
Computing and Informatics, Vol. 36, 2017, 353–385, doi: 10.4149/cai 2017 2 353

DATA-DEPENDENCY FORMALISM
FOR DEVELOPING PEER-TO-PEER APPLICATIONS

Ayoub Ait Lahcen

LGS, ENSA, Ibn Tofail University, Kenitra, Morocco
&
LRIT, Faculty of Sciences, Mohammed V University in Rabat, Morocco
e-mail: ayoub.aitlahcen@univ-ibntofail.ac.ma

Didier Parigot

Zenith Team, Inria, Sophia Antipolis, France
e-mail: didier.parigot@inria.fr

Salma Mouline

LRIT, Faculty of Sciences, Mohammed V University in Rabat, Morocco
e-mail: mouline@fsr.ac.ma

Abstract. Developing peer-to-peer (P2P) applications became increasingly impor-
tant in software development. Nowadays, a large number of organizations from
many different sectors and sizes depend more and more on collaboration between
actors to perform their tasks. These P2P applications usually have a recursive
behavior that many modeling approaches cannot describe and analyze (e.g. finite-
state approaches). In this paper, we present an approach that combines component-
based development with well-understood methods and techniques from the field of
Attribute Grammars and Data-Flow Analysis in order to construct an abstract rep-
resentation (i.e. Data-Dependency Graph) for P2P applications, and then perform
data-flow analyzes on it. This approach embodies a formalism called DDF (Data-
Dependency Formalism) to capture the behavior of P2P applications and construct
their Data-Dependency Graphs. Various properties can be inferred and computed
at the proposed level of data abstraction, including some properties that model

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computing and Informatics (E-Journal - Institute of Informatics,...

https://core.ac.uk/display/267942117?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

354 A. Ait Lahcen, D. Parigot, S. Mouline

checking cannot compute if the system presents a recursive behavior. As examples,
we present two algorithms: one to resolve the deadlock problem and another for
dominance analysis.

Keywords: Data-dependency formalism, data-dependency graph, application de-
velopment, peer-to-peer (P2P), data-flow analysis

1 INTRODUCTION

Developing peer-to-peer (P2P) applications became increasingly important in soft-
ware development. Nowadays, a large number of organizations from many different
sectors and sizes depend more and more on collaboration between actors (individ-
uals, groups, communities, etc.) to perform their tasks. P2P architecture is the
concept of an entity acting at the same time as a server and as a client in P2P net-
works [1, 2]. This is completely different from Client/Server networks, within which
the participating entities cannot act as a server or as a client but cannot embrace
both capabilities. Therefore, the responsibilities of entities are approximately equal
and each entity provides services to each other as peers.

In software systems, especially those that support P2P applications, data are
required for achievement of the computing activity and driving the interactions
between software entities. Nevertheless, software system design is usually based
on computational aspects with data as an afterthought. A data-centric approach
provides a different way of viewing and designing applications. It lets us focus on
the flow and transformation of data through the software system.

In this context, we have defined a Data-Dependency Graph (DDG). It has been
chosen as an abstract representation for P2P applications for the following two
reasons. Firstly, it represents only one data-flow model (dictated by the dependence
between data) on the execution. Further, DDG exposes the right level of detail –
enough to perform Data-Flow Analysis (DFA).

In this paper, we present an approach that combines Component-based Software
Engineering (CBSE) [3] with well-understood methods and techniques from the
field of DFA [4] (commonly used in compiler construction) in order to construct an
abstract representation (i.e. DDG) for P2P applications, and then perform data-flow
analyses on it. This approach embodies a formalism called DDF (Data-Dependency
Formalism) to capture the behavior of P2P applications and construct their DDGs.

DDF formalism provides the necessary set of operations to specify and analyze
P2P applications. DDF can be considered as a minimal and lightweight formalism
for the following two reasons. Firstly, the goal of DDF is to formally construct
the dependency graph which exposes the right level of detail to perform data-flow
analysis. Secondly, DDF is not intended to express business code or to be a general-
purpose programming language. This is performed according to Domain-Specific
Language (DSL) [5] principles.

Data-Dependency Formalism for P2P 355

We note that DDF is highly inspired by the main characteristics of the At-
tributed Grammars (AGs) because they are able not only to construct similar de-
pendency graphs, but also to capture complex recursive behavior (which is very
frequent in P2P applications, cf. Section 2.1) that many other approaches cannot
describe. Thus, our rule-based formalism is able to naturally capture this kind of
behavior. In fact, it is a well-known result from the formal language theory that
Finite-State Automata (FSA) cannot capture such behavior [4]. This implies that
FSA-based approaches used to model software applications cannot describe and ana-
lyze it. In particular, in the context of CBSE, a large body of component behavior
modeling approaches can be reduced to FSA. The well-known component models
SOFA [6] and Fractal [7] clearly raise this issue. For instance, in [6] the authors say:
“our approach cannot treat behavior that cannot be modeled by a regular language
(e.g. recursion).”

This paper is organized as follows. In Section 2 and 3, we present in more detail
our motivations. In Section 4, the DDF formalism is presented and illustrated
through the case-study Gossip protocol. In Section 5, we present how Data-Flow
Analysis techniques can be used to analyze the dependency graph with an effective
application to deadlock and dominance detection. Section 5 presents related work.
Finally, Section 6 concludes and presents future work.

2 MOTIVATIONS

2.1 Specificity of P2P Applications

Important properties of P2P applications are scalability and self-organization, neces-
sary because of their very large user base and the specificity of connections between
different peers (e.g. low-bandwidth connections) [8]. To support scalability and
self-organization in such networks, a large number of P2P-specific algorithms and
protocols have been developed. These algorithms and protocols are often executed
recursively. Consider, for instance, reputation computation1 which is a problem of
great importance in P2P environments [9] (a simple example justifying this impor-
tance is the case where, while downloading files with a P2P file sharing software, we
want to choose only reliable peers). Reputation computation is based on a sequence
of queries for getting the trust information about a peer A and their corresponding
responses. Such computation should be performed recursively since a response re-
turned from another peer B is the result of a query about the truthfulness of B. In
addition, during this trust computation, we must receive all information in the cor-
rect order since the cut-off might rely on that order [10]. Such recursive call-backs
can be viewed as a sequence of well-formed parentheses if a query call is replaced by
a left parenthesis and the corresponding response by a right parenthesis. Therefore,

1 We note that reputation computation presents a particular case of information dis-
semination and can be performed using Gossip protocol.

356 A. Ait Lahcen, D. Parigot, S. Mouline

the set of sequences describing these recursive call-backs is a Dyck-Language2. It is
a well-known result from the formal language theory that a Dyck-Language is not
a regular language [11]. Thus, no Finite-State Automaton (FSA) exists that accepts
the Dyck-Language. A formal proof can be found in diverse books on language
theory, e.g. the textbook of Aho et al. [4].

The kind of recursive call-backs presented above, which has a properly nested
structure, can be well defined in terms of Pushdown Automata or context-free lan-
guages [10] (discussed in Section 5). However, it is frequently the case that P2P
protocols present more complex recursive call-backs which give rise to context-
sensitive structures (interactive structures that adjust their behavior when the con-
text changes). Consider, for example, the case where four neighboring peers ex-
change information according to an interaction that corresponds to two interleaved
recursive call-backs. Such kind of interaction (anbmcndm) is context-sensitive and
cannot be described by context-free languages [4].

Referring to the research work on Attribute Grammars (AGs) [12] which are
context-sensitive languages, the recursive behavior of P2P applications can be cap-
tured by describing both control and data flow of each interaction. In addition, this
behavior can be analyzed using DFA techniques.

2.2 Exploring Data-Centric Approach for the CBSE

Component-based approach became increasingly important in software engineering.
This emerges from the need to use component-based approach concepts to implement
services and raise the level of abstraction by easing packaging, reusing, extending,
customizing and composing services [13]. Thus, services can be encapsulated and
their interfaces can be exposed into cohesive components to assist in the creation of
new applications. Hence, component-based approach yields promising benefits such
as service composition, reusability and adaptation. However, the data manipulated
by services to produce actionable results and which drive component interactions are
considered as an afterthought. Whereas, the data are incorporated as an important
part of the development of systems in several research areas such as desktop grid [14],
business intelligence and P2P systems. Recently, in the emerging cloud computing
area, where everything is a service, data management has been receiving significant
attention and has led to much excitement [15]; this can only increase.

Our motivation in this context is to investigate the applicability of the data man-
agement for software component systems by allowing run-time data to be specified,
viewed and analyzed, especially in P2P environments. While many of the current
component approaches emphasize the structural and functional aspects of compo-
nent composition, we insist on modeling flow and dependencies of run-time data,
because the interactions between components are due to exchanged data. Thus, it is

2 The Dyck-Language D is the subset of {x, y}∗ such that if x is replaced by a left
parenthesis and y by a right parenthesis, then we obtain sequence of properly nested
parentheses [11].

Data-Dependency Formalism for P2P 357

our belief that data must be considered to be an integral part of design and behavior
specifications of component-based systems.

2.3 Towards Data-Flow Analysis of Component-Based P2P Applications

2.3.1 Model Checking and the Specificity of P2P Applications

Model checking is an automated technique that, given a finite-state model of a sys-
tem and a formal property, systematically checks whether this property holds for
(a given state in) that model [16]. It explores all possible states of the system in
an exhaustive manner. Model checking has been successfully applied to a wide range
of systems such as embedded systems, hardware design and software engineering.
Unfortunately, not all systems can take the advantage of its power. One reason for
this is that some systems cannot be described as finite state models, in particular,
in the context of P2P applications (cf. Section 2.1). Another reason is that model
checking is not suited for data-intensive applications (which, in many cases, are de-
veloped using the P2P paradigm, cf. e.g. [17]). The recent book on model checking
of Baier and Katoen [16] clearly shows why the verification of data-intensive appli-
cations is extremely hard. Even if there is only a small amount of data, the state
space that must be analyzed may be very large. The authors even consider that this
is one of the first weaknesses:

“The weaknesses of model checking:

• It is mainly appropriate to control-intensive applications and less suited for data-
intensive applications as data typically ranges over infinite domains.

• Its applicability is subject to decidability issues; for infinite-state systems, or
reasoning about abstract data types (which requires undecidable or semi-decidable
logics), model checking is in general not effectively computable.

• . . . ”

2.3.2 Verification by Data-Flow Analysis

Data-flow analysis refers to a body of techniques which derive information about the
flow of data along software system execution paths [4]. The execution of a system
can be viewed as a series of transformations of the system state, which consists of
the values of all data in the system. Each execution of an intermediate statement
transforms an input state to an output state. We denote these data-flow values
before and after a statement s by INPUTS [s] and OUTPUTS [s], respectively.

To analyze the behavior of a system, we must consider all the possible paths (i.e.
sequences of system states) through a flow graph that the system execution can take.
Thus, solving a problem in data-flow analysis is reduced to finding a solution to a set
of constraints (called Data-Flow Equations) on the INPUTS [s] and OUTPUTS [s],
for all system statements s. There are two sets of constraints:

358 A. Ait Lahcen, D. Parigot, S. Mouline

• Semantic constraints: they define the relationship between INPUTS [s] and
OUTPUTS [s] of each statement s. This relationship is usually presented as
a transfer method f that takes the INPUTS [s] before the statement and
produces OUTPUTS [s] after the statement. That is, OUTPUTS [s] =
fs(INPUTS [s]).

• Control-flow constraints: If a system consists of statements s1, s2, . . . , sn, in that
order, therefore, the control-flow value out of si is the same as the one into si+1.
That is, INPUTS [si+1] = OUTPUTS [si], for all i = 1, 2, . . . , n− 1.

For example, to verify a property such as liveness of data that determines
whether a datum is used in the future along some path in the flow graph, we
shall set up the constraints for liveness of data (i.e. define the data-flow equa-
tions specifying that a datum d is live at a system point p if some path from p
to its end contains a use of d). These equations can be solved using an iterative
algorithm form as a fixed-point solution. The convergence of the algorithm is as-
sured by the theory of iterative data-flow analysis [18], which demonstrates that
a unique fixed point exists for these equations. Liveness information can be very
useful. For instance, if the result of a datum assignment in a software system is
not used along any subsequent execution path, then the assignment is considered
as dead code that we can eliminate. In Section 4.3, we provide another example
(detection of dominance) that illustrates in more details the principles of data-flow
analysis.

A broad range of other system properties can be computed at this level of data
abstraction, including some properties like safety and liveness that model checking
cannot compute for infinite state systems (cf. e.g. [19]). In addition, several algo-
rithms have been proposed in literature to compute these properties. Unfortunately
to date, the most dominant application of these algorithms, and more generally,
Data-Flow Analysis, are in the context of compiler construction. In particular, for
Attribute Grammar formalism which is used to describe the semantic analysis in
most compilers.

Our motivation in this context is to combine CBSE with the well-understood
methods and techniques from the field of AGs in order to construct an abstract
representation for P2P applications and then perform data-flow analyzes on this
abstract representation.

2.4 Illustrative Example: Gossip Protocol

In order to motivate and illustrate that our approach is useful, especially in the
context of P2P applications, we explain our dependency formalism in an example
that consists of a Gossip protocol [20, 21]. Gossip protocol, also called epidemic
protocol, is well-known in the community of P2P. It is mainly used to ensure a reli-
able information dissemination in a distributed system in a manner closely similar
to the spread of epidemics in a biological community. This kind of dissemination
is a common behavior of various P2P applications, and according to Jelasity [22],

Data-Dependency Formalism for P2P 359

Algorithm 1 The gossip algorithm skeleton (from Jelasity [22])

loop
timeout(T)
node ← selectNode()
send gossip(state) to node

end
procedure onPushAnswer(msg)

send answer(state) to msg .sender
state ← update(state,msg .state)

end
procedure onPullAnswer(msg)

state ← update(state,msg .state)
end

a large number of distributed protocols can be reduced to Gossip protocol. There
exist different variants of Gossip protocol. However, a template that covers a con-
siderable number of those variants has been presented by Jelasity in [22]. In our
example, we will rely on this template shown in Algorithm 2.4.

To model this Gossip protocol, we consider a set of nodes which get activated
in each T time units exactly once and then spread data in a network by exchang-
ing messages. Basically, when a node receives data, it responds to the sender and
propagates the data to another node in the network (in practice, the data are prop-
agated to a subset of nodes selected according to a specific algorithm). In terms
of service, a node is a component that has two activities: serving and consuming
data. There are two input services for the serving activity and two output services
for the consuming activity. These services are described in the node interface as
follows: (

{answer(resp : String), gossip(info : String)}in ,

{gossip(info : String), answer(resp : String)}out
)
.

The gossip service is for the propagation of data and the answer service is for
sending a response to the sender. The behavior of input services (serving activity)
just mirrors the same steps of the output services (consuming activity). From this
description of services, we can construct intuitively a simple dependency graph be-
tween services, i.e., output services of a nodex are connected to input services of
nodey, and so on. This graph represents a part of the control flow but it is not very
explicit about the data flow. In fact, we do not know the dependencies between
services and between data within a node.

To complete this interface with a description of both control and data flow, our
formalism specifies the behavior with a set of rules:

360 A. Ait Lahcen, D. Parigot, S. Mouline

r1 : timeout(T) → (gossip(statex), nodey)
r2 : (gossip(statey), nodey), [onPush] → (answer(statex), nodey)
r3 : (gossip(statey), nodey), [onPull] →
r4 : (answer(statey), nodey) →

where, r1 indicates that the internal service timeout activates the nodex in each
T time and then sends the data statex to nodey through the service gossip. r2 in-
dicates that the nodex receives the data statey from nodey and then responds by
sending the data statex through the service answer if the condition onPush is sat-
isfied. onPush is a guard condition (to keep things simple, we will ignore guard
conditions in this example). r3 indicates that the nodex receives the data statey

from nodey through the service gossip. r4 indicates that the nodex receives the data
statey from nodey through the service answer .

By introducing these rules, the system can be viewed as a set of components
where each component has inputs (left side of the rules) and outputs (right side of
the rules). The inputs receive data carried by services, and after computation, these
data can be sent through outputs. Therefore, we can extract a Data-Dependency
Graph of the whole system by connecting together the partial data dependency
graphs corresponding to each component used in this system.

3 DATA-DEPENDENCY FORMALISM

Our formalism is inspired by the Attributed Grammars (AGs) and was introduced
in [23, 24]. AGs were introduced by Knuth [25] and, since then, they have been
widely studied [12, 26, 27]. An attributed grammar is an extension of context-
free grammar to precisely describe both control and data flow. In this context,
an AG’s production describes an elementary control-flow that has the following
form: X0 → X1, . . . , Xn (X0 represents a node in a tree and X1, . . . , Xn are its
child nodes), whereas a semantic method f describes the computation of the syn-
thesized attributes of X0 and the inherited attributes of X1≤i≤n. The synthesized
attributes are the result of the attribute computation, and may use the values of
the inherited attributes. Synthesized attributes are used to pass computed infor-
mation up the tree, while inherited attributes pass information down and across
it. Many techniques and algorithms for data-flow analysis were introduced in AG
literature and in our previous works (e.g. [28, 29]). These techniques and algo-
rithms are commonly used in compiler construction for performing optimizations
from a program’s abstract representation (an attribute-dependency graph induced
by the Abstract Syntax Tree of the source code). In [29] we have argued that in the
term “Attributed Grammar” the notion of grammar does not necessarily imply the
existence of an underlying tree, and that the notion of attribute does not necessarily
mean decoration of a tree. We have presented Dynamic Attributed Grammars as an
extension to the AG formalism. They are consistent with the general ideas under-
lying AGs, hence we retain the benefits of the results that are already available in
that domain. In the same direction, we explore to use similar techniques to define

Data-Dependency Formalism for P2P 361

Data-Dependency Formalism (DDF) which allows us to construct Data-Dependency
Graph (DDG) to perform data-flow analyzes on it.

The DDF formalism is essentially dedicated to applications that can be divided
into autonomous components communicating with each other over channels. For this
purpose, we separate clearly computational activities and component interactions.
Thus, we distinguish two types of descriptions, grouped as syntactic and semantic
descriptions. The syntactic descriptions consist of a collection of input, output
and internal services described only by their signatures (interface). The semantic
descriptions consist of interaction rules (behavior).

3.1 DDF Specification

3.1.1 Interface

A service is a functional activity supported by a component. If the component
provides a service through its interface, the service is called input service; if the
component requires a service through its interface, the service is called output ser-
vice. If the component provides a service that is invoked only by itself, the service
is called internal service. A service call refers to an output service or an internal
service.

An internal service represents a particular action of a component. To de-
scribe, for example, time sequence (one component’s behavior occurs after some
time), an internal service timer(timeout : Int) can be used to represent a timer.
This internal service timer has an argument timeout , which can be set as an in-
teger. Once timer .timeout is set, the component’s behavior can only occur when
timer .timeout = 0.

Formally, a service and an interface are defined as follows:

Definition 1 (Service). A service is a 3-tuple δ = 〈type, name, arg〉, where:

• type is the service type;

• name is the service name;

• arg is a set of the service arguments.

A service s is written as s(a0, . . . , an), its result is denoted by s$ and its argu-
ments are denoted by args with args = (a0, . . . , an).

Definition 2 (Interface). An interface is a 3-tuple I = 〈Sin, Sout, Sint〉, where: Sin,
Sout, Sint are sets of, respectively, input, output and internal services.

3.1.2 Component

A component encapsulates data (attributes) with methods to operate on the com-
ponent’s data. Methods implement the services provided through the component
interface. Each service is implemented by one method. A component contains the

362 A. Ait Lahcen, D. Parigot, S. Mouline

declaration of attributes values of which define the state of its instances, along with
the bodies of methods that operate on those attributes. A method defined within
a component can access only those attributes that are declared within the compo-
nent, along with any arguments that are passed to the method.

The component prohibits concurrent access to its methods. Only one method
can be run within the component at any one time. Consequently, the programmer
does not need to code this synchronization explicitly; it is built into the component.
This technique is widely used in operating systems [30] to simplify reasoning about
the implementation of concurrent distributed applications.

During run time, a component might need inputs. When it receives an input,
the component will respond to this by executing its methods and/or changing its
state (attributes). Otherwise, without inputs, a component may produce an output
and/or change its states. This output may have an eventual response as an input.

Formally, a component is defined as follows:

Definition 3 (Component). A component is a 4-tuple C = 〈A, I, Imp,m〉, where:

• A is a set of typed attributes;

• I is an interface;

• Imp is a set of methods (implementing the services provided through the inter-
face). A method is denoted F and defined in Definition 6;

• m : {Sin, Sout} → Imp is a function that maps each service s ∈ (Sin ∪ Sint) of I
to a component method in Imp.

An attribute may be chosen as a component state. State changes are caused by
an input, output or internal service. Thus, for the external environment, the input
or output services may describe a visible state change. These states may be used by
guarded conditions (defined in Section 3.1.3) to control the component behavior.

A component may have multiple instances. An instance ci of a component
C = (AC , IC , ImpC ,mC) is denoted by ci : C.

3.1.3 Behavior with Data Dependency

As in the grammar-based modeling methods which are well suited to describing the
control logic for the processing of data streams [31], the aim of our specification is
to describe in a structured way what the control logic does while striving not to
describe how the control logic is computed or implemented. By “what” we mean
describing the sub-behaviors (called rules) of the control logic and by “how” we
mean describing the lower-level implementation details (usually presented as states,
transitions, encodings and other details of a FSA controller).

This choice to separate, as far as possible, what is computed from how it is com-
puted has been especially made in the grammar-based approaches for the following
reasons. Firstly, when the complexity of the control logic increases, describing the
states and transitions of a FSA controller implementing the control logic becomes

Data-Dependency Formalism for P2P 363

problematic. FSA controller of even a few states can have a large number of tran-
sitions and if some modifications should be made in the control logic, the FSA can
change considerably. Secondly, the lower-level specifying how things are computed
can be synthesized from the high-level control specification.

Typically, the synthesis begins with the construction of an abstract represen-
tation of the design (Data-Dependency Graph in our case) and then a translation
(or transformation) is performed to obtain an initial FSA representation. In our
case, and as in Attribute Grammars, we look to have a data/attribute evaluator
(which consists of a set of DFA algorithms) rather than a FSA controller. The
advantage of a data evaluator comes from the fact that not only one but multiple
implementations of the control logic can be synthesized by analyzing the order of
data evaluation (incremental, partial, total, parallel, etc.).

Thus, our method is based on describing the sub-behaviors of the control logic as
a set of rules. The total behavior of a design is described by composing together the
rules using compositional operators. Each rule links one input event to some output
events (see Definition 6). When an input event is received, a rule will respond to
this by executing computations, changing values of its attributes or sending output
events. In a rule, the input event is linked to output events by a transition labeled by
optional guard conditions. The guard conditions indicate the circumstances under
which a rule can be applied.

To keep the rule definition simple, we define first input and output event.

Definition 4 (Input Event). An input event v of a component C = 〈A, I, Imp,m〉
is an element of (Sin ∪ Sint).

Definition 5 (Output Event). An output event v of a component C = 〈A, I, Imp,
m〉 is an element of (Sout ∪ Sint).

Based on these events, a rule may specify four kinds of events (asynchronous
events): receiving an input service, receiving an internal service, emitting an out-
put service and emitting an internal service. Table 1 gives some examples (with
abbreviations) of such events.

Input Event → Output Events Informal Meaning

s1(args1)[Guards]→ . . . receipt of a service s1(args1), where s1 is
an input or internal service.

. . .→ s2$ emission of a response s2$ of a service s2,
where s2 is an input or internal service.

. . .→ s3(args3) emission of a service s3(args3), where s3 is
an output or internal service.

s4$[Guards]→ . . . receipt of a response s4$ of a service s4,
where s4 is an output or internal service.

Table 1. Asynchronous events

364 A. Ait Lahcen, D. Parigot, S. Mouline

To take into account the synchronous events, we introduce a synchronization
(a rendez-vous) symbol ↑. Thus, when a service is called, the caller waits until the
service response returns. We describe this kind of event in Table 2.

Input Event → Output Events Informal Meaning

. . .→ s1(args1) ↑ emission of a service s1(args1), and wait-
ing for its result.

Table 2. Synchronous event

In a rule r, we distinguish three types of data grouped as input, computed and
output data. The input data denote the known data used during the computation
achieved by the method implementing the service corresponding to the input event
of r (this method is called F and it is defined hereafter in Definition 6). The input
data consist only of internal component attributes and the arguments or result of the
service causing the input event. The computed data consist of the results of F and
the output data consist of the arguments or result of the service causing the output
event. The output data are presented as the union of the input and computed data.

Guard conditions act on the input data. They ensure that the input data are
valid or conforms to the conditions before applying the rule. They can be used, for
instance, to ensure that two events are mutually exclusive if they occur at the same
time.

Formally, a rule is defined as follows:

Definition 6 (Rule). A rule describes the behavior of a component C when it re-
ceives an input event v. A rule is defined by a 4-tuple r = 〈L,Guards , R,E〉, where:

• L = {v} with v is an input event. L represents the left side of the rule;

• Guards are the guard conditions, indicating the circumstances under which the
input event v can be executed. A guard condition consists on a set of Boolean
expressions. An input event v is executed if each Boolean expression is true;

• R = {v1, . . . , vn | ∀i ∈ 1..n, vi is an output event} ∪ {∅}. R represents the right
side of the rule;

• E is a semantic equation which has the following form:

(b0, . . . , bq) = F (a0, . . . , ap) (1)

where F is a method that implements the service corresponding to the input
event v and defines the computation of the output data (bi) in terms of the input
data (ai).

Before giving a definition of the constraints on the equation E, we define first
three sets of data: Input Data IDr, Computed Data CDr and Output Data ODr.

Data-Dependency Formalism for P2P 365

Definition 7 (Input data IDr of a rule r). Let a rule r = 〈L,Guards , R,E〉 desc-
ribe the behavior of a component C = 〈A, I, Imp,m〉 when it receives an input
event v, the input data ID of r are:

v ∈ L, IDr =

{
args ∪ A if v = s(args),

{s$} ∪ A if v = s$.
(2)

Definition 8 (Computed data CDr of a rule r). Let a rule r = 〈L,Guards , R,E〉,
computed data CD of r are the set of data resulting from the equation E:

CDr = {b0, . . . , bq}. (3)

Definition 9 (Output data ODr of a rule r). Let a rule r = 〈L,Guards , R,E〉,
output data OD of r are the data emitted by the output events of r:

ODr =
⋃
vi∈R

{
args if vi = s(args),

{s$} if vi = s$.
(4)

Once these three sets of data are defined, the constraints on the semantic equa-
tion E of a rule r can be defined as follows:

Definition 10 (Constraints of a semantic equation). The constraints to be satis-
fied by a semantic equation E : (b0, . . . , bq) = F (a0, . . . , ap) of a rule r are:

• Constraint (1): ODr elements can only be elements of the union of IDr and
CDr:

ODr ⊆ IDr ∪ CDr. (5)

• Constraint (2): F only accepts IDr elements as inputs:

∀i ∈ 0..p, ai ∈ IDr. (6)

In the right-hand side R of a rule, output events (separated by “,”) may be out-
put service emitted to different remote components, and each component is a pro-
cess that can be executed separately. This parallel relation between output events
is nearly implicit. For example, r : s→ s1, s2 means services s1 and s2 do not have
sequential relation.

This relation characterizes the activity of a unique rule. So, in order to charac-
terize the activity of a set of rules, we define three operations for rules:

• Sequence operation “ ; ”: Indicating a sequential order among rules. For exam-
ple, r1; r2; r3 means rule r1 acts before r2 and r2 acts before r3.

• Alternative operation “|”: Indicating an alternative choice concerning the output
events of a rule. For example,

366 A. Ait Lahcen, D. Parigot, S. Mouline

r : s[Guards]→ s1
| s2

means services s1 and s2 may have same chance to occur. This alternative can
be controlled by the guard conditions.

• Recursive operation “[]”: Indicating that an internal service s will be called
recursively. This recursion can be controlled by the guard conditions. Thus,
recursion operations can be used to have repetition (loop) indicating that some
rules will be executed n times continuously. For example,

[r1 : s[Guards] → s1
r2 : s1$ → s]

means that the rule r1 execute the internal service s if guard conditions are
satisfied, and then it calls the service s1. When the service s1 response arrives,
the rule r2 calls the internal service s, which will be executed again by r1 if
guard conditions are still satisfied.

Therefore, from the definition of an interface, a rule and rule operations, we
have the following definition of a component behavior.

Definition 11 (Behavior). The behavior of a component C is a set of rules com-
bined by sequence, alternative and recursion operations with respect to the following
regular expression:

B ::= r+ | [B+] | {B+} (7)

3.1.4 System

The component composition is based on connections among component instances.
A connection between two instances occurs when one of them provides its interface
and another instance uses it. Hence, input (resp. output) services are connected
to signature-matching output (resp. input) services. There is a unique connection
between two instances.

Once component instances are connected, the behavior of the entire resulting
system is obtained by composition of behaviors of participating instances. Since the
component instance behavior is a set of rules connected by sequence, alternative
and recursive operations, the system behavior can be again viewed as a set of rules
connected by these same operations.

Formally, a system is defined as follows:

Definition 12 (System). A system is defined by a 2-tuple Sys = 〈Inst ,Con〉 where:

• Inst is a set of component instances;

• Con = {(c1, c2)|(c1, c2) ∈ Inst×Inst} is a set of connections between component
instances.

Data-Dependency Formalism for P2P 367

Now, we define the system behavior from the behavior of each underlying compo-
nent instance. To achieve this, we associate the source and the destination instances
to the events of the rules. For example, let a rule r : v → v1, v2 describe the behavior
of a component C when receiving the input event v, where v ∈ Sin and Sin ∈ IC , and
let connections (c, ci) and (c, cj), where c, ci and cj are instances of, respectively, C,
Ci and Cj components. The rule r will be transformed to (v, ci) → (v1, cj), (v2, ci)
if the source instance causing the input event v is ci and the destination instances
of the output events v1 and v2 are Cj and Ci, respectively. This transformation is
performed by a function, which specifies in each rule the source component instance
causing its input event and the destination component instances of its output events.

Definition 13 (Rule Transformation). Let a rule r = 〈L,Guards , R,E〉 describe
the behavior of a component Ci when it receives an input event v ∈ L, and let
a connection (ci, cj) ∈ Con, where ci and cj are instances of, respectively, Ci and Cj

components. The transformation of r when ci is connected to cj is rci = σ(r)/ci→cj ,
where:

σ(r)/ci→cj = σ(r : v → v1 . . . vn)/ci→cj

= r : σr(v)/ci→cj → σr(v1)/ci→cj . . . σr(vn)/ci→cj

where the transformation function σ is defined as follows:

σ : V
r,/ci→cj−→ V × Inst or V,

σr(v)/ci→cj =

(v, cj) if v ∈ r.L ∧ v ∈ Sin(ci) ∩ Sout(cj),

(v, cj) if v ∈ r.R ∧ v ∈ Sout(ci) ∩ Sin(cj),

v.

(8)

Therefore, the system behavior is defined as follows:

Definition 14 (System Behavior). A system behavior B(Sys) is a set of rules com-
bined by sequence, alternative and recursion operations, where:

B(Sys) =
⋃

(ci,cj)∈T

{
B(ci)/ci→cj ∪B(cj)/cj→ci}, (9)

B(cx)/cx→cy = {σ(r)/cx→cy |r ∈ B(cx) ∧ r.L ∈ Sin(cx) ∩ Sout(cy)}. (10)

3.2 Case Study

In this section, a detailed DDF specification of the Gossip protocol [20, 21] is de-
scribed.

In a Gossip protocol, each node in the network periodically exchanges informa-
tion with a subset of other nodes. In fact, every node maintains a local membership

368 A. Ait Lahcen, D. Parigot, S. Mouline

table providing a partial view on the complete set of memberships and periodically
refreshes the table using a gossiping procedure. The table (view) is a list of c node
descriptors, where c is the size of the list and is the same for all nodes. A node
descriptor contains a node network address and an age that represents the freshness
of the given node descriptor. The list changes by means of usual list operations
(e.g., permute) that are defined on it. Therefore, the tables reflect the dynamics of
the system by continuously changing random subset of the nodes (in the presence
of failure and joining and leaving of nodes).

The protocol consists of two activities (serving and consuming) in each node:
an active client gets activated in each T time units exactly once and then initiates
communications with other nodes, and a passive server awaits for and answers these
requests. The behavior of the passive server just mirrors the same steps of the
active client. In terms of DDF, each activity corresponds to a pair of rules given in
Table 3.

This table describes the behavior of a Gossip System constituted of two nodes
(nodex and nodey) and the associated methods (implementations) extracted
from [21]. This system is formally defined with DDF as follows:

According to Definition 2, the interface of the component Node is expressed as
INode = 〈Sin, Sout, Sint〉, where:

Sin = {gossip(buffer : Buffer), answer(buffer : Buffer)};
Sout = {gossip(buffer : Buffer), answer(buffer : Buffer)};
Sint = {timeout(T : TimeUnit)}.

According to Definition 3, the component Node is expressed as Node = 〈A, I,
Imp,m〉, where:

• A = {view : List(IP : Address , age : Int), c : Int , push : Bool , pull : Bool ,T :
Time,H : Int , S : Int};
• I = INode;

• Imp = {Fr1(), Fr2(), Fr3(), Fr4()};
• m : {Sin, Sout} → Imp.

A attributes are described in Table 4.
According to Definition 11, the behavior of component Node is expressed as

BNode = {r1, r2, r3, r4}, where:

r1 : timeout(T) → gossip(buffer in) Fr1

r2 : answer(buffer out) → Fr2

r3 : gossip(buffer out), [pull] → answer(buffer in) Fr3

r4 : gossip(buffer out), [¬pull] → Fr4

According to Definition 12, the Gossip System is expressed as GossipSys =
〈Inst ,Con〉, where:

Data-Dependency Formalism for P2P 369

Gossip System Behavior Hidden Implementations

Server Activity (nodex)

rx1 : timeout(T)→ (gossip](bufferx),nodey) (bufferx) = Fr1(){
p = view .selectPeer()
if (push)

bufferx = (myAddress, 0)
view .permute()
view .moveOldestH ()
bufferx.append(view .head(c/2− 1))
gossip(bufferx)

else
bufferx = null
gossip(bufferx)

view .increaseAge()
}

rx2 : (answer(buffery),nodey)→ Fr2(buffery){
if (pull)
view .select(c,H, S, buffery)

}
Customer Activity (nodey)

ry3 : (gossip(bufferx),nodex), [pull]→ (buffery) = Fr3(bufferx){
(answer(buffery),Nodex) buffery = (MyAddress, 0)

view .permute()
view .moveOldestH ()
buffery.append(view .head(c/2− 1))

answer(buffery)

}
ry4 : (gossip(bufferx),nodex), [¬pull]→ Fr4(bufferx){

view .select(c,H, S, bufferx)
view .increaseAge()
}

Table 3. Behavior of a Gossip System constituted of two nodes (nodex and nodey).

• Inst = {nodex : Node, nodey : Node};

• Con = {(nodex, nodey)}.

According to Definition 14, the behavior of Gossip System is expressed as
BGossipSys = {Bnodex , Bnodey}, where:

B(GossipSys) = B(nodex)/nodex→nodey ∪B(nodey)/nodey→nodex ,

B(nodex)/nodex→nodey = {rx1 , rx2},

B(nodey)/nodey→nodex = {ry3 , r
y
4}.

370 A. Ait Lahcen, D. Parigot, S. Mouline

Attributes Explanation

view(IP , age) is a list with IP address and age that represents the freshness
of the given node descriptor.

c is the size of the view.
push equals 0 if the view is empty.
pull equals 1 if a response of an already called output service is

expected.
S is the number of items that were sent to a peer previously.

If S is high, then the received items will have a higher prob-
ability to be included in the new view.

H defines how aggressive the protocol should be when it comes
to removing links that potentially point to faulty nodes
(dead links). The larger H, the sooner older items will be
removed from views.

Table 4. Component attributes

4 SYSTEM ANALYSIS

As described in Section 2.3.2, Data-Flow Analysis refers to a body of techniques,
which derive information about the flow of data along software system execution
paths in order to infer or compute some system properties. To achieve this, we
must first consider all the possible paths through a flow graph that the system
execution can take. Therefore, we have defined a Data-Dependency Graph. It
presents an abstract representation of the system. This abstraction exposes the
right level of detail to perform DFA.

In this section, we show how the DDG of a system is constructed, and then we
present, as an application of DFA, an algorithm to resolve the deadlock detection
problem.

4.1 Data-Dependency Graph

The Data-Dependency Graph is extracted from the semantic equations of the system
by connecting together the Rule-Dependency Graphs corresponding to each rule
used in this system. The Rule-Dependency Graph of a rule r describes internal and
external dependency relations of input and output data, which are manipulated by
the different services of r.

The internal relations are induced from the semantic equation of a given rule,
which define the computation of the output data in terms of the input data. Thus,
Definition 15 defines the internal dependency relation as follows:

Definition 15 (Internal Dependency Relation). The internal dependency relation
Gint(r) in IDr ×ODr of a rule r is defined as follows:

ap Gint(r) aq if and only if (. . . , aq, . . .) = F (. . . , ap, . . .). (11)

Data-Dependency Formalism for P2P 371

Thus, aq depends on ap, if ap is an argument in the semantic equation for aq.

Figure 1. Example of an internal dependency relation

Figure 1 shows an example of an internal dependency relation where output
data a3 depends on input data a1 and a2.

The external relations of a rule r are related to the source and destinations of
events present in r. Therefore, we present the definition of external dependency
relation as follows:

Definition 16 (External Dependency Relation). Let a rule re describe the behav-
ior of a component instance e when it receives an input event, and let (v(ae1, . . . , a

e
q),

e′) be an event in re. The external relations induced from the event (v(ae1, . . . , a
e
q), e

′)
depend on the position of this event in re:

if (v(ae1, . . . , a
e
q), e

′) ∈ re.L then ∀k ∈ 1..q, ae
′

k Gext(r)a
e
k, (12)

if (v(ae1, . . . , a
e
q), e

′) ∈ re.R then ∀k ∈ 1..q, aek Gext(r)a
e′

k . (13)

Thus, aek depends on ae
′

k , if aek is an argument in the input event received from e′.
And ae

′

k depends on aek, if ae
′

k is an argument in the output event emitted to e′.
When no confusion arises between the notions of relation and graph, we shall

represent them both by the same notation. Accordingly, we denote the Internal
Dependency Graph of a rule Gint(r) and the External Dependency Graph Gext(r).
The union of these two graphs represents the Rule-Dependency Graphs of r, which
we denoted by G(r).

The Data-Dependency Graph, the graph of the whole system, is obtained from
the union of the Rule-Dependency Graphs and it is defined as follows:

Definition 17 (Data-Dependency Graph). Let Sys = 〈Inst ,Con〉 be a system, the
Data-Dependency Graph of the system Sys is:

G(Sys) =
⋃

e∈Inst

(⋃
r∈B(e)

(
Gint(r) ∪Gext(r)

))
.

4.2 Detection of Deadlocks in a Component Composition

In a component composition, services are often forced to wait for resources from
other services to finish execution. If the resources are not available, then the sys-
tem may enter an infinite wait state. Under the assumption that this issue is not

372 A. Ait Lahcen, D. Parigot, S. Mouline

caused by infinite loops, infinite wait is always caused by deadlocks or starvations.
A deadlock is a situation in which two or more actions (services) are mutually wait-
ing for each other to finish, while a starvation is a situation in which an action is
perpetually denied access to resources needed to make progress.

Figure 2. Example of data which depend on themselves

A system deadlock can be viewed as a circular dependency between data ex-
changed through services. Therefore, the basis of our deadlock analysis is detecting
possible circular dependencies in the Data-Dependency Graph of the system.

Once the DDG is defined, we can induce if the system is deadlocked or not by
searching for circularity in the graph. In other words, we shall search for a da-
tum which depends on itself. An example of such as situation is given in Fig-
ure 2.

Formally, a deadlocked system is defined as follows:

Definition 18 (Deadlocked system). Let Sys = 〈Inst ,Con〉 be a system and
G(Sys) = ∪e∈Inst(∪r∈B(e)(G(r))) be the Data-Dependency Graph of Sys . Then
Sys is said to be deadlocked if and only if there exists a rule r ∈ B(e), e ∈ Inst such
that G(r) contains a cycle.

4.2.1 Deadlock Test

Now, we present an algorithm (Algorithm 2) which determines whether or not a sys-
tem is deadlocked. The first stage of our deadlock test algorithm is to construct the
Rule-Dependency Graph G(r) of each rule r in the behavior of each component in
the system. This construction is achieved by connecting together the internal and
external dependency graph of r obtained as described above.

After that, G(r) is added to the Data-Dependency Graph G(Sys) which is ini-
tially empty. Once all rule graphs are added to G(Sys), we compute transitive
closure of G(Sys), which we denoted by G(Sys)+, in order to add induced depen-
dencies. Those induced dependencies allow us to determine whether or not a node
(a datum) of the graph is circular. If this is true, then we deduce that the system
has a deadlock and a message with the rule that contains the circular data is printed.

Data-Dependency Formalism for P2P 373

Algorithm 2 Deadlock test

Require: Sys = 〈Inst ,Con〉;G(Sys) := ∅;
{ - - - - - - - - - - Construction of the system graph - - - - - - - - - -}

for all e ∈ Inst do
for all r ∈ B(e) such that r : (v0, e0)→ (v1, e1), . . . , (vn, en) do
G(r) := Gint(r) ∪Gext(r);
G(Sys) := G(Sys) ∪G(r);

end for
end for
{ - - - - - - - - - - - - - - Search for deadlocks - - - - - - - - - - - - - -}

G(Sys) := G(Sys)+;
for all e ∈ E do

for all r ∈ B(e) such that r : (v0, e0)→ (v1, e1), . . . , (vn, en) do
if G(Sys)/r contains a cycle then

print Deadlock detected in rule r;
end if

end for
end for

4.3 Dominance Analysis

Dominance analysis is a concept from graph theory and has many applications not
only in the real world, but also in computer science. In compilers, dominance analysis
is mostly used in code optimization and it is performed over flow graphs representing
the execution of programs. One important task in this context is the optimization
of loops since the execution of programs tends to spend most of their time in their
inner loops. In parallel computing, dominance analysis is used to compute control
dependences that identify those conditions affecting statement execution. Such in-
formation is critical for detection of parallelism [32]. In peer-to-peer applications,
dominance analysis can be used to construct hierarchical overlay networks for more
efficient index searching. It can also be used for optimizing routing among a set of
nodes by reducing the searching space for a route to the dominating nodes in the
set. Dominating nodes are a small set of nodes which are close to all other. Another
field where dominance analysis is applied is memory usage analysis. In this field, the
dominator tree (defined hereafter) is used to easily find memory leaks and identify
high memory usage.

In a Data Dependency Graph, we say that node di dominates node dj, written
di dom dj, if every path from the entry node of the graph to dj goes through di.

To make this dominance notion concrete, consider the Data Dependency Graph
of Figure 3. Nodes d0, d1, d5, and d8 all lie on every path from d0 to d8, so Dom(d8)
is {d0, d1, d5, d8}. The full sets of dominators for the graph are as follows:

374 A. Ait Lahcen, D. Parigot, S. Mouline

Dom(d0) = {d0},

Dom(d1) = {d0, d1},

Dom(d2) = {d0, d1, d2},

Dom(d3) = {d0, d1, d3},

Dom(d4) = {d0, d1, d3, d4},

Dom(d5) = {d0, d1, d5},

Dom(d6) = {d0, d1, d5, d6},

Dom(d7) = {d0, d1, d5, d7},

Dom(d8) = {d0, d1, d5, d8}.

A useful way of presenting dominance information is a dominator tree, in which
each node d dominates only its descendants [4, 33]. For example, Figure 4 shows the
dominator tree for the DDG of Figure 3. Notice that d6, d7, and d8 are all children
of d5, even though d7 is not an immediate successor of d5 in the DDG. In fact, each
node di in the tree has a unique immediate dominator dj that is the last dominator
of di in the DDG.

Figure 3. A data dependency graph

Data-Dependency Formalism for P2P 375

Figure 4. Dominator tree for the DDG of Figure 3

To compute dominance information in a DDG, we can formulate the prob-
lem as a set of data-flow equations and solve them with an iterative algorithm.
This algorithm is based on the one proposed by Allen and Cocke [34] who re-
lied on the principles of data-flow analysis to guarantee termination and correct-
ness.

Algorithm 3 Iterative Dominator Algorithm

Require: G(Sys) := (N,E);

for all n ∈ N do
Dom(n) = N ;

end for

changed := True;

while changed do
changed := False;
for all n ∈ N do

temp = {n} ∪
(⋂

m∈preds(n) Dom(m)
)
;

if temp 6= Dom(n) then
Dom(n) = temp;
changed := True;

end if
end for

end while

376 A. Ait Lahcen, D. Parigot, S. Mouline

Given a DDG = (N,E), where N is a set of nodes and E is a set of directed
edges, the following data-flow equations defines the Dom sets:

Dom(n) = {n} ∪
(⋂

m∈preds(n)

Dom(m)

)
(14)

with the initial conditions: Dom(n0) = n0, and ∀n 6= n0, Dom(n) = N . preds
is a relation defined over E that maps each node to its predecessors in the graph.
Algorithm 3 shows an iterative solution for these dominance equations. It initializes
the Dom set for each node, then repeatedly computes those sets until they stop
changing.

5 RELATED WORK

The power of software system analysis approaches depends on the modeling tech-
nique for the behavior of software systems. This behavior is usually modeled by
Finite-State Automata (e.g. [6]). However, it may also be modeled by process al-
gebras (e.g. [35]), context-free languages (e.g. [36]), pushdown processes (e.g. [37]),
etc.

In the context of the component-based system, the finite state approaches usu-
ally use regular languages to describe component behavior. However, these finite
state approaches can only handle bounded recursion (i.e., up to a certain depth)
and limited abstraction of the data-flow. To address this more explicitly, we discuss
hereafter some of such approaches.

There is a large body of component models using various formal and semi-formal
specifications in the context of component-based systems. These specifications con-
centrate on different aspects of component modeling. Due to this diversity, we
refer to Rausch et al. [38] that provides an interesting study of state-of-the-art in
component-based systems. Among the component models discussed in [38], Ko-
brA [39] is a UML-based method for describing components and component-based
systems. It uses different diagrams representing three projections: structural, func-
tional and behavioral. KobrA is not a formal language, but rather a set of principles
for using mainstream modeling language. It provides a certain degree of flexibility
because anything that conforms to its principles can in practice be accommodated
within the method. Rich Services [40] provides an architectural framework that
reconciles the notion of service with hierarchy (systems-of-systems). It uses mes-
sage sequence charts in order to specify component behaviors. This allows the
approach to model bounded recursion. rCOS [41] is an extended theory of UTP
(Unifying Theories of Programming) [42] for object-oriented and component-based
programming. UTP combines the reasoning power of predicate calculus with the
structuring power of relational algebra. In rCOS approach, each component inter-
face has a contract. A contract only specifies the functional behavior in terms
of predicates (pre and post conditions) and a protocol defining the acceptable
traces of method calls. The behavior is specified by a state diagram and should

Data-Dependency Formalism for P2P 377

be accepted by an FSA. The protocol is specified by a sequence diagram. The
reasons for having these two diagrams are different. In fact, the sequence dia-
gram allows generating CSP processes to deal with concurrency, when the state
diagram has an operational semantics which is easier to use for verification with
model checking. SOFA [6] is a hierarchical component model. It is dedicated to
the development of distributed application with dynamic update of components. It
uses behavior protocols for the specification of interaction behavior of components.
This allows to verify the system architecture independently from the implementa-
tion, and the relation of the component model and implementation. In order to
fully automate behavior verification, a tool chain is used. It consists of behavior
protocols to Promela translator and the Spin model checker. However, behavior
protocols cannot treat behavior that cannot be specified by a regular language.
Like SOFA, Fractal also uses behavior protocols to specify component behavior.
Therefore, they have the same limitation on the description of component behav-
ior.

Since the finite state models are not providing an adequate abstraction of a sys-
tem that contains recursive call-backs, context-free model checking has been pro-
posed. Among the first works in this direction, we could mention [36], which
presents an algorithm that decides whether a property written in the alternation-
free modal mu-calculus is satisfied for context-free processes, i.e., for processes that
are given in terms of a context-free grammar or equivalently. Burkart et al. [37]
propose pushdown processes as a generalization of context-free processes to bet-
ter support parallel composition. Pushdown processes are processes that can be
(finitely) represented by means of classical Pushdown Automata. After introduc-
ing these two approaches, several models for infinite-state systems have been pro-
posed especially to decrease checking complexity [43, 44, 45]. But in the end, these
models are still closely related to context-free processes and pushdown processes,
and usually have the same expressiveness. In contrast to our approach, they can-
not handle recursive call-backs which give rise to context-sensitive structures, e.g.,
interactive structures that adjust its behavior when the context changes (cf. Sec-
tion 2.1).

Process algebras such as CSP (Communicating Sequential Processes) or CCS
(Calculus of Communicating Systems) can be used as an alternative approach for
verifying protocol conformance. These algebraic approaches are more powerful than
FSA and context-free grammars. According to Milner [46], algebra appears to be
a natural tool for expressing how systems are built. However, in order to automate
analysis, some constraints on the specification language can be required. For in-
stance, in [35], the authors are restricted to use their CSP notation in a way that
processes will always be finite.

Compared to other works where component approach is dedicated to manipu-
late protocols, Reussner [47] presents the model of counter-constrained finite state
machines. It is an extension of finite state machines, specifically created to model
protocols containing dependencies between services due to their access to shared
resources. However, Reussner does not consider composition operators and does

378 A. Ait Lahcen, D. Parigot, S. Mouline

not provide an underlying discipline. Puntigam [48] shows that it is possible to
develop component interfaces specifying non-regular protocols for the communica-
tion between components and the rest of a system. The concepts proposed in this
paper need support from a programming language. However, no practically usable
programming language supports these concepts.

Different data-flow based approaches have been proposed in the domain of sys-
tem modeling. Garousi et al. [49] provide a control flow analysis for UML 2.0
sequence diagrams to define the control-flow. The authors propose an extended
activity diagram meta-model. Yang et al. [50] present DFA-based algorithms to
analyze BPEL programs and detect their data-flow anomalies. These algorithms
operate on a control-flow graph derived from Activity Object Tree (AOT). The
AOT is based on Eclipse Modeling Framework to express the relationships among
activities. Zhou and Lee [51] propose a causality interface for deadlock analysis in
a concurrent model of computation called Dataflow. It shows that deadlock is decid-
able for synchronous Dataflow models with a finite number of actors. Cain et al. [52]
present an approach where a meta-model of an object oriented program’s runtime
is constructed to manage DFA. This meta-model contains classes that represent the
relationship between the program elements (e.g., classes, objects and methods) in
order to create an abstract representation for DFA. Like these different approaches,
we also use DFA-based algorithms to analyze the constructed systems. However,
our approach is dedicated to component-based P2P applications. It provides a for-
malism to capture their specific behavior (i.e. recursive call-backs) and constructs
an abstract representation (i.e. Data-Dependency Graph) from which we can ob-
tain multiple implementations of the control logic by analyzing the order of data
evaluation.

The principle of the transformation of an abstract representation is also present
in other formal systems. Many of them, such as λ-calculus [53], catamorphisms [54],
hylomorphisms [55] and other from category theory, have been studied in previous
works of Parigot (e.g. [56]) and a large comparison of these different formal systems
can be found in [57]. These works show that those formal systems share a similar
global structure. They abstract programs in some mathematical domain. Then,
the transformed program is obtained by a backward translation from the mathe-
matical domain. For instance, the HYLO system [55] transforms a program into
hylomorphisms and then performs partial data evaluation. After that, these new
hylomorphisms could be translated back into a program. However, these formal sys-
tems share a surprising constraint: the abstraction always relies on objects where
recursive structures or schemes are strongly preserved and cannot be easily modi-
fied. For example, with λ-calculus, the recursive calls are altogether defined in the
structure of the λ-terms. With hylomorphisms, these recursion schemes are exactly
pointed out by functors (a special type of mapping in category theory) which are
used as transformation parameters. Thus, transformations cannot freely restruc-
ture the abstract representation. Taking in mind these previous studies, DDF has
then been defined with the following distinctive characteristics: i) allowing parts
of the control logic (even if it is recursive) to be described conceptually separated

Data-Dependency Formalism for P2P 379

from other parts by using the concept of rules; ii) the user describes what is to be
done rather than the details of how it is to be done; iii) from a single specifica-
tion, multiple implementations can be synthesized by analyzing the order of data
evaluation.

Other works relevant in the context of our approach can be found in database and
network protocol communities. They are applied, for example, to cloud computing
in order to raise the level of abstraction for programmers and improve program
correctness in a data-centric, declarative style [58]. Another interesting approach is
P2 [59]. It can be viewed as a synthesis of ideas from these two communities applied
to overlay networks [60]. P2 is a system that uses a declarative logic language
to express and implement overlay networks. It directly parses and executes such
specifications into a data-flow program. The approach proposed by Lin et al. [61]
seems to be close to our work in the sense that it also passes through the construction
of a dependency graph to perform some optimizations. The difference between those
works and our approach is that they are not based on components. This usually
drives them to specify into their models (e.g., relational algebras and rule-based
specification) the whole application, including business code.

6 CONCLUSION AND PERSPECTIVE

This paper presents a formalism called DDF (Data-Dependency Formalism). The
goal of DDF is to formally specify the behavior of P2P applications, and then con-
struct an abstract representation (i.e. Data-Dependency Graph) to perform analyzes
on it. We note that our approach shares with the theory of Attribute Grammars [12]
the same semantics of the Data-Dependency Graph. The theoretical algorithms and
techniques of AGs and DFA show that it is possible through analysis on these de-
pendency graphs to infer various evaluation orders of data and compute different
properties. The reliability of those algorithms was proven in different works [12],
and optimized variants were presented in our previous works, e.g. [28, 29]. In a fu-
ture work, we plan to extend our formalism by program transformation mecha-
nisms in order to optimize resource allocations (e.g. optimize CPU and memory
usage by analyzing the lifetime of data, while taking into account their functional
dependencies and redundancies) in large-scale data-centric applications, in partic-
ular, in the emerging Cloud Computing area, where data management has been
receiving significant attention. Another perspective field where this future work
(i.e. optimization of resource allocations) might be useful is the Green Comput-
ing. In fact, environmental protection and energy-aware resource management
have become popular and important research topics at present [62]. In this di-
rection, the Green Computing is emerging as an indispensable part in sustaining
the practice of protecting the environment on both individual and collective le-
vels.

380 A. Ait Lahcen, D. Parigot, S. Mouline

REFERENCES

[1] Schollmeier, R.: A Definition of Peer-to-Peer Networking for the Classification of
Peer-to-Peer Architectures and Applications. Proceedings of the First International
Conference on Peer-to-Peer Computing (P2P ’01), IEEE Computer Society, Wash-
ington, DC, USA, 2001.

[2] Gupta, A.—Awasthi, L.: Peer-to-Peer Networks and Computation: Current
Trends and Future Perspectives. Computing and Informatics, Vol. 30, 2012, No. 3,
pp. 559–594.

[3] Szyperski, C.: Component Software: Beyond Object-Oriented Programming. ACM
Press and Addison-Wesley, New York, 1998.

[4] Aho, A. V.—Sethi, R.—Ullman, J. D.: Compilers: Principles, Techniques, and
Tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[5] Mernik, M.—Heering, J.—Sloane, A. M.: When and How to Develop Domain-
Specific Languages. ACM Computing Surveys, Vol. 37, 2005, No. 4, pp. 316–344, doi:
10.1145/1118890.1118892.

[6] Bures, T.—Decky, M.—Hnetynka, P.—Kofron, J.—Paŕızek, P.—
Plasil, F.—Poch, T.—Sery, O.—Tuma, P.: CoCoME in SOFA. In: Rausch, A.,
Reussner, R., Mirandola, R., Plasil, F. (Eds.): The Common Component Modeling
Example. Springer Berlin, Heidelberg, LNCS, Vol. 5153, 2008, pp. 388–417.

[7] Bulej, L.—Bures, T.—Coupaye, T.—Decky, M.—Jezek, P.—Paŕı-
zek, P.—Plasil, F.—Poch, T.—Rivierre, N.—Sery, O.—Tuma, P.: Co-
CoME in Fractal. In: Rausch, A., Reussner, R., Mirandola, R., Plasil, F. (Eds.):
The Common Component Modeling Example. Springer Berlin, Heidelberg, LNCS,
Vol. 5153, 2008, pp. 357–387.

[8] Ripeanu, M.—Foster, I.—Iamnitchi, A.: Mapping the Gnutella Network: Prop-
erties of Large-Scale Peer-to-Peer Systems and Implications for System Design. IEEE
Internet Computing Journal, Vol. 6, 2002, No. 1.

[9] Aberer, K.—Despotovic, Z.: Managing Trust in a Peer-2-Peer Information
System. Proceedings of the Tenth International Conference on Information and
Knowledge Management, ACM, New York, NY, USA, 2001, pp. 310–317, doi:
10.1145/502585.502638.

[10] Gschwind, T.—Assmann, U.—Nierstrasz, O.: Software Composition. 4th In-
ternational Workshop (SC 2005), Edinburgh, UK. Springer, LNCS, Vol. 3628, 2005.

[11] Stanley, R.: Enumerative Combinatorics. Cambridge Studies in Advanced Mathe-
matics. Cambridge University Press, 2001.

[12] Deransart, P.—Jourdan, M.—Lorho, B.: Attribute Grammars: Definitions,
Systems and Bibliography. Springer-Verlag, Inc., New York, NY, USA, 1988.

[13] Yang, J.—Papazoglou, M. P.: Service Components for Managing the Life-Cycle
of Service Compositions. Information Systems, Vol. 29, 2004, No. 2, pp. 97–125.

[14] Posypkin, M.—Semenov, A.—Zaikin, O.: Using BOINC Desktop Grid to Solve
Large Scale SAT Problems. Computer Science, Vol. 13, 2012, No. 1, pp. 25–34, doi:
10.7494/csci.2012.13.1.25.

https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1145/502585.502638
https://doi.org/10.7494/csci.2012.13.1.25

Data-Dependency Formalism for P2P 381

[15] Abadi, D. J.: Data Management in the Cloud: Limitations and Opportunities. IEEE
Data(base) Engineering Bulletin, Vol. 32, 2009, No. 1, pp. 3–12.

[16] Baier, C.—Katoen, J.-P.: Principles of Model Checking. The MIT Press, May
2008.

[17] Lee, J.—Lee, H.—Kang, S.—Kim, S. M.—Song, J.: CISS: An Efficient Ob-
ject Clustering Framework for DHT-Based Peer-to-Peer Applications. Computer Net-
works, Vol. 51, 2007, No. 4, pp. 1072–1094.

[18] Kam, J. B.—Ullman, J. D.: Global Data Flow Analysis and Iterative Algorithms.
Journal of the ACM (JACM), Vol. 23, 1976, pp. 158–171, doi: 10.1145/321921.321938.

[19] Govindarajan, R.—Yu, S.—Lakshmanan, V. S.: Attempting Guards in Par-
allel: A Data Flow Approach to Execute Generalized Guarded Commands. In-
ternational Journal of Parallel Programming, Vol. 21, 1992, pp. 225–268, doi:
10.1007/bf01421675.

[20] Voulgaris, S.—Gavidia, D.—van Steen, M.: CYCLON: Inexpensive Member-
ship Management for Unstructured P2P Overlays. Journal of Network and Systems
Management, Vol. 13, 2005, pp. 197–217, doi: 10.1007/s10922-005-4441-x.

[21] Jelasity, M.—Voulgaris, S.—Guerraoui, R.—Kermarrec, A.-M.—
van Steen, M.: Gossip-Based Peer Sampling. ACM Transactions on Computer
Systems (TOCS), Vol. 25, 2007, No. 3, Art. No. 8.

[22] Jelasity, M.: Gossip. In: Di Marzo Serugendo, G., Gleizes, M.-P., Karageorgos, A.
(Eds.): Self-Organising Software: From Natural to Artificial Adaptation. Chapter
1. Springer Berlin Heidelberg, Natural Computing Series, 2011, pp. 139–162, doi:
10.1007/978-3-642-17348-6 7.

[23] Ait Lahcen, A.—Parigot, D.—Mouline, S.: Defining and Analyzing P2P Ap-
plications with a Data-Dependency Formalism. 13th International Conference on Par-
allel and Distributed Computing, Applications and Technologies, 2012, pp. 317–322.

[24] Ait Lahcen, A.—Parigot, D.—Mouline, S.: Toward Data-Centric View on
Service-Based Component Systems: Formalism, Analysis and Execution. Work in
Progress Session of the 20th EUROMICRO International Conference on Parallel, Dis-
tributed and Network-Based Processing, Garching, Germany, 2012.

[25] Knuth, D. E.: Semantics of Context-Free Languages. Mathematical Systems The-
ory, Vol. 2, 1968, No. 2, pp. 127–145, Correction: Mathematical Systems Theory,
Vol. 5, 1971, No. 1, pp. 95–96.

[26] Knuth, D. E.: The Genesis of Attribute Grammars. WAGA Proceedings of the
International Conference on Attribute Grammars and Their Applications, Springer-
Verlag New York, Inc., New York, NY, USA, 1990, pp. 1–12, doi: 10.1007/3-540-
53101-7 1.

[27] Aho, A. V.—Lam, M. S.—Sethi, R.—Ullman, J. D.: Compilers: Principles,
Techniques, and Tools. 2nd ed. Prentice Hall, 2006.

[28] Jourdan, M.—Parigot, D.: Techniques for Improving Grammar Flow Analysis.
Proceedings of the Third European Symposium on Programming, Springer-Verlag
New York, Inc., New York, NY, USA, 1990, pp. 240–255, doi: 10.1007/3-540-52592-
0 67.

https://doi.org/10.1145/321921.321938
https://doi.org/10.1007/bf01421675
https://doi.org/10.1007/s10922-005-4441-x
https://doi.org/10.1007/978-3-642-17348-6_7
https://doi.org/10.1007/3-540-53101-7_1
https://doi.org/10.1007/3-540-53101-7_1
https://doi.org/10.1007/3-540-52592-0_67
https://doi.org/10.1007/3-540-52592-0_67

382 A. Ait Lahcen, D. Parigot, S. Mouline

[29] Parigot, D.—Roussel, G.—Jourdan, M.—Duris, E.: Dynamic Attribute
Grammars. International Symposium on Programming Languages, Implementations
and Logic Programming (PLILP ’96). Springer, Lecture Notes in Computer Science,
Vol. 1140, 1996, pp. 122–136, doi: 10.1007/3-540-61756-6 81.

[30] Silberschatz, A.—Galvin, P. B.—Gagne, G.: Operating System Concepts.
8th ed. Wiley Publishing, 2008.

[31] Börger, E.: Architecture Design and Validation Methods. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2000, doi: 10.1007/978-3-642-57199-2.

[32] Srinivasan, H.—Wolfe, M.: Analyzing Programs with Explicit Parallelism. Pro-
ceedings of the Fourth International Workshop on Languages and Compilers for Par-
allel Computing, Springer, London, UK, 1992, pp. 405–419, doi: 10.1007/bfb0038679.

[33] Cooper, K.—Torczon, L.: Engineering a Compiler. Elsevier Science, 2011.

[34] Allen, F. E.—Cocke, J.: Graph Theoretic Constructs for Program Control Flow
Analysis. IBM T. J. Watson Research Center, NY, Technical Report, 1972.

[35] Allen, R.—Garlan, D.: A Formal Basis for Architectural Connection. ACM
Transactions on Software Engineering and Methodology (TOSEM), Vol. 6, 1997,
pp. 213–249, doi: 10.1145/258077.258078.

[36] Burkart, O.—Steffen, B.: Model Checking for Context-Free Processes. In:
Cleaveland, W. (Ed.): CONCUR ’92. Springer Berlin, LNCS, Vol. 630, 1992,
pp. 123–137.

[37] Burkart, O.—Steffen, B.: Pushdown Processes: Parallel Composition and
Model Checking. In: Jonsson, B., Parrow, J. (Eds.): CONCUR ’94. Springer Berlin,
Heidelberg, LNCS, Vol. 836, 1994, pp. 98–113.

[38] Rausch, A.—Reussner, R.—Mirandola, R.—Plasil, F.: The Common Com-
ponent Modeling Example: Comparing Software Component Models. 1st ed. Springer,
2008.

[39] Atkinson, C.—Bostan, P.—Brenner, D.—Falcone, G.—Gutheil, M.—
Hummel, O.—Juhasz, M.—Stoll, D.: Modeling Components and Component-
Based Systems in Kobra. In: Rausch, A., Reussner, R., Mirandola, R., Plasil, F.
(Eds.): The Common Component Modeling Example. Springer Berlin, Heidelberg,
LNCS, Vol. 5153, 2008, pp. 54–84.

[40] Demchak, B.—Ermagan, V.—Farcas, E.—Huang, T.-J.—Kruger, I.—
Menarini, M.: A Rich Services Approach to CoCoME. In: Rausch, A., Reuss-
ner, R., Mirandola, R., Plasil, F. (Eds.): The Common Component Modeling Exam-
ple. Springer Berlin, Heidelberg, LNCS, Vol. 5153, 2008, pp. 85–115.

[41] Chen, Z.—Hannousse, A.—Van, D.—Hung, Knoll, I.—Li, X.—Liu, Z.—
Liu, Y.—Nan, Q.—, Okika, J.—Ravn, A.—Stolz, V.—Yang, L.—Zhan, N.:
Modelling with Relational Calculus of Object and Component Systems – rCOS. In:
Rausch, A., Reussner, R., Mirandola, R., Plasil, F. (Eds.): The Common Component
Modeling Example. Springer Berlin, Heidelberg, LNCS, Vol. 5153, 2008, pp. 116–145.

[42] Hoare, C.—Jifeng, H.: Unifying Theories of Programming. Prentice Hall Series
in Computer Science, Prentice Hall, 1998.

[43] Alur, R.—Benedikt, M.—Etessami, K.—Godefroid, P.—Reps, T.—
Yannakakis, M.: Analysis of Recursive State Machines. ACM Transactions on

https://doi.org/10.1007/3-540-61756-6_81
https://doi.org/10.1007/978-3-642-57199-2
https://doi.org/10.1007/bfb0038679
https://doi.org/10.1145/258077.258078

Data-Dependency Formalism for P2P 383

Programming Languages and Systems (TOPLAS), Vol. 27, 2005, pp. 786–818, doi:
10.1145/1075382.1075387.

[44] Benedikt, M.—Godefroid, P.—Reps, T. W.: Model Checking of Unrestricted
Hierarchical State Machines. Proceedings of the 28th International Colloquium on
Automata, Languages and Programming (ICALP ’01), Springer-Verlag, London, UK,
2001, pp. 652–666, doi: 10.1007/3-540-48224-5 54.

[45] Esparza, J.—Hansel, D.—Rossmanith, P.—Schwoon, S.: Efficient Algo-
rithms for Model Checking Pushdown Systems. In: Emerson, E., Sistla, A. (Eds.):
Computer Aided Verification. Springer Berlin, LNCS, Vol. 1855, 2000, pp. 232–247.

[46] Milner, R.: A Calculus of Communicating Systems. Springer-Verlag, LNCS, Vol. 92,
1980, doi: 10.1007/3-540-10235-3.

[47] Reussner, R.: Counter-Constrained Finite State Machines: A New Model for Com-
ponent Protocols with Resource-Dependencies. In: Grosky, W., Plasil, F. (Eds.):
SOFSEM 2002: Theory and Practice of Informatics. Springer Berlin, Heidelberg,
LNCS, Vol. 2540, 2002, pp. 20–40, doi: 10.1007/3-540-36137-5 2.

[48] Puntigam, F.: State Information in Statically Checked Interfaces. In Eighth In-
ternational Workshop on Component-Oriented Programming, Darmstadt, Germany,
July 2003.

[49] Garousi, V.—Briand, L.—Labiche, Y.: Control Flow Analysis of UML 2.0 Se-
quence Diagrams. In: Hartman, A., Kreische, D. (Eds.): Model Driven Architecture –
Foundations and Applications. Springer Berlin, Heidelberg, LNCS, Vol. 3748, 2005,
pp. 160–174.

[50] Yang, X.—Huang, J.—Gong, Y.: Static Data Flow Analysis and Anomalies
Detection for BPEL. International Conference on Test and Measurement (ICTM ’09),
Vol. 2, 2009, pp. 18–21.

[51] Zhou, Y.—Lee, E. A.: A Causality Interface for Deadlock Analysis in Dataflow.
Proceedings of the 6th ACM & IEEE International Conference on Embedded Software
(EMSOFT ’06), ACM, New York, NY, USA, 2006, pp. 44–52.

[52] Cain, A.—Chen, T. Y.—Grant, D. D.—Kuo, F.-C.—Schneider, J.-G.:
An Object Oriented Approach Towards Dynamic Data Flow Analysis (Short Paper).
Proceedings of the 2008 The Eighth International Conference on Quality Software
(QSIC ’08), IEEE Computer Society, Washington, DC, USA, 2008, pp. 163–168, doi:
10.1109/QSIC.2008.18.

[53] Sheard, T.: A Type-Directed, On-Line, Partial Evaluator for a Polymorphic Lan-
guage. Proceedings of the 1997 ACM SIGPLAN Symposium on Partial Evaluation
and Semantics-Based Program Manipulation (PEPM ’97), ACM, New York, NY,
USA, 1997, pp. 22–35, doi: 10.1145/258993.258999.

[54] Launchbury, J.—Sheard, T.: Warm Fusion: Deriving Build-Cata’s from Recur-
sive Definitions. Proceedings of Programming Languages and Computer Architecture
(FPCA ’95), ACM Press, 1995, pp. 314–323.

[55] Onoue, Y.—Hu, Z.—Takeichi, M.—Iwasaki, H.: A Calculational Fusion Sys-
tem Hylo. Proceedings of the IFIP TC 2 WG 2.1 International Workshop on Algorith-
mic Languages and Calculi, Chapman & Hall, Ltd., London, UK, 1997, pp. 76–106.

https://doi.org/10.1145/1075382.1075387
https://doi.org/10.1007/3-540-48224-5_54
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/3-540-36137-5_2
https://doi.org/10.1109/QSIC.2008.18
https://doi.org/10.1145/258993.258999

384 A. Ait Lahcen, D. Parigot, S. Mouline

[56] Correnson, L.—Duris, E.—Parigot, D.—Roussel, G.: Equational Seman-
tics. Proceedings of the 6th International Symposium on Static Analysis (SAS ’99),
Springer-Verlag, London, UK, 1999, pp. 264–283, doi: 10.1007/3-540-48294-6 17.

[57] Duris, É.: Contribution aux Relations Entre les Grammaires Attribuées et la Pro-
grammation Fonctionnelle. Ph.D. Thesis, Université de Marne la Vallée, October 1998
(in French).

[58] Alvaro, P.—Condie, T.—Conway, N.—Elmeleegy, K.—Heller-
stein, J. M.—Sears, R.: Boom Analytics: Exploring Data-Centric, Declarative
Programming for the Cloud. Proceedings of the 5th European Conference on
Computer Systems (EuroSys ’10), ACM, New York, NY, USA, 2010, pp. 223–236,
doi: 10.1145/1755913.1755937.

[59] Loo, B. T.—Condie, T.—Hellerstein, J. M.—Maniatis, P.—Roscoe, T.—
Stoica, I.: Implementing Declarative Overlays. SOSP, ACM, 2005, pp. 75–90.

[60] Andersen, D.—Balakrishnan, H.—Kaashoek, F.—Morris, R.: Resilient
Overlay Networks. ACM SIGOPS Operating Systems Review, Vol. 35, 2001, No. 5,
pp. 131–145, doi: 10.1145/502034.502048.

[61] Lin, S.—Täıani, F.—Bertier, M.—Blair, G.—Kermarrec, A.-M.: Trans-
parent Componentisation: High-Level (Re)Configurable Programming for Evolv-
ing Distributed Systems. Proceedings of the 2011 ACM Symposium on Applied
Computing (SAC ’11), ACM, New York, NY, USA, 2011, pp. 203–208, doi:
10.1145/1982185.1982233.

[62] Hu, J.—Deng, J.—Wu, J.: A Green Private Cloud Architecture with Global
Collaboration. Telecommunication Systems, Vol. 52, 2013, No. 2, pp. 1269–1279.

https://doi.org/10.1007/3-540-48294-6_17
https://doi.org/10.1145/1755913.1755937
https://doi.org/10.1145/502034.502048
https://doi.org/10.1145/1982185.1982233

Data-Dependency Formalism for P2P 385

Ayoub Ait Lahcen is Assistant Professor of computer engi-
neering at the ENSA Kenitra, a Moroccan engineering school,
and a researcher at both LGS laboratory (ENSA, Ibn Tofail Uni-
versity) and LRIT laboratory (Mohammed V University, Mo-
rocco). Prior to that, he got a Swiss Government Excellence
Scholarship to work during an academic year as a postdoctoral
researcher, with the Software Engineering Group of the Univer-
sity of Fribourg, Switzerland. He received his Ph.D. degree in
computer science from both Nice Sophia Antipolis University,
France (prepared at Inria Sophia Antipolis, in the Zenith team)

and Mohammed V University (prepared at LRIT laboratory). He was awarded a Moroc-
can Research Excellence Scholarship for Ph.D. candidates and a Merit Scholarship for his
Master in computer science and telecommunications.

Didier Parigot is senior research scientist at Inria. He brings
more than 30 years of research works in generative software en-
gineering, generative programming, middleware and data driven
programming. Since 2000, he leads the SON software at Inria
Sophia Antipolis. He holds his Ph.D. in computer science from
Paris XI University and H.D.R. (equivalence with the Professor
status) from Nice University.

SalmaMouline is Professor at Faculty of Sciences, Mohammed
V University of Rabat, Morocco. She obtained her Ph.D. in com-
puter sciences from Université Pierre Mendès France, Grenoble,
France in 1994. Her research interests include software engineer-
ing, information systems, verification of complex systems and
formal verification.

