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Abstract. The article presents a metaheuristic solution for the problem of shape
optimization of a rotating annular disc. Such discs are important structural com-
ponents of e.g. jet engines, steam turbines or disc brakes. The design goal is to find
the disc shape that would ensure its maximal carrying capacity (corresponding to
the speed of rotation), which is a variational problem with the objective functional
defined by L∞ norm. Such a definition makes the problem impossible to solve
using analytical methods so utilization of metaheuristics is necessary. We present
different algorithms to solve the problem starting with a classic evolutionary one,
followed by agent-based and hybrid agent-based memetic algorithms, which are the
main focus of this paper. The reason for this is that agent-based computing sys-
tems proved to be versatile as an optimization technique being especially efficient
for the problems with complex fitness functions. The obtained experimental results
encourage further application of such an approach to similar engineering problems.
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1 INTRODUCTION

Complex optimization problems, especially the ones connected with engineering app-
lications, very often prove to be so difficult that their analysis becomes a non-
trivial task for most traditional methods. In such cases simulation experiments
may be useful to verify the correctness of the proposed solutions, which may be
further improved (optimized) by the human designer. However, the globally optimal
solution is hard to find this way. This task may be successfully handled by some
(meta)heuristic computational techniques such as evolutionary algorithms. This
term covers a wide range of search and optimization methods, based on analogies
to phenomena of natural evolution [38].

However, one main drawback of employing evolutionary algorithms to solve such
problems is their intrinsic feature: they process a number of individuals, and the
application of selection and variation operators changing the structure of the pop-
ulation imposes an immense number of computations of fitness function until an
acceptable solution is found [27]. When evaluation of fitness for individual solutions
has a significant computation cost, as in the case of simulation model described
in this work, other means of metaheuristic computing may be needed in order to
decrease the total cost of the process. The problem becomes even more significant
when additional hybrid techniques (such as e.g. memetic computing [40]) are used.

One of interesting general-purpose metaheuristics that require less computation
effort than classic evolutionary algorithms [6] is an agent-based model of evolutionary
computation, namely EMAS – Evolutionary Multi-Agent System [2]. EMAS has
already proven to be an efficient method in solving different problems, from classic
benchmarks [7] to inverse problems [52] and other optimization tasks (see e.g. [20,
19]).

The problem discussed here is the optimization of rotating variable-thickness
annular elastic discs based on the proposed simulation model. Rotating discs are
important structural components, which can be found for instance in jet engines,
steam turbines or disc brakes. The design goal is to find a disc shape that would
ensure its maximal carrying capacity (corresponding to the speed of rotation). This
is an example of a variational problem with the objective functional defined by L∞
norm (see Section 2). Optimal shape design problems are often solved by modeling
the shape with a fixed class of functions (e.g. hyperbolic, nth order polynomial, see
e.g. [17, 1, 25, 41]). In the approach presented here the profile of the disc is defined
by spline curves, described by a set of parameters. This introduces many more
‘degrees of freedom’, which makes it possible to find a more suitable shape [16, 15].
The proposed algorithm is direct (i.e. the Euler-Lagrange equation is not used) –
a series of disc shapes is evaluated through simulation. In each simulation the speed
of rotation is increased until the maximum value of the observed stress intensity
reaches the value of the yield stress. In such a state the disc elastic carrying capacity
is exhausted (see Section 2). This approach is similar to the one used by Schwefel
and Rechenberg during their early works on Evolution Strategies [49], though their
method was experiment-based, ours is simulation-based.
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The paper is devoted to experimental verification of the possibility of applica-
tion of EMAS to solve the variational optimization problems, utilizing one of the
important features of EMAS, namely significantly lower time cost measured by the
number of fitness function calls required to yield similar results, compared with
e.g. parallel evolutionary algorithm (PEA) [7]. Moreover, EMAS was proven to be
a general-purpose optimizing method [5].

Based on the defined problem, the authors wanted to compare EMAS with as
similar as possible not-agent-based algorithms. It was quite hard to find proper
competitor for EMAS, since it is unique, one-of-a-kind system. Several algorithms
were considered and evolutionary algorithm constructed according to Michalewicz
model [38] turned out to be the most suitable for our needs.

The article begins with a careful formulation of the tackled problem (Section 2).
Next, the EMAS structure and features are described, concerning its classical, evolu-
tionary version, as well as its memetic version (Section 3). In Section 4, experimental
results are discussed, presenting both qualitative and quantitative results regarding
the computing process itself, as well as obtained solutions (profile of the rotating
disc). The experimental study is followed by conclusions (Section 5).

2 SHAPE OPTIMIZATION OF ROTATING DISKS

The optimal shape design of rotating discs is a classic one in mechanical engineering.
However, most of the classic papers are related to analytical methods for some special
(and often very simple) cases like, for instance, flat or hyperbolic discs. Some more
recent papers related to numerical or simulation-based optimization are reviewed
below.

Berger and Porat [1] analyzed a thin homogeneous rotating disk of variable
thickness, considered for the purpose of storing kinetic energy. The objective of
the design was to find the optimal shape of the disk for which the Specific Kinetic
Energy was maximal.

Decohesive carrying capacity (DCC) of variable-thickness annular perfectly plas-
tic disc was analyzed by Dȩbski and Życzkowski [17]. They showed that DCC may
occur not only at the boundary of the disk but also at a certain point inside the disk.
This fact can be crucial during simulation-based optimization. They also discussed
in detail the problem of the disk of uniform decohesive carrying capacity.

The disc of uniform carrying capacity was also investigated by Genta and Bas-
sani [25]. The optimization process proposed by the authors was based on genetic
algorithms.

Simulation-based optimization of elastic carrying capacity of rotating variable-
thickness annular elastic discs by means of classic (µ + λ) and (µ, λ)) evolutionary
strategies was discussed by Dȩbski et al. [16]. The profile of the disc was defined by
spline curves.

Mechanisms for maintaining population diversity in (µ, λ)-evolution strategies
were investigated by Dȩbski et al. [15]. The proposed mechanisms (deterministic
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modification of standard deviations, crowding and elitism) were experimentally ver-
ified with the use of the optimal shape design of rotating variable-thickness annular
disc problem.

The most important assumptions regarding the physical model of the design
problem under consideration are as follows [16]:

• We consider an annular elastic disc of variable thickness h = h(r) rotating with
constant angular velocity ω and subject to uniform traction pb at the outer
radius b. The disc is clamped at the inner radius a (see Figure 1).

• The classical theory of thin discs with small gradient dh/dr is assumed and
hence the stresses τry and σy are negligible.

• The material is linear-elastic with Young’s modulus E, Poisson’s ratio ν and
subject to the Huber-Mises-Hencky (H-M-H) yield condition.

• The small-strain theory is applied.
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Figure 1. Profile representation and constraints of the shape of the annular disc under
consideration. The profile of the disc is represented by the 3rd order spline built on
equidistant nodes (note: x = r/a).

The condition of internal equilibrium in polar coordinates may be then expressed
as follows:
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They combine radial displacement u with radial σr and circumferential σθ stresses.
Making use of constitutive Equations (2), after simple calculations the condition of
internal equilibrium takes the form:

d2u
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where C = ρm(1− ν2)/E. Boundary conditions
u(a) = 0,
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(4)

allow us to find a numerical solution depending on external loadings (angular velocity
ω and uniform traction pb). The stress intensity, calculated according to Huber-
Mises-Hencky hypothesis

σ2
i = σ2

r + σ2
θ − σrσθ (5)

takes its maximal value at the boundary of the disc (usually at its inner radius) or
at a certain point ro inside the disc. It obviously depends on the shape of the disc
(see [17]). When the maximum value of the stress intensity reaches the value of
yield stress σ0:

max
a≤r≤b

σi(r) = σ0 (6)

the elastic carrying capacity is exhausted. Therefore, Equation (6) allows us to
find the external loadings value (in general a combination of angular velocity ω and
uniform traction pb), which we call the elastic carrying capacity of the disc.

As mentioned above, the profile of the disc is represented by the 3rd order spline
(see Figure 1) built on equidistant nodes (with δ being the distance between nodes).
Coefficients of the spline may be found from the set of linear equations:
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After some calculations we may find the value of the interpolating function as well as
its derivative at any point from the range r ∈ [a, b] or, after introducing dimensionless
radius x = r/a, x ∈ [1, b/a]:
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1
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where x ∈ [xj−1, xj] and j = 1, . . . , n.
For numerical calculations we introduce the following dimensionless quantities:
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The above group of parameters is related only to the geometry of the disc while the
following one describes the material of the disc and its external loadings:
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We assume that external loading p (i.e. uniform traction) is a function of Ω
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√
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Substitution of Equations (12), (13) and (14) into Equations (3) and (4) gives the
final form of the rotating disc simulation model
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Finally, we can formulate the optimization problem by defining a decision vari-
able vector, a feasible region and an objective function. The decision variables vector

yyy = (y0, y1, . . . , yn) ∈ D ⊂ Rn+1 (17)
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represents the shape of the disc in n + 1 equidistant points. The feasible region is
defined as follows:

D =
{
yyy ∈ Rn+1 | [y0 = Hmax ∧ (hmin ≤ yj ≤ Hmax,∀j = 1, . . . , n)]

}
. (18)

Lastly, after the introduction of a dimensionless angular velocity (speed of rotation)
Ω̄ corresponding to the disc elastic carrying capacity (expressed by Equation (6)),
we can formulate the objective function in the following manner (i.e. the design
(optimization) goal is to find the disc shape that would ensure its maximal carrying
capacity (corresponding to the speed of rotation), see Equation (6)):

Φ = Ω̄ (yyy)→ max (19)

and its value for particular yyyp can be found only through simulation (this simulation-
based optimization process is as follows: (1) assume a shape (i.e. assume yyy) → (2)
find the interpolating spline → (3) perform simulation (i.e. find the elastic carrying
capacity Ω̄ corresponding to the assumed shape)→ if not StopCondition go to (1)).

3 EVOLUTIONARY AGENT-BASED COMPUTING

In this section an idea of EMAS as an efficient computing system, especially suited
for solving problems with costly evaluation of fitness function is presented.

In the last decades intelligent and autonomous software agents have been widely
applied in various computing systems, such as power systems management [37], flood
forecasting [26], business process management [29], intersection management [18],
or solving difficult optimisation problems [35], just to mention a few. The key to
understand the concept of a multi-agent system (MAS) is intelligent interaction (like
coordination, cooperation, or negotiation).

Agents play an important role in the integration of artificial intelligence subdisci-
plines, which is often related to a hybrid design of modern intelligent systems [45, 8].
In most similar applications reported in the literature (see e.g. [46, 14] for a review),
evolutionary algorithm is used by an agent to aid realisation of some of its tasks, of-
ten connected with learning or reasoning, or to support coordination of some group
(team) activity. In other approaches, agents constitute a management infrastructure
for a distributed realisation of an evolutionary algorithm [50].

In 1996, Krzysztof Cetnarowicz [13] proposed an idea of an evolutionary multi-
agent system (EMAS), which is an agent-oriented computing metaheuristic with
interesting features like distributed selection and lack of global control. Since then
the idea of EMAS has been applied to different problems (e.g. single, multimodal
and multicriteria optimisation). EMAS turned out to be a very good base for intro-
ducing different extensions (e.g. using memetic or immunological mechanisms), and
encouraged to conduct research at different levels (e.g. formal modelling [11, 48],
framework development [23], experimental research [3, 43, 10]).

Agents in EMAS represent solutions to a given optimisation problem. They
are located on islands representing a distributed structure of the computation. The
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islands constitute local environments, where direct interactions among agents may
take place. In addition, agents are able to change their location, which makes it
possible to exchange information and resources all over the system [31].

In EMAS, phenomena of inheritance and selection – the main components of
evolutionary processes – are modelled via agent actions of death and reproduction
(see Figure 2). As in the case of classical evolutionary algorithms, inheritance is
accomplished by an appropriate definition of reproduction. Core properties of agent
are encoded in its genotype and inherited from its parent(s) with the use of vari-
ation operators (mutation and recombination). Moreover, an agent may possess
some knowledge acquired during its life, which is not inherited. Both inherited and
acquired information (phenotype) determines the behaviour of an agent. It is note-
worthy that it is easy to add mechanisms of diversity enhancement, such as allotropic
speciation (cf. [12]) to EMAS. It consists in introducing population decomposition
and a migration action for agents (see Figure 2).
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Figure 2. Evolutionary multi-agent system (EMAS)

Assuming that no global knowledge is available, and the agents are autonomous,
selection mechanism based on acquiring and exchanging non-renewable resources is
introduced [13]. It means that a decisive factor of the agent’s fitness is still the
quality of solution it represents, but expressed by the amount of non-renewable
resource it possesses. In general, the agent gains resources as a reward for “good”
behaviour, and looses resources as a consequence of “bad” behaviour (behaviour
here may be understood as e.g. acquiring sufficiently good solution). Selection is
then realised in such a way that agents with a lot of resources are more likely
to reproduce, while a low level of resources increases the possibility of death. So
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according to classical Franklin’s and Graesser’s taxonomy – agents of EMAS can be
classified as Artificial Life Agents (a kind of Computational Agents) [24].

Agent-based evolutionary computing may be further enhanced using memetic
algorithms. Memetic algorithms belong to a class of cultural algorithms and his-
torically are evolutionary algorithms enhanced by hybridisation with local-search
methods. The first successful approach was made by Pablo Moscato [40], who hy-
bridised the evolutionary search with a local improvement, using simulated anneal-
ing to solve Traveling Salesman Problem. The evolutionary algorithm utilises the
local-search method (in the simplest case, the greedy local search or more sophisti-
cated local search techniques, such as simulated annealing or tabu search) within its
evolutionary cycle. This might happen in the course of evaluation (according to so
called Baldwin effect [28]) or mutation (like in the Lamarckian model of evolution).

In the Lamarck’s theory the characteristics of individuals acquired in the course
of life may be inherited by their descendants [22]. This method is usually imple-
mented as a local search procedure called in the course of execution of mutation
or crossover operator. The search for a mutated individual is based not only on
a stochastic one-time sampling from the solution space, it may be a much more
complex process, being an outcome of a local search starting from this individual.
In the same way the memetic crossover may be implemented, by trying different
combinations of parents’ genotypes, until a satisfactory match is found. In Lamar-
ckian evolution, individuals improve during their lifetime through local search and
the improvement is passed to the next generation. The individuals are selected based
on improved fitness and are transferred to the next generation with the improvement
incorporated in the genotype.

It is noteworthy, that the ability to solve optimization problems was also formally
proven for EMAS (expressed as ergodicity of appropriately constructed Markov
chain [4], similarly to the works of Vose [51]) [4, 5, 47], making EMAS a fully-fledged
global optimization technique.

EMAS-like systems were implemented many times, using different programming
languages and environments such as JAVA, .NET, Scala, Python or Erlang (see
e.g. [30, 9]). One of the most mature environments was constructed using JAVA and
named AgE. In this environment the agents are placed in tree-like structures (follow-
ing the composite design pattern) making possible easy decomposition of the pop-
ulations. The behaviour of the environment is designed according to discrete event
simulation [44]. Thus each agent is equipped with a “step” function that is called by
the environment whenever it is particular agent’s turn (according to simple round-
robin strategy). During its step, the agent based on its energy and selected other
parameters of the environment, may undertake actions (such as reproduction, mi-
gration, meeting and evaluation or local search). The environment was constructed
keeping in mind such features as scalability, flexibility and efficiently deliver neces-
sary services such as distributed communication (cf. [23], monitoring [32]), and easy
reconfiguration [42]. It is to note that the AgE environment is much more general
and not only EMAS can be implemented using this framework (actually AgE was
applied to different computing and simulation tasks during the over last 10 years).
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The environment is available as open-source project. Moreover, many environments
followed the AgE philosophy, however utilising different technologies and languages
(e.g. Python, Erlang, Scala, see e.g. [30, 9]). General description of the AgE envi-
ronment may be found at http://age.agh.edu.pl. For Java-based platform and
source code refer to: http://age.iisg.agh.edu.pl. For more information about
AgE-inspired Python-based PyAge environment used to conduct the experiments
presented in this paper, refer to: http://github.com/maciek123/pyage.

4 EXPERIMENTAL RESULTS

In order to examine the constructed model and explore the optimization capabilities
of the claimed-to-be efficient EMAS, an appropriately defined set of experiments was
carried out. As the main competitor of EMAS, PEA (Michalewicz version [38]) was
used. Both systems were configured in a similar way (the same variation operators,
similar selection parameters etc). Thus one of goals of the conducted research was to
check the influence of agency on the solving efficacy and efficiency for this particular
engineering problem. This section presents and discusses the obtained results.

4.1 Experimental Setup

Simulations were performed with the use of PyAge computing and simulation plat-
form written in Python [30]. Using this software environment, both EMAS and PEA
were implemented and used. In the main part of the experiments a shape of sim-
ulated disc was represented in 10 equidistant points. The configuration is included
in Table 1.

Parameter EMAS PEA

Disc radius x ∈ [1.0, 2.0]

Disc minimal thickness hmin = 1.0

Disc maximal thickness Hmax = 3.0

Mutation Uniform, of one randomly chosen gene

Crossover Single point

Speciation Allopatric

Number of evolutionary islands 3, fully connected

Numbers of individuals on each island 50

Agent/individual migration probability 0.05

Initial energy 100 –

Energy transferred from loser to winner 40 –

Agent’s death energy level 0 –

Minimal energy required to reproduce 90 –

Minimal energy required to migrate 120 –

Selection – tournament (tournament size: 15)

Table 1. Experiments configuration

http://age.agh.edu.pl
http://age.iisg.agh.edu.pl
http://github.com/maciek123/pyage
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All experiments were repeated 11 times and common statistical data was com-
puted. Simulations were run until the number of 80 000 evaluation events was
reached.

4.2 Computation Time

A very important feature of the considered class of engineering optimization prob-
lems is a high computational cost of solution evaluations. In fact all the considered
algorithms spend over 99 % of time computing fitness of processed solutions. In
a typical run of PEA, all evaluation events lasted 42107.1 seconds, while the whole
computation time was 42 164.4 seconds. That is, the fitness computations took about
99.86 % of computation time. In case of EMAS, evaluation events took 42 723.6 sec-
onds, that is 99.69 % of the whole computation which lasted 42 854.3 seconds. All
experiments described in this paper were run on Intel Core i5 with CPU of 1.8 GHz
with 4 GB of RAM.

These results show that all mechanisms but evaluation have a negligible effect
on efficiency. Therefore using such techniques as EMAS is of significant importance
in similarly defined problems as the one tackled in this paper because of its reported
lower computation time measured by the number of fitness function calls when
compared to other general optimization techniques, e.g. PEA [52, 7]. Therefore the
graphs presented in this section are based on evaluation event number as a derivative
of time to measure the efficiency of the examined systems.

4.3 Comparison of PEA and EMAS

Figure 3 illustrates a comparison of the best fitness (understood as an angular veloc-
ity ω) in the successive evaluation events for PEA and EMAS. The values presented
in the figure were computed as a mean of all 11 iterations. Moreover, standard
deviation was calculated. It turns out that EMAS significantly outperforms PEA.
While EMAS continues to improve results, PEA seems to be stuck in some local ex-
tremum quite in the initial stage of simulation. Besides, Figure 3 shows that, while
in case of PEA the results vary throughout the consecutive iterations (the standard
deviation is relatively high), in EMAS the dispersion of results is smaller. In order
to provide more exact statistical information, the so-called box and whiskers plots
are illustrated in Figures 3 a) and 3 b). These box and whiskers plots present some
additional data: the first and the third quartiles, the median, the minimal and the
maximal values. The presented results clearly show that the conducted experiments
are repeatable.

4.4 PEA and EMAS with Memetics

Apart from classic versions, simulations with Lamarckian local search were per-
formed. Memetic operator was implemented according to the steepest descent algo-
rithm based on choosing the best from 3 mutated individuals. Such a procedure was



342 W. Korczynski, A. Byrski, R. Dȩbski, M. Kisiel-Dorohinicki
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Figure 3. Comparison of PEA and EMAS best fitness in successive evaluation events (box
and whiskers)

repeated 3 times and the individual with the best fitness was selected. The exact
local search algorithm was based on the isotropic mutation. This strategy generates
points uniformly on N-dimensional hypersphere [36].

Figures 4 a) and 4 b) illustrate how the memetics affects the results. It might
be observed that PEA was enhanced remarkably. Although the fitness is worse in
the initial evaluation events, PEA with memetics outperforms its standard version
rapidly. Besides, memetics helps reach the repeatability of the results.
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Figure 4. Comparison of PEA and EMAS versions with and without memetics

The final results shown in Figure 4 are quite similar, yet it is noteworthy, that
even a small improvement is very significant from the engineering point-of-view,
therefore EMAS prevails. Though obtained suboptimal solution (even for PEA)
might be acceptable, it is to note that EMAS reached these results quicker that its
counterparts (after about 10 000 evaluations of the fitness function, while PEA in
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the best case – with memetics used – needs at least two times more fitness function
evaluations).

Different remarks have to be made in case of EMAS. As one can see, the appli-
cation of memetics did not influence the result reached at the end of computation at
all. The best fitness is neither better nor worse and it remains on the more or less
constant level. To sum up, it seems that memetics is not needed in this particular
case, to make EMAS better.

4.5 Diversity

Main observations were focused on the best fitness, however the diversity was also
calculated according to the following definitions of this measure:

• Morrison-De Jong (MOI) measure based on the concept of moment of inertia [39],

• maximum standard deviation (MSD) of each gene computed for all individuals
in the population.

Figures 5 a), 5 b), 5 c) and 5 d) illustrate how MOI and MSD diversity measures
changed throughout the simulation process and how these two measures depended
on the application of memetics. It might be seen that the application of memet-
ics significantly decreases diversity, both for PEA and EMAS. Though diversity
for EMAS is slightly lower than in case of PEA, the obtained results are of the
same range or better (see Section 4.7) maintaining the lower computation cost (see
Section 4.2).

4.6 Experiments with Variable Number of Evolutionary Islands

In order to prove how parallelization affects the obtained results, we performed some
preliminary experiments with the use of EMAS and a variable number of evolution-
ary islands. Thus we were able to check how best fitness changes in dependence on
the mean number of evaluation events for each evolutionary island. Table 2 presents
the results of the best fitness computed in the 15 000th evaluation applying 1, 3 and 6
evolutionary islands.

Number of Islands Best Fitness Standard Deviation

1 0.5721 0.0015
3 0.5738 0.0008
6 0.5745 0.0008

Table 2. The best fitness computed in (15 000th) evaluation event with variable number
of evolutionary islands

Although the differences are not large, it is clear that the increase of the number
of evolutionary islands improves the obtained results and guarantees they are more
stable (the standard deviation is lower). As these preliminary results look very
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Figure 5. Diversity

promising, it would be beneficial to perform more tests focused on parallelization in
our future work.

4.7 Optimal Disc Shape

Last but not least we present the shape of rotating variable-thickness disc obtained
as a result of the presented different evolutionary systems. In this Section vari-
ation of results throughout the simulation process, in the successive evaluation
events, is discussed. Table 3 summarizes the results obtained in the last evalua-
tion event.

Figures 6 a), 6 b), 6 c) and 6 d) present a thickness of the optimal shape found in
the simulation process. Points representing thickness values in each of the equidis-
tant nodes have been connected with cubic spline in order to illustrate a disc shape.
These curves correspond to the line y0, ..., yn illustrated in Figure 1.

Similar disc shapes found with EMAS, PEA with memetics and EMAS with
memetics correspond closely to the best results obtained in the simulations. The
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Best fitness St. dev. MSD div. MSD st. dev. MOI div. MOI st. dev.

PEA 0.5590 0.0035 0.4556 0.0526 132.7053 9.6958
EMAS 0.5765 0.0002 0.4104 0.0598 81.6735 14.0741
PEA + memetics 0.5758 0.0004 0.0574 0.0046 2.3703 0.1538
EMAS + memetics 0.5755 0.0005 0.0643 0.0101 2.7002 0.2687

Table 3. Simulation results in the last (80 000th) evaluation event

worst results were obtained with the use of PEA, therefore the shape presented in
Figure 6 a) remarkably differs from the rest.

Finally, some tests with more spline nodes were performed. Their number was
increased to 20 and simulation with the use of EMAS was rerun in order to examine
how this modification influenced on the results. In Figure 7 a) we compared the best
fitness reached by the simulation while using 10 and 20 nodes. It might be observed
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Figure 6. Optimal disc shape
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that, initially, fitness improvement took place faster in the former case, nevertheless
the final result was better while 20 nodes were applied.

Figure 7 b) illustrates the most optimal disc shape designed as an outcome of
the experiments with the use of 20 nodes.
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Figure 7. EMAS best fitness for 10 and 20 nodes and optimal disc shape found with
EMAS for 20 nodes

5 CONCLUSION

In this paper a practical engineering problem, namely shape optimization of a vari-
able-thickness rotating annular disc was presented. Being a very complex problem
without feasible deterministic solution available, metaheuristic-based approach was
chosen, namely classic (as PEA) and agent-based (EMAS) were considered.

EMAS-based solution method was selected because it proved effective in other
optimization problems (thanks to small number of fitness evaluation events). It
was especially important because in the analyzed problem the evaluation of solution
candidates was simulation-based and the time cost of single simulation required the
biggest computation effort for the whole computing system. Moreover, EMAS was
proven as a general-purpose optimization algorithm (supported by carefully lead
formal proof), making this technique a very good approach for solving so-called
“black-box” scenarios [21].

The obtained results clearly showed that agent-based techniques prevailed classic
evolutionary algorithm both in solution quality (the fitness was just a little better
than the one obtained by PEA, but the resulting shape was smoother) and efficiency.

Future research work could concentrate on the application of EMAS-based ap-
proach to other engineering problems and on adapting the presented algorithms to
highly-parallel, heterogeneous (CPU+GPU), computer systems.

Since experimental studies of the considered class of population-based compu-
tational intelligence techniques require much computing power, in the near future
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we also plan to extensively use the available computing infrastructure, using one
of available data-farming frameworks supporting scientific computations, namely
Scalarm [33, 34].
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