
Computing and Informatics, Vol. 36, 2017, 140–168, doi: 10.4149/cai 2017 1 140

EXPLOITING FINE-GRAINED SPATIAL
OPTIMIZATION FOR HYBRID FILE
SYSTEM SPACE

Jaechun No∗

College of Electronics and Information Engineering
Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul, Korea
e-mail: jano@sejong.ac.kr

Sung-Soon Park

Department of Computer Engineering
Anyang University and Gluesys Co. LTD, Manan-gu, Korea

Cheol-Su Lim

Department of Computer Engineering
Seokyeong University, 16-1 Jungneung-dong, Sungbuk-gu, Seoul, Korea

Abstract. Over decades, I/O optimizations implemented in legacy file systems
have been concentrated on reducing HDD disk overhead, such as seek time. As
SSD (Solid-State Device) is becoming the main storage medium in I/O storage
subsystems, file systems integrated with SSD should take a different approach in
designing I/O optimizations. This is because SSD deploys the peculiar device char-
acteristics that do not take place in HDD, such as erasure overhead on flash blocks
and absence of seek time to positioning data. In this paper, we present HP-hybrid
(High Performance-hybrid) file system that provides a single hybrid file system
space, by combining HDD and SSD partitions. HP-hybrid targets for optimizing
I/O while considering the strength and weakness of two different partitions, to store
large-scale amounts of data in a cost-effective way. Especially, HP-hybrid proposes

∗ corresponding author



Exploiting Fine-Grained Spatial Optimization for Hybrid File System Space 141

spatial optimizations that are executed in a hierarchical, fine-grained I/O unit, to
address the limited SSD storage resources. We conducted several performance ex-
periments to verify the effectiveness of HP-hybrid while comparing to ext2, ext4
and xfs mounted on both SSD and HDD.

Keywords: Spatial optimization, hybrid file system, SSD, positive inclusion, hier-
archical extent layout

Mathematics Subject Classification 2010: 68-N25

1 INTRODUCTION

Providing high I/O bandwidth is an essential objective of file system implementation.
As data sizes being generated from applications, such as cloud applications [33,
34], become large, the role of file systems as a means of data management has
been emphasized to achieve fast I/O performance. As a result, a wide range of
optimization schemes have been implemented in file systems and their efficiency
and correctness have been proved in many applications. However, many of them
targeted for minimizing disk overhead in HDD, which might be no longer required
in I/O storage subsystems built with SSD.

SSD is a device medium that is considered as the next-generation storage device
due to its advantages such as non-volatility, fast random I/O speed and low-power
consumption [1, 11, 26]. As the technology of NAND flash memory is becoming
improved, the usage of SSD is also widening from small-size mobile devices to large-
scale I/O storage subsystems. However, file system development to utilize SSD’s
promising potentials in I/O does not keep pace with such a technical improvement
of flash memory.

For example, there are several flash memory-related file systems, such as JFFS
and YAFFS [2, 7, 16, 29], which have addressed the peculiar semiconductor char-
acteristics of flash memory. However, since they have been developed for small-size
devices, those file systems are not appropriate for managing large-scale data stor-
ages. One way of managing large-scale amounts of data is to use legacy file systems,
such as ext2 and ext4, on top of I/O storage subsystems built with SSDs. How-
ever, those file systems do not consider SSD’s physical device characteristics, thus
they could not effectively address the inherent SSD-related properties, such as wear-
leveling [4, 9, 14, 20, 27] and write amplification [1, 22]. Furthermore, the ratio of
cost to capacity of SSD is high, compared to HDD [21, 25], thereby building large-
scale I/O storage subsystems with only SSDs can incur considerable expenses.

To address those disadvantages, we implement a hybrid file system, called HP-
hybrid (High Performance-hybrid), which integrates SSD with HDD in a cost-
effective way. HP-hybrid provides multiple, logical data sections in SSD partition
that are organized with the different size of I/O units, called extents. On top of



142 J. No, S.-S. Park, C.-S. Lim

those data sections, files can selectively be mapped to the appropriate data section
based on file size, access pattern and usage, in order to reduce file allocation cost and
to increase the utilization of SSD storage resources. HP-hybrid has the following
advantages:

• File allocations in SSD partition are performed in a fine-grained way, to address
SSD space constraints. Although I/O on SSD partition is executed per extent,
the remaining space of extents after file allocations can be used further to allevi-
ate extent fragmentation. Utilizing the remaining space of extents is performed
by using the in-memory allocation table, thereby not deteriorating overall I/O
bandwidth.

• Given that the flash block size is known to HP-hybrid, the extent size can
be aligned with flash block boundaries, by collecting data in VFS layer. It
is noted that matching the logical data size with flash block boundaries can
reduce the erasure overhead in FTL [1]. Furthermore, gathering data in VFS
layer does not require the access to SSD internal structures. HP-hybrid attempts
to take such an advantage while providing the hierarchical extent layout to avoid
fragmentation problem.

• HP-hybrid provides the transparent file mapping where main objectives are to
overcome SSD’s space restriction and to provide better I/O bandwidth by re-
ducing file allocation cost. In the transparent file mapping, the files that do
not need high I/O response time, such as backup files, can bypass SSD par-
tition, while storing them only in HDD partition. Also, data sections can be
constructed with different extent sizes. As a result, the files that have a large-
size, sequential access pattern, for instance multimedia files, can be stored in
the logical SSD data section that is composed of large-size extents, reducing file
I/O cost.

The rest of this paper is organized as follows: In Section 2, we discuss related
studies. Section 3 describes an overview and optimizations implemented in HP-
hybrid. In Section 4, we present several performance experiments of HP-hybrid
while comparing them to those of ext2, ext4 and xfs. In Section 5, we discuss the
summary of the performance experiments and conclude our paper.

2 BACKGROUND WORK

The storage component of NAND-based SSD is flash memory [8, 17, 24]. One of the
critical components affecting SSD performance is FTL (Flash Translation Layer),
which emulates the block device driver of HDD. Even though flash memory cell is
programmed per page, the erasure operation due to data modification should be ex-
ecuted in terms of flash blocks. Because the life time of flash memory cell is limited,
the wear-leveling process in FTL is necessary to evenly distribute erase/program cy-
cles over memory cells. Furthermore, the wear-leveling process can be more effective
than ever by reordering flash blocks or pages prior to passing them to FTL.



Exploiting Fine-Grained Spatial Optimization for Hybrid File System Space 143

The wear-leveling algorithm proposed by Chang et al. [4] provides two block
pools: hot and cold. When a block is erased, the algorithm compares the erasure
count of the old block in the hot pool to that of the younger block in the cold pool.
If the difference between two blocks is larger than a threshold value then two blocks
are swapped to prevent the old block from being involved in the block reclamation.
Also, there is a wear-leveling algorithm using log blocks [14, 20] in which small writes
to blocks are collected in log blocks as long as free pages are available in them. The
pages in the log block are merged with the corresponding data blocks to be written
to flash memory.

A disadvantage of using log blocks is that it can incur low space utilization
because each page is associated to a dedicated log block and the space for reserving
log blocks is very limited. FAST [19] tried to solve this problem in a way that
a log block can be used by write operations directed to multiple data blocks, thus
postponing the erase procedure for log and data blocks. However, when pages of
a log block are originated from several different data blocks, erasing the log block
can also cause a number of erase operations of data blocks that are merged with the
pages in the log block.

The performance of FTL can be enhanced by combining with the reordering
scheme before data are passed to FTL. For example, CFLRU [18] maintains the
clean-first region where clean pages are selected as victim over dirty pages because
clean pages can be evicted from the region without additional flash operations.
However, the size of clean-first region is defined by a window size that is difficult to
find the appropriate value for various applications.

Another flash-aware algorithm is LRU-WSR [12] where each page is associated
to “cold-flag”. The idea is to select cold-dirty pages as victim to retain hot-dirty
pages in the buffer. When a candidate for buffer eviction is needed, the algo-
rithm examines the LRU list from its end. If a dirty page is chosen as a vic-
tim and its cold-flag is not set, then the page is moved to the head of the list
with the cold-flag being marked and another page is examined. If the candidate
is a clean page, then it is selected as a victim regardless of the value of cold-
flag. The disadvantage of LRU-WSR is that, with applications where a large
number of hot and clean pages are used, the buffer hit ratio can be reduced.
BPLRU [15] uses a block-level LRU list where a victim block is flushed to flash
memory, along with pages belonging to the block. Likewise, when a page is re-
referenced, all pages in the same block are moved to the head of LRU list. The
LRU list is served for only write requests. The read requests are simply redirected
to FTL.

Although the reordering schemes mentioned can contribute to reducing the num-
ber of write and erase operations in flash memory, they require to access the internal
structure of flash memory or SSD, to acquire the block and page numbers to be ex-
amined. Such information cannot be available unless commercial SSD products
expose their internal structure, which happens rarely. One of our objectives in im-
plementing HP-hybrid is to collect data in VFS layer prior to passing them to SSD
partition, what does not require an access to SSD internals.



144 J. No, S.-S. Park, C.-S. Lim

Given that the size of flash block is known to HP-hybrid, it can coalesce data in
VFS layer as many data as flash block size, and therefore the erasure overhead taking
place in FTL can be optimized by reducing the number of small write operations.
Also, Rajimwale et al. [22] show that aligning data with SSD stripe size produces
high I/O performance. If the stripe size of SSD partition is given to HP-hybrid,
then the file system can even align I/O unit (extent) with stripe size in VFS layer
prior to write operations to SSD partition.

The other objective of HP-hybrid is to use the hybrid file system structure to
facilitate SSD performance. There are several file systems providing the hybrid file
system structure. One of those file systems is Conquest [28], which tried to minimize
disk accesses by using the persistent RAM with the battery backup. It stores all
small files and file system metadata in RAM and stores the remaining large files in
HDD.

The main differences between Conquest and HP-hybrid come from the distinct
storage component integrated with HDD. Unlike SSD, the persistent RAM allows in-
place data updates and does not deploy semiconductor overhead. On the other hand,
using SSD needs to consider a flash memory-related overhead. HP-hybrid attempts
to mitigate such overhead through data alignment in VFS layer. Also, Conquest
does not support multiple, logical data sections and all file allocations should be
performed in a single unit size. On the other hand, HP-hybrid is capable of mapping
files to the appropriate data section, by considering file access characteristics, such
as file size, access pattern and usage.

Another example is hFS [30], which combines the advantages of LFS (Log-
structured File System) and FFS (Fast File System). LFS [13, 23] supports update-
out-of-place in which file updates take place without seeking back to their original
location. Although such an update behavior is appropriate for flash memory, the
sequential log structure of LFS can produce a significant I/O overhead in random
environments. In HP-hybrid, every I/O is performed in-place per extent. Thus,
there is no need to organize sequential log structures. Like Conquest, hFS does not
support file mapping that considers file access characteristics.

Also, several file systems have been implemented by using flash memory. ELF [5]
is a flash-based file system targeting at micro sensor platforms. Although ELF
is a log-structured file system like JFFS [29], it uses a different log management,
according to write behaviors. For example, in write-append operations, it does
not create a new log entry to append data. ELF uses the existing log entry, by
caching file data to RAM. In write-modify operations, ELF follows the traditional
log management, by creating a new log and writing each modification to the new
page. In this way, ELF can reduce the number of logs on the resource-constrained
platform.

Another flash-related file system is FlexFS [17]. FlexFS was designed to combine
the advantages of MLC (multi-level cell) and SLC (single-level cell). The layout of
the file system is divided into MLC region and SLC region, and each region is
associated to its own write buffer. When a write operation takes place, the data are
first stored into the appropriate write buffer until the page size of data is collected



Exploiting Fine-Grained Spatial Optimization for Hybrid File System Space 145

in the buffer and the data are flushed to flash memory. When there is not enough
free space available, data are migrated from SLC region to MLC region to make
more space for the incoming data.

The difference between HP-hybrid and flash file systems is that HP-hybrid is
not a log-structured file system. File updates in HP-hybrid occur in-place. Also,
unlike most flash file systems, HP-hybrid has been developed for the large-scale data
storage by integrating its file system space with HDD.

ZFS [31] has a similarity to HP-hybrid in a sense that both file systems pro-
vide the tiered storage space using SSD and HDD. ZFS is the transactional file
system where multiple instances of file system are grouped into a common storage
pool. In ZFS, two types of SSD cache are provided: L2ARC (Layer 2 Adaptive
Replacement Cache) working as a read cache and ZIL (ZFS Intent Log) working
as a write cache. L2ARC deploys its cache by reading data periodically from the
tail of DRAM cache (ARC). L2ARC does not contain dirty data to eliminate the
time for flushing data to disk. ZIL was implemented to minimize the overhead of
synchronous writes. It buffers the logs of system calls to replay write operations to
disks later.

The difference between HP-hybrid and ZFS is that HP-hybrid supports several
optimizations to increase SSD storage utilization. First of all, it enables to configure
the different size of I/O units for each logical data section, to map files based on
file attributes, such as file size and access pattern. Furthermore, to alleviate the
fragmentation overhead, segment partitioning is performed to the lower levels to
reuse the remaining space of extents. Dm-cache [32] differs from HP-hybrid because
the cache operation in dm-cache is performed in the block I/O layer. It checks
whether the concerned sectors are already stored in the cache device to save the
block I/O overhead.

3 IMPLEMENTATION DETAIL

3.1 HP-Hybrid Overview

HP-hybrid provides a hybrid structure in which a single file system space is con-
structed on top of two physical partitions: SSD partition and HDD partition. In
HP-hybrid, SSD partition stores hot files recognized by file access time and file sys-
tem metadata to be used for SSD file allocation including map table and extent
bitmap. On the other hand, HDD partition is used as the permanent data storage
while retaining file system metadata and real data.

Figure 1 shows an overview of HP-hybrid disk layout. The beginning of SSD
partition stores the configuration parameters that are used at file system mount.
Those parameters include the number of logical data sections, section and extent
sizes of each data section, and flash block and SSD stripe sizes, if available. In HP-
hybrid, SSD partition can be divided into several data sections, while each of them
being organized into a different extent size. Figure 1 illustrates that SSD partition
is divided into three logical data sections, D0, D1 and D2 where extent sizes are δ,



146 J. No, S.-S. Park, C.-S. Lim

Figure 1. HP-hybrid disk layout

u and v in blocks, respectively, where δ < u < v. The default is the first data
section D0.

Next to the configuration parameters, the map table being used for the trans-
parent file mapping is stored. The map table consists of the directory path and
data section where the path is mapped, and the mapping flag that shows what
kind of mapping is defined for each pair of directory path and data section, includ-
ing SSD bypass. The map table is followed by the extent bitmap that shows the
allocation status of extents.

The inode stored in HDD partition contains several attributes to access files from
SSD partition. SSD wr done denotes I/O status of the corresponding file. The two
bits of SSD wr done describe four states of write operations: 00 for initialization, 10
and 01 for the write completion in SSD partition and HDD partition, respectively,
and 11 for the write completion on both partitions. SSD active indicates if the
associated file is available in SSD partition. This flag is turned off in case that the



Exploiting Fine-Grained Spatial Optimization for Hybrid File System Space 147

a)

b)

Figure 2. Hierarchical extent layout. a) An example of the hierarchical segment partition.
b) Segment partition for an extent point (x, y)

file is evicted from the partition. By referring to these two flags, HP-hybrid serves
file requests from either of two partitions.

The logs are used for data recovery, together with SSD wr done stored in inode.
When the logs are read for recovery, HP-hybrid checks SSD wr done to see if and in
which partition I/O operation indicated by each log is completed. If SSD wr done
is set to 10, then the file stored in SSD partition is duplicated to HDD partition
as a background process. Otherwise, no recovery for the file has taken place in
SSD partition because when the file is accessed from HDD partition it would also
be replicated to SSD partition. The logs are also stored in HDD partition to be
protected against SSD crash.

Besides, inode includes SSD section and SSD extent to make a connection be-
tween two partitions. SSD section shows the identification of data section where the
associated file is mapped and SSD extent includes an array of SSD extent addresses –
each address consisting of the starting block number and block count in the extent.



148 J. No, S.-S. Park, C.-S. Lim

3.2 Hierarchical Extent Layout

HP-hybrid attempts to reduce the fragmentation overhead by reusing the free extent
portion as much as possible. The extent size of each logical data section is defined at
file system creation. If no extent size of a data section is specified, then the default
size δ in blocks is assigned to the data section.

HP-hybrid divides each extent into a set of segments and file allocations on ex-
tents are executed based on segments. An extent with a size s in blocks is composed
of (log2 s) + 1 segments. For segments where size is larger than or equal to δ (seg-
ment index in an extent is log2 δ), HP-hybrid recursively partitions the segments
until each segment size becomes less than δ. This operation is called the segment
partition and each level in which segments are divided into the smaller ones is called
the segment level. Hereafter, we briefly call the segment level as ‘level’.

Definition 1. Let E = {e0, e1, . . .} be a set of extents to be stored in SSD partition.
An extent ep ∈ E is defined as (s,H,C,∆) where s is the size of ep in blocks and
H(= −1) is the index of head segment of ep. C is a set of segments consisting of ep,
with each being indexed from H to (log2 s)− 1.

Let ciL be segment i at level L. Assume that ciL is partitioned from ca0 through
cwL−1 of the upper level L − 1. Then, ciL can either be denoted as (cwL−1)({ciL}), in
terms of its parent, or be denoted as (ca0(. . . (c

w
L−1) . . .))({ciL}), in terms of its all pre-

decessors. Furthermore, for 3 cjL, if the predecessors of ciL and cjL are the same, then
two segments can be expressed together as (cwL−1)({ciL, c

j
L}) or (ca0(. . . (c

w
L−1) . . .))

({ciL, c
j
L}).

The pos[ciL] is the starting block position of ciL and size[ciL] is the size of ciL
in blocks. If L = 0, then ciL is denoted as it is, because it does not have any
predecessors. Finally, ∆ is the hierarchical segment partition taking place at each
level and it satisfies the following:

• ∆ep = {ck0|k ∈ {H, 0, 1, . . . , (log2 s)− 1}}.

• 3 ciL,∆ciL = (ciL)({ckL+1|k ∈ {H, 0, 1, . . . , i− 1}}) where i ≥ log2 δ.

• pos[ciL] = pos[cwL−1] + 2i if i > H. Otherwise, pos[ciL] = pos[cwL−1].

• size[ciL] = 2i if i > H. Otherwise, size[ciL] = 1.

Example 1. Figure 2 a) shows an overview of the segment partition for c70 located at
between block position 128 and 255. The default size δ is 32 blocks. The hierarchical
segment partition ∆c70 is (c70)({cH1 , c01, . . . , c61}) that is a set of segments at level one
split from c70. Because the sizes of two segments at level one, c51 and c61, are larger
than or equal to δ, they are partitioned further to the lower level, by performing
the hierarchical segment partition ∆c51 and ∆c61. Also, pos[c51] = pos[c70] + 25 =
128 + 32 = 160 and size[c51] = 25 = 32.



Exploiting Fine-Grained Spatial Optimization for Hybrid File System Space 149

3.3 Segment Partition Functions

In the following definitions, an extent portion (x, y) expresses the part of an extent ep
where a new file is allocated. The x denotes the starting block position and y denotes
the ending block position of the extent portion.

3.3.1 Positive and Negative Inclusions

In HP-hybrid, the primitive functions for the segment partition are positive inclu-
sion and negative inclusion. Both functions are used to calculate the segments of
an extent belonging to a given extent portion.

Definition 2. The positive inclusion ψ(+,∆ciL, j) contains the segments that are
partitioned from ciL and whose index is larger than j. ψ∗(+,∆ciL, j) is the same as
ψ(+,∆ciL, j), except it contains the segment with index j. The negative inclusion
ψ(−,∆ciL, j) includes the segments split from ciL but whose indexes are smaller than
j. On the other hand, ψ∗(−,∆ciL, j) includes the segment with index j, along with
the segments calculated from ψ(−,∆ciL, j). If i = j at the top level, then the segment
partition to the lower level does not take place.

ψ(+,∆ciL, j) =


{
ckL|k ∈ {j + 1, . . . , (log2 s)− 1}

}
, if L = 0 and i = j,

(ciL)
({
ckL+1|k ∈ {j + 1, . . . , i− 1}

})
, otherwise,

ψ(−,∆ciL, j) =


{
ckL|k ∈ {H, 0, 1, . . . , j − 1}

}
, if L = 0 and i = j,

(ciL)
({
ckL+1|k ∈ {H, 0, 1, . . . , j − 1}

})
, otherwise.

Example 2. In Figure 2 b), the positive and negative inclusions are computed as
follows:

ψ
(
+,∆ciL, j

)
= (ciL)

({
cj+1
L+1, c

j+2
L+1, . . . , c

i−1
L+1

})
,

ψ∗
(
+,∆ciL, j

)
= (ciL)

({
cjL+1, c

j+1
L+1, c

j+2
L+1, . . . , c

i−1
L+1

})
,

ψ
(
−,∆ci+3

L , k
)

= (ci+3
L )

({
cHL+1, c

0
L+1, . . . , c

k−1
L+1

})
,

ψ∗
(
−,∆ci+3

L , k
)

= (ci+3
L )

({
cHL+1, c

0
L+1, . . . , c

k−1
L+1, c

k
L+1

})
.

3.3.2 MOVE Function

Definition 3. MOVE(ciL, x,+) and MOVE(cjL, y,−) are executed in case that the
further partition to the lower level is needed because ciL and cjL where x and y are
mapped still have the segment sizes of no smaller than δ. Without the further
segment partition, the fragmentation overhead might be severe by throwing away
available blocks in SSD storage space. If the segment index of the child is smaller



150 J. No, S.-S. Park, C.-S. Lim

than log2 δ, which means the segment size is less than δ, then no more segment
partition to the lower level takes place. MOVEs are computed as follows:

1. Calculate the child segment of ciL where x is mapped. Let k be the index of such
a child segment:

b2kc ≤ x− pos[ciL] < 2k+1.

2. Calculate the child segment of cjL where y is mapped. Let l be the index of such
a child segment:

b2lc ≤ y − pos[cjL] < 2l+1.

3. Calculate MOV E functions:

MOVE
(
ciL, x,+

)
=

 ψ (+,∆ciL, k) ∪MOVE
(
ckL+1, x,+

)
, if k ≥ log2 δ,

ψ∗ (+,∆ciL, k) , otherwise,

MOVE
(
cjL, y,−

)
=

 ψ
(
−,∆cjL, l

)
∪MOVE

(
clL+1, y,−

)
, if l ≥ log2 δ,

ψ∗(−,∆cjL, l), otherwise.

Example 3. In Figure 2 b), MOVE(cwL−1, x,+) and MOVE(cwL−1, y,−) are given by

MOVE
(
cwL−1, x,+

)
= ψ

(
+,∆cwL−1, i

)
∪MOVE

(
ciL, x,+

)
where 2i ≤ x− pos[cwL−1] < 2i+1 and i ≥ log2 δ,

MOVE
(
cwL−1, y,−

)
= ψ

(
−,∆cwL−1, i+ 3

)
∪MOVE

(
ci+3
L , y,−

)
where 2i+3 ≤ y − pos[cwL−1] < 2i+4.

3.3.3 MAP Function

Definition 4. Given an extent portion (x, y), the segment partition of an extent
begins by calling MAP(x,+) and MAP(y,−). MAP(x,+) is used to find the segment
of the top level to be mapped to x and MAP(y,−) to y. As with MOVE function,
no segment partition takes place if the size of a segment is smaller than δ. MAPs
are computed as follows:
for i and j such that b2ic ≤ x < 2i+1 and b2jc ≤ y < 2j+1,

MAP(x,+) =

 ψ (+,∆ci0, i) ∪MOVE (ci0, x,+) , if i ≥ log2 δ,

ψ∗ (+,∆ci0, i) , otherwise,

MAP(y,−) =


ψ
(
−,∆cj0, j

)
∪MOVE

(
cj0, y,−

)
, if j ≥ log2 δ,

ψ∗
(
−,∆cj0, j

)
, otherwise.



Exploiting Fine-Grained Spatial Optimization for Hybrid File System Space 151

Example 4. In Figure 2 b), with L = 1 and w ≥ log2 δ, MAP(x,+) and MAP(y,−)
are given by

MAP(x,+) = ψ (+,∆cw0 , w) ∪MOVE (cw0 , x,+) ,

MAP(y,−) = ψ (−,∆cw0 , w) ∪MOVE (cw0 , y,−)

where 2w ≤ x, y < 2w+1,

MAP(32,+) = ψ∗
(
+,∆c50, 5

)
, (1)

MAP(106,−) = ψ
(
−,∆c60, 6

)
∪MOVE

(
c60, 106,−

)
. (2)

From Equations (1) and (2), the predecessors of two segment sets are the same.
Therefore,

ψ∗
(
+,∆c50, 5

)
∩ ψ

(
−,∆c60, 6

)
=
{
c50, c

6
0, c

7
0

}
∩
{
cH0 , c

0
0, . . . , c

5
0

}
=
{
c50
}
.

In Equation (2), since 25 ≤ 106 − pos[c60] < 26, 106 is mapped to segment five at
level one (c51)

MOVE(c60, 106,−) = ψ
(
−,∆c60, 5

)
∪MOVE

(
c51, 106,−

)
,

ψ
(
−,∆c60, 5

)
=
(
c60
) ({

cH1 , c
0
1, c

1
1, c

2
1, c

3
1, c

4
1

})
.

c51 is split further to level two. In Equation (4), since 23 ≤ 106 − (pos[c51]) < 24,
which is 23 ≤ 106− (26 + 25) < 24, 106 is mapped to c32.

MOVE
(
c51, 106,−

)
= ψ∗

(
−,∆c51, 3

)
=
(
c51
) ({

cH2 , c
0
2, c

1
2, c

2
2, c

3
2

})
.

According to Equations (3), (5) and (6), the segment set T including (32, 107) is

T =
{
c50,
(
c60
) ({

cH1 , c
0
1, c

1
1, c

2
1, c

3
1, c

4
1

})
,
(
c51
) ({

cH2 , c
0
2, c

1
2, c

2
2, c

3
2

})}
.

Figure 3 shows an example of allocating files on an extent that consists of 256
blocks. Initially, there are nine segments to be created on the extent, including
the head segment. The size and starting block position of each segment are both
2i(0 ≤ i < 8) in blocks, except for the head segment that starts from block zero and
its size is of a single block. In this example, δ = 32 blocks, thus the segments from
zero to four do not invoke the segment partition.

The request for 30 blocks begins by performing MAP(0,+) and MAP(29,+).
The request is mapped to segments between zero and four whose size is smaller than δ
each. Two MAP functions are executed by invoking ψ∗

(
+,∆cH0 , H

)
∩ψ∗ (−,∆c40, 4),

which results in the segment set
{
cH0 , c

0
0, . . . , c

4
0

}
. The next allocation request on the

extent starts from pos[c50] = 32.
In the second request for 75 blocks, as pictured in Figure 3 b), the corresponding

allocation process is performed in the extent portion (32,106), starting from the



152 J. No, S.-S. Park, C.-S. Lim

c
0

H c
0

0 c
0

4

0 1 2 16 32

c
0

5

96 97 98 104

c
2

H c
2

0 c
2

3

c
1

H c
1

0 c
1

4

64 65 66 80

c
1

5

96

32

c
0

5 c
0

6

64

c
0

5 c
1

H c
1

0 c
1

4 c
2

H c
2

0 c
2

3 c
2

4

c
0

6

c
2

4

112

a) b)

Figure 3. An example of segment partition; a) Allocate 30 blocks, b) Allocate 75 blocks

segment c50. In the process, because the entire blocks of segment five (c50) are included
in the extent portion, no segment partition to the lower level takes place on c50: The
next file allocation on the extent begins from pos [(c51) ({c42})] = 26 + 25 + 24 = 112.

3.4 Allocation Table

gL
0 gL

i gL
log2s-(L+1)

d(e0)

gL
H

GL

d(e1)

cL
i

c0
k…cL-1

p

cL
ic0

k

0 s-1

s-10

c0
k+1…cL-1

q

a)

g0
H g0

5 g2
H g2

4

c0
5d(e) d(e) c2

4

c0
6

30 block request 75 block request

G0 G2

b)

Figure 4. In-memory allocation table, a) Table entry giL of level L, b) Extent movement



Exploiting Fine-Grained Spatial Optimization for Hybrid File System Space 153

HP-hybrid uses in-memory allocation table to assign extents to files. There are
three reasons for using the allocation table. First, by filling with data based on
segments of extents, HP-hybrid can mitigate the fragmentation overhead. Second,
the allocation process can be performed in-memory, thus resulting in better I/O
bandwidth. Third, supporting the user-defined extent size might help to reduce
SSD-related semiconductor overhead, such as erasure cost, by aligning the extent
size with flash block boundaries.

The allocation table is organized for each segment level. At a level, extents are
connected to the table entry according to the index of the segment at which the
largest free space of the extent begins. Each table entry maintains its own linked
list of extent descriptors. The extent descriptor contains the information about the
associated extent, such as extent address, total data size being mapped, a sequence
of segments created in the extent, and pointer to the callback function to be invoked
when the corresponding extent is moved to the other table entry. It also contains
the information about the files being mapped to the extent, including inode number,
file and extent block positions, and mapping length.

Let GL = {giL|H ≤ i ≤ (log2 s)− (L+ 1)} be the allocation table to be created
at level L where giL is table entry i in GL. Also, for an extent ek, let d(ek)be
the extent descriptor of ek, ek(Large) be the largest hole of ek and size[ek(Large)]
be the size of ek(Large) in blocks. Finally, let pos[ek(Large)], ind[ek(Large)] and
level[ek(Large)] be the starting block position, starting segment index and segment
level of ek(Large), respectively.

Definition 5. Given the allocation table GL at level L, the table entries of GL are
defined as follows:

giL = {e0(Large), e1(Large), . . . |size[e0(Large)] ≥ size[e1(Large)] ≥ . . . and

∀ek(Large), level[ek(Large)] = L, ind[ek(Large)] = i}.

Example 5. In Figure 4 a), two extent descriptors are linked at giL, in the decreas-
ing order of the largest hole of two extents. The Largest free space of e0 starts
at ciL originated from ck0, . . . , c

p
L−1 and the one of e1 starts at ciL originated from

ck+1
0 , . . . , cqL−1. Also, for e0 and e1,

pos[e0(Large)] = pos[(cpL−1)({ciL})], pos[e1(Large)] = pos[(cqL−1)({ciL})]
where p < q,

level[e0(Large)] = L, level[e1(Large)] = L,

ind[e0(Large)] = i, ind[e1(Large)] = i.

At HP-hybrid mount, the allocation table is created by reading the extent bitmap
stored in SSD partition and the extent descriptors of clean extents are linked at the
allocation table of the top level. When a new file attempts to be written to SSD
partition and its size is larger than or equal to the extent size, HP-hybrid uses clean



154 J. No, S.-S. Park, C.-S. Lim

Algorithm 1 segSet(T, x, y)

1. calculate MAP(x,+) and MAP(y,−);

2. include the intersection of two segment sets to T ;

3. /* let ciL and ckN be the two segments partitioned from MAP(x,+)
and MAP(y,−) */

4. if(there exists MOVE to be defined on segments)

5. do

6. calculate MOVEs on ciL and ckN ;

7. if(the predecessors are the same)

8. include the intersection of child segments of ciL and ckN to T ;

9. else

10. include the union of child segments of ciL and ckN to T ;

11. end if

12. assign child segments containing x and y to ciL and ckN ;

13. while(the size of either of segments is at least δ);

14. end if

15. return T

Algorithm 2 allocate(f, s,GL)

1. if(size[f ] >= s)

2. assign dsize[f ]/se number of clean extents to f ;

3. /* let e be the last extent allocated to f */

4. /* let bp be the last block position allocated to f on e */

5. if(less than δ/2 free blocks is available)

6. return;

7. end if

8. x← 0; y ← bp;

9. else

10. S ← φ;

11. for all e linked at giL ∈ GL do

12. if(size[e(Large)] ≥ size[f ])

13. S ← S ∪ e(Large);

14. end if

15. end for

16. select e such that min{dist(e)/time(e)};
17. x← pos[e(Large)]; y ← x+ size[f ]− 1;

18. end if

19. call segSet(T, x, y);

20. /* let e(hk) be the hole on e */

21. choose the new e(Large) such that size[e(Large)] = max{size[e(hk)]|k ≥ 0};
22. N = level[e(Large)]; k = ind[e(Large)];

23. insert e to gkN , in the descending order of size[e(Large)];

24. return

Figure 5. Algorithm for executing allocation requests



Exploiting Fine-Grained Spatial Optimization for Hybrid File System Space 155

extents from the clean extent table entry. After file allocation is completed, if there
is a remaining free space in the last extent where size is not smaller than δ/2, then its
extent descriptor is linked to the appropriate table entry, according to the starting
segment index of the largest unused space.

In case that a small file whose size is less than extent size attempts to be writ-
ten to SSD partition, HP-hybrid first checks the extents linked at the table entries.
Among the available extents, an extent is chosen for the new file based on two cri-
teria: First, the distance of the directory hierarchy between the new file and the
previously allocated files on the extent must be kept small. Second, the extent
that has been staying at the allocation table the longest is chosen for file alloca-
tion.

Figure 4 b) illustrates how the allocation table works, using the example illus-
trated in Figure 3. In Figure 3 a), after executing MAP operations, the index of the
starting segment of free space is five and thus the extent descriptor is connected to
the table entry g50 ∈ G0. The next request for 75 blocks, pictured in Figure 3 b),
leaves free space from c42, resulting in the extent movement to g42 ∈ G2.

Figure 5 shows two algorithms needed for allocating files using the allocation
table. Algorithm 1 shows the steps for calculating the segment set to be used for
allocation requests. In the algorithm, x and y are the starting and ending block
positions of the request. The algorithm calls MAP to obtain the segment set at the
top level. The MOVE is repeatedly performed until the size of child segments at
the lower level becomes less than δ.

Algorithm 2 shows the steps for allocating a new file f of size[f ] in blocks.
In the algorithm, time(e) is the insertion time to the allocation table and dist(e)
is the distance between f and the previously allocated files on e. In case that
size[f ] is not smaller than s, dsize[f ]/se number of clean extents is assigned to f .
Otherwise, the extent that has been in the allocation table and where the largest
free space is big enough to allocate f is selected in the step 10 to 16. The algorithm
calls segSet(T, x, y) to perform the segment partition and inserts the extent to the
appropriate table entry in the decreasing order of the next largest hole.

3.5 Transparent File Mapping

HP-hybrid provides the transparent file mapping in which files can be mapped to
the appropriate logical data section, according to file size, access pattern and usage.
There are two reasons in supporting such a transparent file mapping: 1) to address
the limitation of SSD storage resources; 2) to provide better I/O bandwidth by
reducing file allocation cost.

In order to address SSD space restriction, HP-hybrid supports SSD bypass in
which the files that do not need fast I/O speed, such as backup files, would bypass
SSD partition, thereby being stored only in HDD partition. Consequently, a large
portion of SSD partition can be available for only files requiring high I/O response
time. On the other hand, providing better I/O bandwidth is performed by mapping
files to the data section that is composed of extents whose size is appropriate to the



156 J. No, S.-S. Park, C.-S. Lim

files in reducing allocation cost. For example, the files with large, sequential access
pattern, such as multimedia files, can have I/O benefit by being stored in the data
section composed of large-size extents.

The transparent file mapping is performed in two ways. In the static mapping
where directory paths to be mapped to a data section are statically defined at file
system mount. Once a directory path is mapped to the data section, the files to be
created under the path are all mapped to the same data section. On the contrary, in
the dynamic file mapping, file mapping to the data section is dynamically performed
at file creation time based on file size and available storage space of the data section.
For instance, files with unpredictable sizes, such as emails, can dynamically be
mapped to data sections. Both file mappings are specified in the map table, which
is submitted at file system mount.

Figure 6. Transparent file mapping

Figure 6 shows an example of the transparent file mapping using the data sec-
tions illustrated in Figure 1: δ for the data sectionD0, u for the data sectionD1 and v
for the data section D2 where δ < u < v. Directories /mailbox, /book and /movie

are mapped to D0, D1 and D2, respectively. However, the static file mapping to
a data section can be changed to another, by modifying the map table at file system
mount. For example, /book/chap is changed from D1 to D2 and /movie/backup

from D2 to SSD bypass. The mapping change is needed because the access charac-
teristics of either files or subdirectories can be varied, such as /movie/backup being
created to store backup files. In the static file mapping, every time a new file is
created, the map descriptor associated to its parent directory is attached to the file,
storing the new file to the same data section.

Figure 6 also shows an example of the dynamic mapping in which files are
mapped to the appropriate data section, according to file size. For example, the files
being created in /mailbox/large-file are dynamically mapped to data sections
based on their sizes. If no file mapping is specified in the map table, such as /usr,
then the files to be created under the directory path are stored in the default data
section D0.



Exploiting Fine-Grained Spatial Optimization for Hybrid File System Space 157

HP-hybrid provides the extent replacement algorithm using the multilevel, cir-
cular queue. The queue is constructed for each data section. When a file is accessed,
the corresponding inode is inserted into the queue. The queue at the highest level
contains the most-recent-referenced files and the queue at the bottom contains the
files that would be the immediate candidate for SSD eviction. If a file is re-referenced,
then the associated inode is moved to the front of the highest level.

When the capacity of the data section drops below the threshold θ, the extent
replacement process starts to flush out files linked at the bottom queue and also
releases the extents allocated to those files. Since the file data is already stored in
HDD partition, there is no need for the data replication for backup. The necessary
step for SSD eviction turns off SSD active and modifies the bits of SSD wr done to
01, to notify that the file no longer exists in SSD partition.

4 PERFORMANCE EVALUATION

4.1 Experimental Platform

Name Extent Map Dir. File Size Num. of Calls
Size MAP MOV E inc.

HP-hybrid(16) 16 KB /hphybrid/ds16 4 KB 2 0 2
16 KB 2 0 2
64 KB 2 0 2

1 MB ∼ 512 MB 2 0 2

HP-hybrid(64) 64 KB /hphybrid/ds64 4 KB 2 2 4
16 KB 2 2 4
64 KB 2 0 2

1 MB ∼ 512 MB 2 0 2

HP-hybrid(256) 256 KB /hphybrid/ds256 4 KB 2 6 8
16 KB 2 6 8
64 KB 2 5 7

1 MB ∼ 512 MB 2 0 2

Table 1. Overhead of the segment partition for writing a single file

We performed all experiments on a PC system equipped with a 2.3 GHz AMD
Phenom triple-core processor, 4 GB of main memory and 320 GB of Seagate Bar-
racuda 7 200 RPM disk. For SSD partition, we installed a 80 GB of fusion-io SSD
ioDrive [6] on the system. The operating system was CentOS release 5.6 with a 2.6.32
kernel.

We measured I/O performance of HP-hybrid while comparing to that of ext2,
ext4 and xfs installed on HDD and SSD. For the evaluation, we used two popular
I/O benchmarks, IOzone [10] and Bonnie++ [3].

With HP-hybrid, we divided SSD partition into three data sections of about
16 GB each. Those data sections were composed of 16 KB, 64 KB and 256 KB of



158 J. No, S.-S. Park, C.-S. Lim

extent sizes while named as HP-hybrid(16), HP-hybrid(64) and HP-hybrid(256),
respectively. To observe the effect of the transparent file mapping, we mapped
them to /hphybrid/ds16, /hphybrid/ds64 and /hphybrid/ds256 and measured
I/O performance with a different file size. The default value for the segment partition
was set to 32 and the block size was 1 KB.

The write bandwidth of HP-hybrid includes the cost for performing MAP,
MOVE and positive/negative inclusions of the segment partition. For example,
when the first 4 KB of file is allocated to a 16 KB of extent size, the segment parti-
tion at the top level takes place as follows:

MAP(0,+) = ψ∗
(
+,∆cH0 , H

)
,

MAP(3,−) = ψ∗
(
−,∆c10, 1

)
,

ψ∗
(
+,∆cH0 , H

)
∩ ψ∗

(
−,∆c10, 1

)
=
{
cH0 , c

0
0, c

1
0

}
.

Table 1 shows the maximum number of MAP, MOVE and positive/negative
inclusions to write a single file from 4 KB to 256 MB, using the extent sizes between
16 KB and 256 KB and δ = 32 in blocks.

If the file size is equal to or a multiple of extent sizes, then only the segment
partition at the top level takes place to include all segments of the top level. This
is because there is no remaining space left after file allocations. In this case, only
two MAPs and two inclusions are needed to assign the entire space of an extent
to the file. If the file size is less than the extent size and the free space after the
file allocation is no smaller than δ, then the segment partition to the lower level
involving MOVEs takes place to use the remaining free space on the extent. For
example, on top of 256 KB of extent size, writing a 4 KB of file needs to perform at
maximum two MAPs, six MOVEs and eight inclusions for the segment partition to
the lower level.

We chose ext2, ext4 and xfs for the performance comparison. The reason for
choosing ext2 and ext4 is because most I/O modules mounted on HDD partition of
HP-hybrid are borrowed from ext2 and ext4. In the performance comparison, we
will observe I/O benefit of SSD partition in HP-hybrid. Also, xfs was chosen for the
comparison because of its B+ tree-based extent allocation. In the evaluation, we
want to observe the effectiveness of HP-hybrid allocation scheme, by comparing to
xfs.

4.2 IOzone Benchmark

The first evaluation was performed by using IOzone-3-396. We modified IOzone
to iterate I/O operations 64 times on each file size and took the average as the
final bandwidth. Also, we used −e option to invoke fsync() for write and rewrite
operations. If HP-hybrid(16) uses ext2 I/O modules for its HDD partition, then it
is named as HP-hybrid(16) with ext2. Similarly, HP-hybrid(16) with ext4 uses ext4



Exploiting Fine-Grained Spatial Optimization for Hybrid File System Space 159

0

200

400

600

800

1000

4KB 16KB 64KB 1MB 16MB 64MB 256MB

ext2(HDD) xfs(HDD)

HP-hybrid(16) with ext2 HP-hybrid(64) with ext2

HP-hybrid(256) with ext2

File size 

IO
z
o
n

e
 w

r
it

e
 (

M
B

/s
e
c
.)



0

200

400

600

800

1000

4KB 16KB 64KB 1MB 16MB 64MB 256MB

ext2(SSD) xfs(SSD)

HP-hybrid(16) with ext2 HP-hybrid(64) with ext2

HP-hybrid(256) with ext2

File size 

IO
z
o
n

e
 w

r
it

e
 (

M
B

/s
e
c
.)



a) b)

0

200

400

600

800

1000

4KB 16KB 64KB 1MB 16MB 64MB 256MB

ext4(HDD) HP-hybrid(16) with ext4

HP-hybrid(64) with ext4 HP-hybrid(256) with ext4

File size 

IO
z
o
n

e
 w

r
it

e
 (

M
B

/s
e
c
.)



0

200

400

600

800

1000

4KB 16KB 64KB 1MB 16MB 64MB 256MB

ext4(SSD) HP-hybrid(16) with ext4

HP-hybrid(64) with ext4 HP-hybrid(256) with ext4

File size 

IO
z
o
n

e
 w

r
it

e
 (

M
B

/s
e
c
.)



c) d)

I/O modules for the HDD partition. The same notation is applied for HP-hybrid(64)
and HP-hybrid(256).

Figures 7 a) and 7 c) show the write bandwidth of HP-hybrid where its HDD
partition is combined with ext2 in Figure 7 a) and with ext4 in Figure 7 c), while
comparing to three other file systems installed on HDDs. As can be seen in the
figures, the write throughput of HP-hybrid(16) is higher than that of ext2, ext4 and
xfs. In HP-hybrid, file write operations are simultaneously performed on both SSD
and HDD partitions. If either of write operations is completed, then control returns
to user. Figures 7 a) and 7 c) tell us that such a synchronized write operation of
HP-hybrid does not affect much the write performance.

When we compare the write throughput of HP-hybrid(16) to that of ext2 and
ext4 installed on SSD partition (ext2 in Figure 7 b) and ext4 in Figure 7 d)), with
file size less than 1 MB, HP-hybrid(16) reveals the similar bandwidth to that of
ext2 and ext4. However, with file size equal to or larger than 1 MB, HP-hybrid(16)
produces the better write throughput. This is because HP-hybrid(16) performs I/O
in the larger granularity than ext2 and ext4 and the delay in the allocation table to
collect data is very small.

With file sizes larger than 64 KB, the performance speedup to be obtained by
using a large I/O granularity is also observed when the extent size of HP-hybrid
increases to 64 KB and 256 KB in HP-hybrid(64) and HP-hybrid(256). In Figure 7 f),



160 J. No, S.-S. Park, C.-S. Lim

0

200

400

600

800

1000

4KB 16KB 64KB 1MB 16MB 64MB 256MB

ext2(HDD) xfs(HDD)

HP-hybrid(16) with ext2 HP-hybrid(64) with ext2

HP-hybrid(256) with ext2

File size 

IO
z
o
n

e
 r

e
w

r
it

e
 (

M
B

/s
e
c
.)



0

200

400

600

800

1000

4KB 16KB 64KB 1MB 16MB 64MB 256MB

ext2(SSD) xfs(SSD)

HP-hybrid(16) with ext2 HP-hybrid(64) with ext2

HP-hybrid(256) with ext2

File size 

IO
z
o
n

e
 r

e
w

r
it

e
 (

M
B

/s
e
c
.)



e) f)

0

200

400

600

800

1000

4KB 16KB 64KB 1MB 16MB 64MB 256MB

ext4(HDD) HP-hybrid(16) with ext4

HP-hybrid(64) with ext4 HP-hybrid(256) with ext4

File size 

IO
z
o
n

e
 r

e
w

r
it

e
 (

M
B

/s
e
c
.)



0

200

400

600

800

1000

4KB 16KB 64KB 1MB 16MB 64MB 256MB

ext4(SSD) HP-hybrid(16) with ext4

HP-hybrid(64) with ext4 HP-hybrid(256) with ext4

File size 

IO
z
o

n
e
 r

e
w

r
it

e
 (

M
B

/s
e
c
.)



g) h)

Figure 7. IOzone bandwidth comparison with HP-hybrid whose HDD partition is inte-
grated with ext2 and ext4: a) Write with ext2 and xfs on HDD, b) Write with ext2 and
xfs on SSD, c) Write with ext4 on HDD, d) Write with ext4 on SSD, e) Rewrite with ext2
and xfs on HDD, f) Rewrite with ext2 and xfs on SSD, g) Rewrite with ext4 on HDD,
h) Rewrite with ext4 on SSD.

when we change the extent size of HP-hybrid to 64 KB and 256 KB in 256 MB of
file writes, there are about 11 % and 18 % of performance improvement, respectively,
compared to that of ext2. The same I/O behavior can also be observed in Figure 7 h)
where HP-hybrid(64) and HP-hybrid(256) generate 12 % and 18 % of speedup as
compared to that of ext4 installed on SSD. However, with small-size files such as
4 KB of files, using the large extent size does not generate the noticeable performance
advantage, due to the overhead of data collection in the allocation table and the
segment partition to the lower level. According to this experiment, we can see
that writing files using the appropriate extent size has a critical impact in I/O
performance of HP-hybrid.

Figures 7 e) to 7 h) show the performance comparison of file rewrite operations
where ext2, ext4 and xfs are installed on HDD and SSD. Similar to write operations,
in Figures 7 e) and 7 f), the HDD partition of HP-hybrid is combined with ext2 and
in Figures 7 g) and 7 h), it is combined with ext4.



Exploiting Fine-Grained Spatial Optimization for Hybrid File System Space 161

In rewrite operations, the access frequency of file system metadata operations is
not high. Figure 7 e) shows that in small files such as 16 KB the extent structure of
xfs does not work well on HDD. On the contrary, when installed on SSD, the perfor-
mance difference between xfs and HP-hybrid(16) using ext2 is about 20 %. Because
HP-hybrid maintains the hybrid structure using SSD partition, its extent structure
outperforms that of xfs installed on both devices. The performance comparison with
ext2 and ext4 illustrates that the usage of the large I/O granularity based on extent
size also works well in the rewrite operation, due to the less file access cost. For
example, in Figure 7 f), with 256 MB of file size, HP-hybrid(64) and HP-hybrid(256)
show about 11 % and 14 % of performance speedup, respectively, compared to ext2.
Also, in Figure 7 h), with 256 MB of file size, the same I/O pattern can be observed
while using 64 KB and 256 KB of extent sizes in HP-hybrid combined with ext4
improves 10 % and 14 % of I/O bandwidth as compared to that of ext4 installed on
SSD. Although we could not measure the overhead of SSD’s semiconductor behavior
because of inaccessibility to FTL embedded in fusion-io, we guess that the part of
such performance improvement might also come from the data alignment in VFS
layer.

4.3 Bonnie++ Benchmark

We used Bonnie++ to evaluate HP-hybrid using 256 MB of file size. Since the file
size is a multiple of extent sizes, only the segment partition at the top level takes
place while executing two MAPs and two inclusions. We used 16 KB of chunks and
−b option to invoke fsync() for every write and rewrite operations.

Figures 8 a) to 8 d) illustrate I/O performance of Bonnie++ benchmark. Among
the figures, Figures 8 a) and 8 b) are I/O bandwidth comparisons with HP-hybrid
whose HDD partition uses ext2 I/O modules. On the other hand, Figures 8 c)
and 8 d) are the performance comparisons with HP-hybrid using ext4 I/O modules
for its HDD partition. In the figures, ext2, ext4 and xfs produce the large perfor-
mance difference between two devices in three I/O operations, meaning that SSD
deploys higher I/O performance over HDD even with sequential I/O access pattern.

In Figure 8 b), when the write and rewrite throughputs of xfs installed on SSD
are compared to those of HP-hybrid, we could notice a large performance difference
between two file systems. We guess that as file write and rewrite operations continue
on xfs, the extents of the data chunk might not be aligned with flash block bound-
aries, resulting in the large erasure overhead in SSD. Such performance difference
does not appear in the read operation where the erasure overhead of SSD does not
take place.

In Figure 8 b), HP-hybrid(16) produces the similar I/O bandwidth to that of
ext2 installed on SSD. Also, increasing the extent size to 64 KB and 256 KB does
not generate high performance speedup, compared to ext2 and ext4. For exam-
ple, in Figure 8 b), HP-hybrid(256) shows only 4 % of performance improvement in
write and read operations, compared to ext2, due to the sequential I/O pattern of
Bonnie++.



162 J. No, S.-S. Park, C.-S. Lim

0

200

400

600

800

1000

write rewrite read

ext2(HDD) xfs(HDD)

HP-hybrid(16) with ext2 HP-hybrid(64) with ext2

HP-hybrid(256) with ext2

File size 

I/
O

 b
a

n
d

w
id

th
 (

M
B

/s
e
c
.)



0

200

400

600

800

1000

write rewrite read

ext2(SSD) xfs(SSD)

HP-hybrid(16) with ext2 HP-hybrid(64) with ext2

HP-hybrid(256) with ext2

File size 

I/
O

 b
a
n

d
w

id
th

 (
M

B
/s

e
c

.)


a) b)

0

200

400

600

800

1000

write rewrite read

ext4(HDD) HP-hybrid(16) with ext4

HP-hybrid(64) with ext4 HP-hybrid(256) with ext4

File size 

I/
O

 b
a

n
d

w
id

th
 (

M
B

/s
e
c
.)



0

200

400

600

800

1000

write rewrite read

ext4(SSD) HP-hybrid(16) with ext4

HP-hybrid(64) with ext4 HP-hybrid(256) with ext4

File size 

I/
O

 b
a

n
d

w
id

th
 (

M
B

/s
e
c
.)



c) d)

Figure 8. Bonnie++ I/O bandwidth comparison with HP-hybrid where HDD partition is
integrated with ext2 and ext4. The file size is 256 MB. a) I/O bandwidth with ext2 and
xfs on HDD, b) I/O bandwidth with ext2 and xfs on SSD, c) I/O bandwidth with ext4
on HDD, d) I/O bandwidth with ext4 on SSD.

4.4 Cost-Effectiveness Experiment

One of the main objectives of HP-hybrid is to build the large-scale, hybrid structure
to utilize SSD’s performance potentials and HDD’s low-cost and vast storage avail-
ability. To verify such cost-effectiveness, we first provided two partitions, 128 GB
of HDD partition and 32 GB of SSD partition, and ran HP-hybrid write operations
using IOzone to observe the space usage and write bandwidth. In IOzone, we used
the same configuration described in Section 4.2 and continuously wrote 4 MB of
files until almost all spaces of HDD and SSD partitions were exhausted. Also, we
compared HP-hybrid write bandwidth and space utilization to those of ext2 and xfs
installed on HDD and SSD. Since ext4 shows the similar I/O behavior to ext2, we
omit the ext4 experiment in this subsection. In HP-hybrid, we varied the extent size
from 16 KB to 256 KB. Since the file size to be allocated is larger than the extent
size, only the segment partition at the top level takes place, while generating two
MAP s and two inclusions.



Exploiting Fine-Grained Spatial Optimization for Hybrid File System Space 163

a) b)

Figure 9. Space utilization of ext2 and xfs on HDD and SSD. a) Ext2 and xfs on HDD,
b) Ext2 and xfs on SSD.

Figure 10. HP-hybrid space utilization

Figure 9 a) shows the write bandwidth and space usage of ext2 and xfs installed
on a 128 GB of HDD partition. Each file system can allocate about 32 300 4 MB
of files with additional space for storing file system metadata. Also, in Figure 9 b)
where two file systems are installed on a 32 GB of SSD partition, about 7 200 4 MB of
files can be stored in the partition with the extra space for file system metadata. We
would see if HP-hybrid can use the entire space of HDD partition while generating
the higher write bandwidth than that of ext2 and xfs on HDD partition.

Figure 10 shows the write throughput and space utilization of HP-hybrid con-
figured with extent sizes from 16 KB to 256 KB. In the evaluation, there are three



164 J. No, S.-S. Park, C.-S. Lim

aspects to be observed. First, we can notice that, unlike ext2 and xfs installed
on SSD partition, the file system space of HP-hybrid is restricted by HDD par-
tition rather than SSD partition, while providing the larger storage space than
those file systems. Also, the write throughput of HP-hybrid is similar or even
higher than that of ext2 on SSD. As a result, the hybrid structure of HP-hybrid
integrated with a small portion of SSD partition can contribute to generating the
performance improvement, while providing the larger storage space than SSD par-
tition.

Second, in HP-hybrid, we can observe that the periodic performance degradation
takes place. Since the storage space of SSD partition is restricted, whenever about
30 % of total space remains free, the extent replacement de-allocates 1 K files linked
at the bottom queue, while modifying the bits of the associated extents in the extent
bitmap and disabling SSD active, SSD wr done and SSD addresses stored in inode.
Such a procedure causes the periodic performance turbulence. Third, the effect of
the large I/O granularity is still available in this experiment. For example, after
writing 32 000 4 MB of files that consumes about 125 GB of space, writing files with
256 KB of extents produces 29 % and 21 % of performance speedup, compared to
16 KB and 64 KB of extent sizes, respectively.

According to the experiment, we can conclude that building the hybrid structure
combined with the small portion of SSD partition can be an alternative to produce
I/O performance improvement.

5 SUMMARY AND CONCLUSION

Despite its superior characteristics, such as non-volatility, fast random I/O through-
put and data reliability file system development to utilize SSD’s benefit in I/O does
not keep pace with the technical improvement of flash memory. For example, sev-
eral flash memory-related file systems have been developed for small-size devices,
but they are not appropriate for managing large-scale data storages. Also, using
legacy file systems, such as xfs, ext2 and ext4, does not maximize SSD usage be-
cause they do not address SSD’s peculiar device characteristics. One of our primary
objectives in developing HP-hybrid is to exploit SSD’s performance advantage as
much as possible while providing a large storage resource in a low cost. This is
performed by constructing the hybrid file system structure which uses the integra-
tion of a small portion of SSD partition with the large HDD partition. To address
the limited SSD storage capacity, file allocations in SSD partition are performed in
a fine-grained way, while utilizing the remaining space of I/O unit (extent). Fur-
thermore, HP-hybrid provides the flexible disk layout where multiple, logical data
sections can be configured with the different extent sizes. In the layout, files that
have a large-size, sequential access pattern can be stored in SSD data section that
is composed of large-size extents, to reduce file allocation cost. Also, files that do
not need high I/O response time can bypass SSD partition. Section 5.1 describes
the experimental results of HP-hybrid using several I/O benchmarks.



Exploiting Fine-Grained Spatial Optimization for Hybrid File System Space 165

5.1 Summary of Experimental Findings and Lessons Learned

We evaluated I/O performance of HP-hybrid using IOzone and Bonnie++, while
comparing to that of xfs, ext2 and ext4 installed on HDD and SSD. The following
is what we learned from the evaluation:

• First of all, we divided SSD partition into three data sections where each data
section is composed of 16 KB, 64 KB and 256 KB of extent sizes and named as
HP-hybrid(16), HP-hybrid(64) and HP-hybrid(256), respectively. If the file size
to be allocated to a data section is less than the extent size the segment partition
to the lower level involving MOV E operations takes place to use the remaining
free space. Otherwise, the segment partition occurs only at the top level while
executing two MAP s and two inclusions.

• In IOzone, there is a large performance difference between HP-hybrid(16) and
three other file systems installed on HDD because of the hybrid structure of HP-
hybrid(16). Also, increasing the extent size of HP-hybrid to 64 KB and 256 KB
shows the performance speedup due to the large I/O granularity. However,
writing small-size files using the large extent size generates the overhead of data
collection in the allocation table and segment partition to the lower level, in order
to use the remaining free space after file allocations. Therefore, it is important
to write small-size files using the appropriate extent size.

• In the evaluation of using Bonnie++, only the segment partition at the top level
takes place in HP-hybrid because of the use of large-size files. In Bonnie++,
we can observe that SSD deploys a better I/O bandwidth over HDD even with
the sequential access pattern. Also, the performance comparison between xfs
installed on SSD and HP-hybrid shows a large difference in write and rewrite
operations. We guess that the part of the reason is due to the data alignment
with flash block boundaries. The read operation does not show such a perfor-
mance difference.

• We tried to verify the cost-effectiveness of HP-hybrid, by using a 128 GB of HDD
partition and a 32 GB of SSD partition. In those partitions, we continuously
wrote 4 MB of files using IOzone until almost all storage spaces of both partitions
were consumed by files. In this experiment, we noticed that, unlike ext2 and xfs
installed on SSD partition, the file system space of HP-hybrid was restricted by
a larger HDD storage space, while generating the similar or even higher write
bandwidth than that of ext2 and xfs on SSD partition. Also, the effect of the
large I/O granularity can also be observed in the experiment. However, the
periodic performance turbulence took place due to the extent replacement.

As a future work, we plan to port HP-hybrid to a web server where several, long-
term applications will generate a large number of files with various sizes. In such
environment, we can prove more precisely the effectiveness of the hybrid structure
and the fine-grained, hierarchical extent layout implemented in HP-hybrid.



166 J. No, S.-S. Park, C.-S. Lim

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIP) (No. 2014R1A2A2A01002614). Also,
this work was supported by a grant (13AUDP-C067836-01) from the Architecture
and Urban Development Research Program funded by the Ministry of Land, Infras-
tructure and Transport of the Korean government.

REFERENCES

[1] Agrawal, N.—Prabhakaran, V.—Wobber, T.—Davis, J. D.—
Manasse, M.—Panigrahy, R.: Design Tradeoffs for SSD Performance. Pro-
ceedings of USENIX 2008 Annual Technical Conference (ATC ’08), San Diego, CA,
USA, 2008, pp. 57–70.

[2] Aleph1 Company: YAFFS: Yet Another Flash File System. Available on: http:

//www.yaffs.net, 2008.

[3] Bonnie++1.03a. Available on: www.coker.com.au/bonnie++.

[4] Chang, L. P.—Du, C. D.: Design and Implementation of an Efficient Wear-Leveling
Algorithm for Solid-State-Disk Microcontrollers. ACM Transactions on Design Au-
tomation of Electronic Systems, Vol. 15, 2009, No. 1, Art. No. 6.

[5] Dai, H.—Neufeld, M.—Han, R.: ELF: An Efficient Log-Structured Flash File
System For Micro Sensor Nodes. Proceedings of SenSys ’04, Baltimore, MD, USA,
2004, doi: 10.1145/1031495.1031516.

[6] Fusion-io: ioDrive User Guide for Linux. 2009.

[7] Gal, E.—Toledo, S.: Algorithms and Data Structures for Flash Memories. ACM
Computing Surveys, Vol. 37, 2005, No. 2, pp. 138–163, doi: 10.1145/1089733.1089735.

[8] Imation Corporation: Solid State Drives: Data Reliability and Lifetime. White paper,
2008.

[9] Intel Corporation: Understanding the Flash Translation Layer (FTL) Specification.
Technical paper, 2008.

[10] IOzone Filesystem Benchmark. Available on: www.iozone.org.

[11] Josephson, W. K.—Bongo, L. A.—Flynn, D.—Li, K.: DFS: A File System
for Virtualized Flash Storage. Proceedings of 8th USENIX Conference on File and
Storage Technologies, San Jose, CA, USA, 2010, doi: 10.1145/1837915.1837922.

[12] Jung, H.—Shim, H.—Park, S.—Kang, S.—Cha, J.: LRU-WSR: Integration
of LRU and Writes Sequence Reordering for Flash Memory. IEEE Transactions on
Consumer Electronics, Vol. 54, 2008, No. 3, pp. 1215–1223.

[13] Jung, J.—Won, Y.—Kim, E.—Shin, H.—Jeon, B.: FRASH: Exploiting Storage
Class Memory in Hybrid File System for Hierarchical Storage. ACM Transactions on
Storage, Vol. 6, 2010, No. 1, Art. No. 3.

[14] Kim, J.—Kim, J. M.—Noh, S. H.—Min, S. L.—Cho, Y.: A Space-Efficient Flash
Translation Layer for Compactflash Systems. IEEE Transactions on Consumer Elec-
tronics, Vol. 48, 2002, No. 2, pp. 366–375.

http://www.yaffs.net
http://www.yaffs.net
www.coker.com.au/bonnie++
https://doi.org/10.1145/1031495.1031516
https://doi.org/10.1145/1089733.1089735
www.iozone.org
https://doi.org/10.1145/1837915.1837922


Exploiting Fine-Grained Spatial Optimization for Hybrid File System Space 167

[15] Kim, H.—Ahn, S.: BPLRU: A Buffer Management Scheme for Improving Random
Writes in Flash Storage. Proceedings of 6th USENIX Symposium on File and Storage
Technologies, San Jose, CA, USA, 2008.

[16] Lee, C.—Baek, S. H.—Park, K. H.: A Hybrid Flash File System Based on NOR
and NAND Flash Memories for Embedded Devices. IEEE Transactions on Comput-
ers, Vol. 57, 2008, No. 7, pp. 1002–1008.

[17] Lee, S.—Ha, K.—Zhang, K.—Kim, J.—Kim, J.: FlexFS: A Flexible Flash File
System for MLC NAND Flash Memory. Proceedings of USENIX Annual Technical
Conference, San Diego, CA, USA, 2009.

[18] Park, S.—Jung, D.—Kang, J.—Kim, J.—Lee, J.: CFLRU: A Replacement
Algorithm for Flash Memory. Proceedings of the 2006 International Conference on
Compilers, Architecture and Synthesis for Embedded Systems, Seoul, Korea, 2006,
doi: 10.1145/1176760.1176789.

[19] Lee, S.—Park, D.—Chung, T.—Lee, D.—Park, S.—Song, H.: A Log Buffer-
Based Flash Translation Layer Using Fully-Associative Sector Translation. ACM
Transactions on Embedded Computing Systems, Vol. 6, 2007, No. 3, Art. No. 18.

[20] Park, C.—Cheon, W.—Kang, J.—Roh, K.—Cho, W.: A Reconfigurable FTL
(Flash Translation Layer) Architecture for NAND Flash-Based Applications. ACM
Transactions on Embedded Computing Systems, Vol. 7, 2008, No. 4, Art. No. 38.

[21] Polte, M.—Simsa, J.—Gibson, G.: Comparing Performance of Solid State De-
vices and Mechanical Disks. Proceedings of the 3rd Petascale Data Storage Work-
shop held in conjunction with Supercomputing ’08, Austin, TX, USA, 2008, doi:
10.1109/pdsw.2008.4811886.

[22] Rajimwale, A.—Prabhakaran, V.—Davis, J. D.: Block Management in Solid-
State Devices. Proceedings of USENIX Annual Technical Conference, San Diego, CA,
USA, 2009.

[23] Rosenblum, M.—Ousterhout, J. K.: The Design and Implementation of a Log-
Structured File System. ACM Transactions on Computer Systems, Vol. 10, 1992,
No. 1, pp. 26-52, doi: 10.1145/146941.146943.

[24] Samsung Electronics: K9XXG08XXM. Technical paper, 2007.

[25] Saxena, M.—Swift, M.: FlashVM: Virtual Memory Management on Flash. Pro-
ceedings of USENIX Annual Technical Conference, Boston, MA, USA, 2010.

[26] Soundararajan, G.—Prabhakaran, V.—Balakrishnan, M.—Wobber, T.:
Extending SSD Lifetimes with Disk-Based Write Caches. Proceedings of USENIX
Annual Technical Conference, San Diego, CA, USA, 2008.

[27] Texas Memory Systems: Increase Application Performance with Solid State Disks.
White paper, 2010.

[28] Wang, A.—Kuenning, G.—Reiher, P.—Popek, G.: The Conquest File System:
Better Performance Through a Disk/Persistent-RAM Hybrid Design. ACM Transac-
tions on Storage, Vol. 2, 2006, No. 3, pp. 309–348.

[29] Woodhouse, D.: JFFS: The Journalling Flash File System. Proceedings of Ottawa
Linux Symposium, Ottawa, Canada, 2001.

https://doi.org/10.1145/1176760.1176789
https://doi.org/10.1109/pdsw.2008.4811886
https://doi.org/10.1145/146941.146943


168 J. No, S.-S. Park, C.-S. Lim

[30] Zhang, Z.—Ghose, K.: hFS: A Hybrid File System Prototype for Improving Small
File and Metadata Performance. Proceedings of EuroSys ’07, Lisboa, Portugal, 2007,
doi: 10.1145/1272996.1273016.

[31] Nelson, C.: NexentaStor: An Introduction to ZFS’s Hybrid Storage Pool. White
paper, Nexenta Systems, 2012.

[32] Ali, A.—Rose, C.: bcache and dm-Cache. White paper, Dell Inc., 2013.

[33] Nguyen, B. M.—Tran, V.—Hluchý, L.: A Generic Development and Deploy-
ment Framework for Cloud Computing and Distributed Applications. Computing and
Informatics, Vol. 32, 2013, pp. 461–485.

[34] Hung, S.-H.—Shieh, J.-P.—Lee, C.-P.: Virtualizing Smartphone Applications
to the Cloud. Computing and Informatics, Vol. 30, 2011, pp. 1083–1097.

Jaechun No received her Ph.D. degree in computer science from
Syracuse University in 1999. She worked as a postdoctoral re-
searcher at Argonne National Laboratory from 1999 to 2001. She
also worked at Hewlett-Packard from 2001 to 2003. She is Pro-
fessor at the College of Electronics and Information Engineering
at Sejong University. Her research areas include file systems,
large-scale storage system and cloud computing.

Sung-Soon Park received his Ph.D. degree in computer science
from Korea University in 1994. He worked as a fulltime lecturer
at Korea Air Force Academy from 1988 to 1990. He also worked
as a postdoctoral researcher at Northwestern University from
1997 to 1998. He is Professor at the Department of Computer
Science and Engineering at Anyang University and also CEO
of Gluesys Co. Ltd. His research areas include network storage
system and cloud computing.

Cheol-Su Lim received his Master’s degree from Indiana Uni-
versity and his Ph.D. degree in computer engineering from So-
gang University. He worked as a senior researcher at SK Tele-
comm from 1994 to 1997. He also worked as National Research
Program Director from 2009 to 2010. He is Professor at the De-
partment of Computer Engineering at Seokyeong University. His
research areas include multimedia systems and cloud computing.

https://doi.org/10.1145/1272996.1273016

