynamic clustering the best number of regions (clusters) of image is automatically
found by binary PSO with diversity and neighborhood search, each pixel is then
grouped into the closest region by k-means clustering algorithm.

To demonstrate the performance of algorithm, we apply this proposed approach
to perform pixel clustering with several synthetic images, and grey natural images.
The parameters were set similar to Section 4.2, except the MaxFEs is set to 100
(50× 2), and the value Vmax is set to 255 because the range of grey value of image
is from 0 to 255. The algorithm is compared to two other competitive algorithm
DCPSO [9] and DCPG [26], as for dynamic clustering of above description which
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Data Set Actual Number DCPSO DCPG DCPSONS
of Clusters Avg Avg Avg

SD SD SD

Iris 3 2.95 3.00 3.00
0.22 0 0

Wine 3 3.50 3.55 3.25
0.76 0.69 0.44

Glass 6 5.45 5.55 5.70
0.60 0.60 0.80

Ecoli 8 5.40 6.25 6.50
2.68 2.02 1.89

Liver disorder 2 2.30 2.35 2.30
0.47 0.49 0.47

Vowel 6 6.20 6.05 6.05
0.83 1.00 1.10

Vowel2 11 6.75 12.00 12.05
2.10 1.92 2.09

Pima 2 2.40 2.20 2.25
0.50 0.41 0.55

WDBC 2 2.85 2.85 2.80
0.67 0.67 0.41

CMC 3 3.00 3.00 3.10
0.32 0.46 0.31

Sonar 2 3.05 3.12 2.86
0.45 0.58 0.37

Pendigits 10 7.42 9.18 9.25
1.42 0.89 0.65

Table 6: Comparison of clusters number on real-world data sets

Data Set DCPSO DCPG DCPSONS
Avg Avg Avg
SD SD SD

Dataset1 0.0522 0.0522 0.0522
0 0 0

Dataset2 0.1824 0.1621 0.1664
0.0815 0.0496 0.0704

Dataset3 0.0648 0.05515 0.0551
0.0299 0 0.00007

Dataset4 0.1955 0.1986 0.1762
0.0334 0.0398 0.0359

Table 7: Comparison of VI value on artificial data sets
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Data Set DCPSO DCPG DCPSONS
Avg Avg Avg
SD SD SD

Iris 0.2225 0.2046 0.1003
0.1477 0.0783 0.0091

Wine 0.0966 0.0959 0.0956
0.0121 0.0113 0.0082

Glass 0.0177 0.1717 0.1601
0.0747 0.0531 0.0197

Ecoli 0.3197 0.3064 0.3060
0.0620 0.0456 0.0610

Liver disorder 0.1277 0.1180 0.0981
0.0410 0.0470 0.0274

Vowel 0.2787 0.2855 0.2756
0.0299 0.0212 0.0291

Vowel2 0.5255 0.5061 0.5009
0.0515 0.0451 0.0431

Pima 0.1065 0.1167 0.0984
0.0283 0.0504 0.0239

WDBC 0.0849 0.0816 0.0717
0.0343 0.0338 0.0219

CMC 0.1814 0.1848 0.1647
0.0209 0.0223 0.0106

Sonar 0.4443 0.3989 0.3366
0.0311 0.0421 0.0452

Pendigits 0.4343 0.4139 0.3932
0.0658 0.0325 0.0532

Table 8: Comparison of VI value on real-world data sets

Algorithms Rankings

DCPSO 2.64
DCPG 2.21
DCPSONS 1.14

Table 9: Average ranking achieved by Friedman test

are the dynamic clustering algorithm and application in image segmentation. The
details of results will be describe as following sections.

5.1 Synthetic Images

The synthetic images used in this test were conducted by a tool called SIGT [43]
including five images with size of 100 × 100. The histogram curves of synthetic
images are illustrated in Figure 4. In this case, each image is encode as a 1-D data
set, with each element being a 1-D vector containing a grey value of pixel image.
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Figure 2: The convergence curves on four artificial data sets

Data Set DCPSO DCPG DCPSONS

Iris 0.72 1.38 1.03
Wine 2.72 3.98 3.06
Glass 2.37 3.56 2.74
Ecoli 3.42 4.07 3.53
Vowel 6.70 6.42 5.79
Vowel2 7.39 11.24 9.09
Pima 11.00 11.02 10.57
WDBC 24.11 24.44 24.48
CMC 21.43 23.90 23.00
Sonar 61.29 82.56 80.84
Pendigits 842.22 1 120.10 1 025.65

Total 986.39 1 296.11 1 192.88

Table 10: The average of computational time (in second)
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Figure 3: The convergence curves on real-world data sets
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The results of three competitive algorithms on cluster number and fitness va-
lue VI are shown in Tables 11 and 12, respectively, where the best value is written
in bold. The results in Tables 11 and 12 show that three competitive algorithms
have generally performed well, especially DCPSONS which obtained the results of
cluster number closer actual actual number than others. In terms of fitness value VI,
the proposed has the best results in majority of data sets, while Image4 belongs to
DCPSO algorithm. In particular case, the found cluster number of Image4 is five
different from actual number, because the fourth cluster has length of grey uniform
distribution quite longer than others, so this regions is easy to be segmented into two
or more clusters. And more, in case of Image5, the actual number clusters is 3, but
the found results are different, because the second cluster, which has long length
of grey uniform distribution, may be segmented into more than actual number.
Whereas in case of Image3, all of three algorithms merged two clusters of the second
one and the third one into a cluster.

Image Actual Number DCPSO DCPG DCPSONS
of Clusters Avg Avg Avg

SD SD SD

Image1 2 2.00 2.00 2.00
0 0 0

Image2 3 3.00 3.00 3.00
0 0 0

Image3 3 2.00 2.00 2.00
0 0 0

Image4 4 5.00 5.00 5.00
0 0 0

Image5 3 5.00 4.80 4.76
0.85 1.03 1.20

Image6 9 6.89 6.67 7.20
1.88 2.00 1.86

Table 11: Comparison of cluster number on synthetic images

5.2 Natural Images

For evaluating the performance of algorithm on natural image, four grey natural
images were used in the evaluation, namely Lena, mandrill, peppers, and MRI. The
original images and its histograms are illustrated in Figure 5. Like [9, 41], the
optimal number of clusters of each image was suggested and is shown in Table 13.
The results of found cluster number and fitness value VI are in Tables 13 and 14,
respectively, where the best value is written in bold, and the segmented images of
three algorithms are shown in Figure 5. The results listed in the tables and shown
in the figure demonstrate that the proposed algorithm obtained better than others
on almost test images in terms of fitness value VI, number of clusters, and quality
of segmented image.
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Figure 4: The histograms of synthetic images
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Image DCPSO DCPG DCPSONS
Avg Avg Avg
SD SD SD

Image1 2.08 2.08 2.08 (×10−13)
0 0 0

Image2 0.0245 0.0244 0.0244
0.0002 0.0002 0.0002

Image3 1.16 1.16 1.16 (×10−13)
0 0 0

Image4 0.0261 0.0280 0.0262
0.0027 0.0051 0.0017

Image5 0.111 0.117 0.108
0.045 0.068 0.046

Image6 0.0823 0.0775 0.0708
0.0223 0.0163 0.0184

Table 12: Comparison of VI value on synthetic images

Image Optimal Range DCPSO DCPG DCPSONS
Avg Avg Avg
SD SD SD

Lena 5–10 5.80 6.17 6.75
0.84 0.98 2.22

Mandrill 5–10 5.67 6.12 6.25
0.58 1.73 1.02

Peppers 6–10 6.25 5.33 6.12
1.12 0.58 1.23

MRI 4–8 5.51 5.33 5.87
0.52 0.58 0.86

Table 13: Comparison of cluster number on natural images

Image DCPSO DCPG DCPSONS
Avg Avg Avg
SD SD SD

Lena 0.112 0.108 0.105
0.007 0.012 0.022

Mandrill 0.138 0.117 0.097
0.025 0.015 0.005

Peppers 0.101 0.101 0.117
0.011 0.016 0.024

MRI 0.073 0.069 0.066
0.021 0.019 0.004

Table 14: Comparison of VI value on natural images
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Figure 5: The original grey natural images. Test images from the first row to fourth
row are Lena, mandrill, peppers, MRI, respectively

6 CONCLUSIONS

This study proposed DCPSONS algorithm is to solve the problems with the un-
known number of clusters in advance applied in image segmentation. The approach
consists of two phases, the first phase is to find out the optimal number of clus-
ters based on the features of data, the second phase is to refine the chosen clusters
by k-means. Fourteen benchmark data sets were used to evaluate the performance
of DCPSONS in dynamic clustering. The results show that the DCPSONS algo-
rithm can obtain the right number of clusters and achieve better clustering results.
Moreover, the DCPSONS algorithm was compared to DCPSO, DCPG algorithms
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of dynamic clustering, based on the improved PSO with diversity mechanism and
neighborhood search, the algorithm not easy to fall into the local optimal solution.

In image segmentation application, the results on synthetic and natural im-
ages show that the performance of DCPSONS is better then the other competitive
DCPSO and DCPG algorithms in terms of number of clusters, convergence rate,
and segmented image quality.

Overall, the results on fourteen benchmark data sets and test images demon-
strate that the proposed DCPSONS algorithm is an effective, robust and efficient
clustering algorithm in both of data clustering and dynamic clustering problems.

In the future, we will expand the method by using GPU and MIC architecture
for big datasets and apply it to other domains.
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