
Computing and Informatics, Vol. 35, 2016, 1438–1466

DEDICATED HARDWARE FOR COMPLEX
MATHEMATICAL OPERATIONS

Peter Maĺık

Institute of Informatics
Slovak Academy of Sciences
Dúbravská cesta 9
845 07 Bratislava, Slovakia
e-mail: p.malik@savba.sk

Abstract. New hardware FPGA implementations for the efficient computations
of division, natural logarithm and exponential function are proposed. The pro-
posed implementations use generic floating-point adder and multiplier with small
additional resources that are shared to compute more frequently used multiply and
accumulate operations. Hardware sharing improved the resource utilization. The
time of the computation has been reduced to only 6 clock cycles when the natu-
ral logarithm and exponential function are calculated. The division is calculated
in 5 clock cycles. They are designed as technology independent high throughput
computing cores with minimized memory requirements which can be used in higher
numbers to significantly increased calculation speed in spectral processing. A new
universal arithmetic floating-point unit is also proposed.

Keywords: Dedicated hardware, division, natural logarithm, exponential function,
MAC, co-processor, floating-point, FPGA

Mathematics Subject Classification 2010: 65D20, 33F05, 68Q25, 68W25

1 INTRODUCTION

Mathematical operations that require approximation computational techniques have
been calculated in hardware since introduction of the first processors. The calcu-
lations of square root, natural logarithm, exponential function and other complex
operations have been performed by algorithm guided processors interconnected with



Dedicated Hardware for Complex Mathematical Operations 1439

a memory. The advancement of semiconductor technology allowed very large scale
integrations and systems on chip with many specialized cores implemented on a sin-
gle chip. The specialized core is optimized to the specific task which is calculated
very efficiently with low power and minimized memory requirements. The natural
logarithm, exponential function and division are selected for the efficient hardware
implementation because they are frequently used in spectroscopy processing.

Many fast algorithms and hardware implementations are studied in literature.
A discrete logarithm number system is discussed in [1]. A high-radix composite al-
gorithm for the computation of the logarithm, exponential, and powering functions
is used in the proposed architecture in [2]. The logarithm computed in a high-radix
digit-recurrence unit with selection by rounding is described in [3]. The same paper
discusses the reciprocal obtained by means of a LUT or a digit-recurrence algorithm
for fixed-point or floating-point exponents. A fast binary logarithm algorithm is
shown in [4]. A Maclaurin series based natural logarithm algorithm is characterized
in [5]. Natural logarithm, exponential function and division are discussed in [6].
Fast computing algorithms for the exponential and logarithmic functions are char-
acterized in [7]. A division-free algorithm for fixed-point exponential function based
on Newtons method is presented in [8]. Hardware implementations improvements
of the Taylor series based exponential function are proposed in [9]. An efficient
reducing argument range method for implementation of doubleprecision floating-
point is discussed in [10]. The hardware development and implementation of the
logarithmic and exponential functions using the CORDIC and parabolic synthesis
methodology are studied in [11]. The Newton-Raphson method for fast fixed-point
divider is shown in [12] and rounding improvements in [13]. The Goldschmidt di-
vision method is discussed in [14] and the version with faster convergence in [15].
A multiply-adder based reduced-precision floating-point unit for embedded digital
signal processing with software-based division and square root operations is pro-
posed in [16]. The algorithms differ in convergence rates, computational complexity
and memory requirements.

The paper presents new dedicated hardware implementations oriented to the
spectroscopy and other signal processing applications. The main motivation is to
propose technology independent IP cores capable to compute more complex math-
ematical operations while the hardware resources are shared for more often used
multiply and accumulate (MAC) operations. The proposed IP cores are optimized
for the calculation of division, natural logarithm and exponential function. The
spectroscopy algorithms frequently use these operations. However, the volume of
these operations is small in comparison to MAC. The proposed IP cores use generic
floating-point adder and multiplier with small additional resources. The main aim
is to use these blocks for calculating the MAC operations. The proposed IP cores
are implemented with 32-bit floating-point single precision in FPGA. The dedi-
cated hardware for division is modified to compute division and MACs in the same
hardware. The further modifications extended the ability to compute also addi-
tion, subtraction and multiplication. The result is 32-bit arithmetic floating-point
unit implemented in FPGA. The floating-point representation, originally defined in



1440 P. Maĺık

IEEE 754-1985 standard and later extended in IEEE 754-2008 standard [17, 18], is
widely used in signal processing applications due to the universal use and nearly
unlimited interval of input data. The ability to precisely represent values which are
very different and far away and the ability to load and process these values with
the high precision are crucial in the area of spectroscopy. All proposed hardware
implementations are designed with high speed computation and throughput. They
are suitable for high computation demanding signal processing applications.

The paper is organized as follows. The mathematical definitions are given in
Section 2. Computational models are characterized in Section 3. The dedicated
hardware is depicted in Section 4. The specialized processing cores are described in
Section 5 and the paper is concluded in Section 6.

2 MATHEMATICAL DEFINITIONS

Many different computational techniques for more complex mathematical operations
have been designed. Many of the fast computational techniques are based on the
same approximation principle. They differ mostly in the computational complexity
and convergence rate.

2.1 Division

The division operation can be implemented as an inverse process of the multiplica-
tion operation. The denominator (divisor) is continually subtracted from the numer-
ator (dividend); however, this requires very high number of iterations. If combined
with shift operation, the number of iterations is reduced to the number of valid bits
of the result. The more precise results require more iterations and therefore fast al-
gorithms were developed, e.g. Newton-Raphson division, Goldschmidt division and
its variations. These algorithms converge much faster within one iteration; however,
more mathematical operations are needed (usually several additions or subtractions
and multiplications).

2.1.1 Newton-Raphson Division

The Newton-Raphson division is based on calculating of multiplicative inverse (re-
ciprocal) of the denominator which is multiplied by the numerator to produce the
result [13]. The formula to calculate multiplicative inverse of the denominator is
shown in Equation (1) where Xi is multiplicative inverse at iteration i and D is
denominator.

Xi+1 = Xi +Xi(1−DXi) = Xi(2−DXi). (1)

The Newton-Raphson division can be optimized by scaling the denominator to
the interval [0.5, 1]. The minimization of maximal relative error on this interval can
be achieved by the initialization shown in Equation (2).

X0 =
48

17
− 32

17
D. (2)



Dedicated Hardware for Complex Mathematical Operations 1441

2.1.2 Goldschmidt Division

The Goldschmidt division is based on the continual multiplication of both the nu-
merator and denominator by the same factor Fi with goal to converge the denomi-
nator to 1. At the same time, the numerator converges directly to the quotient [14].
The formula is shown in Equation (3) where Q is quotient, N is numerator, D is
denominator and Fi is factor at iteration i.

Q =
N

D

∏n
i Fi∏n
i Fi

. (3)

The factor for the next iteration is calculated by (4). The numerator and de-
nominator for the next iteration are calculated by Equation (5).

Fi+1 = 2−Di. (4)

Ni+1

Di+1

=
Ni

Di

Fi+1

Fi+1

. (5)

2.1.3 Goldschmidt Division with Binomial Simplification

The Goldschmidt division can be simplified by the binomial theorem. When scal-
ing N and D such that D is from the interval (0.5, 1], the substitutions (6) and (7)
can be used where D is denominator, x is substituted variable and Fi is factor at
iteration i.

D = 1− x, (6)

Fi+1 = 1 + x2
i

. (7)

This leads to (8) where N is numerator.

N

1− x
=
N(1 + x)

1− x2
=
N
∏n−1

i=0 1 + x2
i

1− x2n
. (8)

2.2 Natural Logarithm

The natural logarithm of positive real number x is the power to which e must be
raised to yield x. In other words, the natural logarithm of x is the solution y to:

ey = x. (9)

The natural logarithm ln(x) is the inverse function of the exponential function,
leading to the identity [19]:

eln(x) = x (10)



1442 P. Maĺık

where x is a positive number. The important characteristic of the natural logarithm
is mapping multiplication into addition [19]:

ln(xy) = ln(x) + ln(y) (11)

where x and y are positive numbers. The natural logarithm can be characterized
by different techniques. One of the most known definition of the natural logarithm
calculation is using the Taylor power series [20] shown in Equation (12):

ln(x) =
∞∑
n=1

(−1)n+1 (x− 1)n

n
. (12)

This definition has a good convergence rate particularly for the small numbers
close to 1. More efficient calculation process can be obtained by using power se-
ries based on the area hyperbolic tangent function [20]. The principle is shown in
Equation (13):

ln(x) = 2
∞∑
n=0

1

2n+ 1

(
x− 1

x+ 1

)2n+1

. (13)

The natural logarithm can be calculated with high precision approximations by
arithmetic-geometric mean [21]:

ln(x) ≈ π

2M
(
1, 2

2−m

x

) −m ln(2) (14)

where M(x, y) denotes arithmetic-geometric mean of x and y. The parameter m is
chosen such that:

x2m > 2
p
2 . (15)

where p is the required precision. The continued fractions can be utilized for the
calculation of the natural logarithm [22]. The formula is shown in Equation (16):

ln(1 + x) =
x

1 +
x

2− x+
22x

3− 2x+
32x

4− 3x+
42x

5− 4x+
.. .

. (16)

Another formula for the natural logarithm calculation by the generalized continued
fractions with the more rapid convergence rate [22] is shown in Equation (17):



Dedicated Hardware for Complex Mathematical Operations 1443

ln(1 + x) =
2x

2 + x−
x2

6 + 3x−
(2x)2

10 + 5x−
(3x)2

14 + 7x− . . .

. (17)

2.3 Exponential Function

The exponential function ex can be characterized in different ways. One of the defi-
nitions shows that the exponential function ex is equal to the limit at the infinity [19]
defined by (18):

ex = lim
n→∞

(
1 +

x

n

)n
(18)

where x represents the input variable. The disadvantage of this definition is the
slow convergence rate which means the higher precision is calculated with high value
of n and the calculation process is slow. Another definition classifies exponential
function ex as solution of y according to the Equation (19):

x =

∫ y

1

dt

t
. (19)

One of the most known characterization of the exponential function ex is the
definition by power series [23] shown in Equation (20):

ex =
∞∑
n=0

xn

n!
. (20)

This definition has good convergence rate particularly for the small numbers
close to 0. An yet another exponential function ex definition can be obtained with
Euler identity. The result is the exponential function ex characterized by continued
fraction shown in Equation (21):

ex = 1 +
x

1−
x

x+ 2−
2x

x+ 3−
3x

x+ 4− . . .

. (21)

The exponential function ex can be further defined by the generalized continued
fraction shown in Equation (22):



1444 P. Maĺık

ex = 1 +
x

2− x+
x2

6 +
x2

10 +
x2

14 +
. . .

, (22)

which represents the modified continued fraction with the increased convergence rate
[22]. It can be shown, from any of these definitions, that the exponential function
ex obeys the basic exponentiation identity defined by (23):

ex+y = exey. (23)

3 COMPUTATIONAL MODELS

Computational models are designed to evaluate different computational techniques
and to compare the convergence speed. The main question of the study is how many
iterations are needed to reach the single and double precision. The convergence is
usually dependent on the actual input value. Therefore, it also has to be evaluated.
At the end of the evaluation process, the best suited computational technique for
the hardware implementation is selected. The main purpose of the computational
models is this selection. The computational models are designed in Matlab. Matlab
is also used for all evaluation processes.

3.1 Multiplicative Inverse and Division Computational Models

The first mathematical operation to evaluate is the multiplicative inverse. This
operation is selected because division can be calculated by multiplication of multi-
plicative inverse. This is also true in the division computational models which are
created from the multiplicative inverse computational models.

3.1.1 Newton-Raphson Multiplicative Inverse and Division Model

The Newton-Raphson multiplicative inverse and division model uses a non-trivial
initialization which requires multiplication and subtraction. This results in the
initialization process classified as the first iteration cycle. Table 1 shows the relative
error of the Newton-Raphson multiplicative inverse model. The convergence rate
varies minimally in the interval [0.5, 1] except the boundary values 0.5 and 1. It can
be seen that 4 iterations are needed to compute multiplicative inverse with the single
precision and 5 iterations are needed to reach the double precision. The division
is acquired by additional multiplication with the numerator in the next step. The
non zero values in the last column represent limits of the computational models and
simulation process which use the double precision.



Dedicated Hardware for Complex Mathematical Operations 1445

Input Relative Error at Iteration Cycle
Value 1 2 3 4 5

0.50 −0.058824 −0.0034602 −1.1973e−05 −1.4335e−10 0
0.55 −0.016471 −0.00027128 −7.3593e−08 −5.4956e−15 −1.2212e−16
0.60 0.016471 −0.00027128 −7.3593e−08 −5.4623e−15 −1.3323e−16
0.65 0.04 −0.0016 −2.56e−06 −6.5535e−12 1.4433e−16
0.70 0.054118 −0.0029287 −8.5774e−06 −7.3572e−11 0
0.75 0.058824 −0.0034602 −1.1973e−05 −1.4335e−10 1.6653e−16
0.80 0.054118 −0.0029287 −8.5774e−06 −7.3572e−11 0
0.85 0.04 −0.0016 −2.56e−06 −6.5535e−12 −1.8874e−16
0.90 0.016471 −0.00027128 −7.3593e−08 −5.3957e−15 0
0.95 −0.016471 −0.00027128 −7.3593e−08 −5.4845e−15 0
1.00 −0.058824 −0.0034602 −1.1973e−05 −1.4335e−10 0

Table 1. Relative error of the Newton-Raphson multiplicative inverse model

3.1.2 Goldschmidt Multiplicative Inverse and Division Model

The Goldschmidt multiplicative inverse and division model uses trivial initialization.
Therefore, it is not classified as an iteration cycle. Table 2 shows the relative error
of the Goldschmidt multiplicative inverse model. The convergence rate differs in
the interval [0.5, 1]. The slowest convergence has the boundary values 0.5, and the
opposite boundary value 1 is calculated instantly. This decreasing dependence can
be seen in the whole interval [0.5, 1]. The computational speed is dependent on the
slowest convergence rate and therefore to compute the multiplicative inverse with
the single precision 5 iterations are needed and 6 iteration are needed to reach the
double precision. The advantage is that the division can be acquired at the same
time by changing the initial conditions. The 6th iteration is not shown in Table 2
but the limits of the models and simulation process with the double precision can
already be seen in the last column with larger input values.

Input Relative Error at Iteration Cycle
Value 1 2 3 4 5

0.50 −0.25 −0.0625 −0.0039063 −1.5259e−05 −2.3283e−10
0.55 −0.2025 −0.041006 −0.0016815 −2.8275e−06 −7.9948e−12
0.60 −0.16 −0.0256 −0.00065536 −4.295e−07 −1.8439e−13
0.65 −0.1225 −0.015006 −0.00022519 −5.0709e−08 −2.5979e−15
0.70 −0.09 −0.0081 −6.561e−05 −4.3047e−09 1.5543e−16
0.75 −0.0625 −0.0039062 −1.5259e−05 −2.3283e−10 0
0.80 −0.04 −0.0016 −2.56e−06 −6.5535e−12 1.7764e−16
0.85 −0.0225 −0.00050625 −2.5629e−07 −6.587e−14 −1.8874e−16
0.90 −0.01 −0.0001 −1e−08 -1.9984e−16 −1.9984e−16
0.95 −0.0025 −6.25e−06 −3.9062e−11 2.1094e−16 2.1094e−16
1.00 0 0 0 0 0

Table 2. Relative error of the Goldschmidt multiplicative inverse model



1446 P. Maĺık

3.1.3 Multiplicative Inverse and Division Model
with Binomial Simplification

The Goldschmidt multiplicative inverse and division model with binomial simplifi-
cation uses simple initialization with 1 subtraction and therefore it is not classified
as an iteration cycle. Table 3 shows the relative error of the binomially simpli-
fied Goldschmidt multiplicative inverse model. The convergence rate differs in the
interval [0.5, 1] and is very similar to the standard Goldschmidt model. The first
three columns are the same, and only the last two columns show small differences in
comparison with the standard Goldschmidt model shown in Table 2. Five iterations
are needed to compute multiplicative inverse with the single precision and 6 itera-
tion are needed to reach the double precision. The option to perform the division
at the same time by changing initial conditions is similarly valid. The standard
Goldschmidt model is better due to the trivial initialization. The comparison of
the standard Goldschmidt model with the Newton-Raphson model depends on the
final application. The standard Goldschmidt model computes the division directly
and its non-equal convergence rate can be further utilized. The fastest convergence
region near 1 can be targeted by transforming the input data to this region. The
transformation can use precomputed values stored in the memory. This makes the
standard Goldschmidt model the most suitable computational technique for the
hardware implementation.

Input Relative Error at Iteration Cycle
Value 1 2 3 4 5

0.50 −0.25 −0.0625 −0.0039063 −1.5259e−05 −2.3283e−10
0.55 −0.2025 −0.041006 −0.0016815 −2.8275e−06 −7.9949e−12
0.60 −0.16 −0.0256 −0.00065536 −4.295e−07 −1.8452e−13
0.65 −0.1225 −0.015006 −0.00022519 −5.0709e−08 −2.5979e−15
0.70 −0.09 −0.0081 −6.561e−05 −4.3047e−09 1.5543e−16
0.75 −0.0625 −0.0039062 −1.5259e−05 −2.3283e−10 0
0.80 −0.04 −0.0016 −2.56e−06 −6.5535e−12 1.7764e−16
0.85 −0.0225 −0.00050625 −2.5629e−07 −6.6058e−14 −3.7748e−16
0.90 −0.01 −0.0001 −1e−08 0 0
0.95 −0.0025 6.25e−06 −3.9063e−11 0 0
1.00 0 0 0 0 0

Table 3. Relative error of the Goldschmidt multiplicative inverse model with binomial
simplification

3.2 Natural Logarithm Computational Models

The second mathematical operation to evaluate is the natural logarithm. This op-
eration is selected because it is the most used form of logarithm calculus in signal
processing. Five computational techniques defined in the section Natural Logarithm
are evaluated.



Dedicated Hardware for Complex Mathematical Operations 1447

3.2.1 Taylor Power Series Based Natural Logarithm Model

The Taylor power series natural logarithm definition (12) represents continual ad-
dition or subtraction of increasing power values divided by the power index. The
relative errors of the Taylor power series model in the specific iteration cycle are
shown in Table 4. The first column represents the iteration cycle number and the
next five columns show the relative errors of input values 0.5, 0.6, 0.7, 0.8 and 0.9.
The convergence rate of the Taylor power series model is increasing with the decreas-
ing distance to one. Only 7 iterations are needed to calculate the natural logarithm
with the single precision of input value 0.9 and 15 iterations to reach the double pre-
cision result. However, 22 iterations are needed to calculate the natural logarithm
of input value 0.5 to reach the single precision and 47 iterations to reach the dou-
ble precision. The saturation of the relative error to the non-zero values represents
limits of the simulation process with the double precision.

Iter- Relative Error of Input Value
ation 0.5 0.6 0.7 0.8 0.9

1 0.27865 0.21695 0.1589 0.10372 0.050878
2 0.098316 0.060345 0.032733 0.014088 0.0034217
3 0.038203 0.018582 0.0074997 0.0021371 0.00025799
4 0.015661 0.0060535 0.0018222 0.00034455 2.0713e−05
5 0.0066444 0.0020443 0.00045965 5.7742e−05 1.7305e−06
6 0.0028873 0.00070792 0.000119 9.9397e−06 1.4861e−07
7 0.0012772 0.00024973 3.1404e−05 1.7451e−06 1.3023e−08
8 0.00057274 8.9359e−05 8.4105e−06 3.1105e−07 1.159e−09
9 0.00025966 3.2339e−05 2.2789e−06 5.611e−08 1.0441e−10
10 0.00011877 1.1812e−05 6.2337e−07 1.022e−08 9.4997e−12
11 5.4729e−05 4.3474e−06 1.7186e−07 1.8766e−09 8.7157e−13
12 2.5377e−05 1.6104e−06 4.7696e−08 3.469e−10 8.0611e−14
13 1.183e−05 5.9986e−07 1.3312e−08 6.4497e−11 7.5079e−15
14 5.5406e−06 2.2451e−07 3.7336e−09 1.2052e−11 7.903e−16
15 2.6055e−06 8.4378e−08 1.0516e−09 2.2617e−12 1.3172e−16
17 5.8214e−07 1.2046e−08 8.4341e−11 8.0601e−14 1.3172e−16
22 1.4377e−08 9.7187e−11 1.6108e−13 0 1.3172e−16
28 1.7951e−10 3.1731e−13 1.5564e−16 0 1.3172e−16
37 2.6941e−13 0 1.5564e−16 0 1.3172e−16
47 1.6017e−16 0 1.5564e−16 0 1.3172e−16

Table 4. Relative error of the Taylor power series based natural logarithm model

3.2.2 Hyperbolic Tangent Power Series Based Natural Logarithm Model

The hyperbolic tangent power series natural logarithm definition (13) represents
continual addition of increasing power values divided by the power index. The
relative errors of the hyperbolic tangent power series model in the specific iteration



1448 P. Maĺık

cycle are shown in Table 5. The first column represents the iteration cycle number
and the next five columns show the relative errors of input values 0.5, 0.6, 0.7, 0.8
and 0.9. The convergence rate of the hyperbolic tangent power series model is
increasing with the decreasing distance to one. This increasing tendency is faster
in comparison to the Taylor power series model. Only 3 iterations are needed to
calculate the natural logarithm with the single precision of input value 0.9 and
6 iterations to reach the double precision result. However, 7 iterations are needed to
calculate the natural logarithm of input value 0.5 to reach the single precision and
16 iterations to reach the double precision.

Iter- Relative Error of Input Value
ation 0.5 0.6 0.7 0.8 0.9

1 0.038203 0.021192 0.010468 0.0041289 0.00092404
2 0.0025812 0.00080058 0.00019631 3.0628e−05 1.5363e−06
3 0.0002064 3.5887e−05 4.3755e−06 2.703e−07 3.0403e−09
4 1.7923e−05 1.7491e−06 1.0612e−07 2.5968e−09 6.5511e−12
5 1.6348e−06 8.9605e−08 2.7062e−09 2.6239e−11 1.4884e−14
6 1.5408e−07 4.7451e−09 7.1358e−11 2.7427e−13 1.3172e−16
7 1.4865e−08 2.5729e−10 1.9268e−12 2.9852e−15 1.3172e−16
8 1.4596e−09 1.4201e−11 5.2916e−14 1.2438e−16 1.3172e−16
9 1.4528e−10 7.9503e−13 1.4007e−15 1.2438e−16 1.3172e−16
10 1.462e−11 4.5424e−14 0 1.2438e−16 1.3172e−16
11 1.4846e−12 3.0427e−15 0 1.2438e−16 1.3172e−16
12 1.52e−13 6.5202e−16 0 1.2438e−16 1.3172e−16
13 1.5857e−14 4.3468e−16 0 1.2438e−16 1.3172e−16
14 1.9221e−15 4.3468e−16 0 1.2438e−16 1.3172e−16
15 4.8051e−16 4.3468e−16 0 1.2438e−16 1.3172e−16
16 3.2034e−16 4.3468e−16 0 1.2438e−16 1.3172e−16

Table 5. Relative error of the hyperbolic tangent power series based natural logarithm
model

3.2.3 Arithmetic-Geometric Mean Based Natural Logarithm Model

The arithmetic-geometric mean natural logarithm approximation (14) represents the
simple calculation with utilizing the arithmetic-geometric mean which is obtained
by calculating the arithmetic and geometric mean of x and y and let those become x
and y in the next iteration. The two numbers converge quickly. The relative errors of
the arithmetic-geometric mean model for the single precision in the specific iteration
cycle are shown in Table 6. The first column represents the iteration cycle number
and the next five columns show the relative errors of input values 0.5, 0.6, 0.7, 0.8
and 0.9. The results converge more quickly in comparison to power series models
and they show no dependence on input values. Six iterations are needed to calcu-
late natural logarithm with the single precision. The double precision converges in
8 iterations; however, the data are not included.



Dedicated Hardware for Complex Mathematical Operations 1449

Iter- Relative Error of Input Value
ation 0.5 0.6 0.7 0.8 0.9

1 −12.468 −17.275 −25.173 −40.835 −87.602
2 −8.0346 −11.248 −16.528 −27 −58.272
3 −2.1557 −3.1101 −4.6845 −7.814 −17.17
4 −0.083342 −0.12713 −0.2005 −0.34773 −0.79034
5 −0.0001029 −0.0001739 −0.00029838 −0.00055575 −0.0013435
6 3.4665e−09 3.1481e−09 3.0485e−09 3.1806e−09 3.9128e−09
7 3.6222e−09 3.4709e−09 3.7035e−09 4.5867e−09 7.7558e−09
8 3.6222e−09 3.4709e−09 3.7035e−09 4.5867e−09 7.7558e−09

Table 6. Relative error of the arithmetic-geometric mean based natural logarithm model
optimized for the single precision

3.2.4 Continued Fractions Based Natural Logarithm Models

The continued fractions and generalized continued fractions natural logarithm def-
initions (16) and (17), respectively, represent continual denominator division which
becomes more and more complex. The relative errors of the continued fractions
model are very similar to the Taylor power series model in Table 4. The mini-
mal differences are only at later iterations and therefore the results are not pre-
sented. The relative errors of the generalized continued fractions models in the
specific iteration cycle are shown in Table 7. The first column represents the it-
eration cycle number and the next five columns show the relative errors of input
values 0.5, 0.6, 0.7, 0.8 and 0.9. The generalized continued fractions model con-
verges faster in comparison to the hyperbolic tangent power series model, see Ta-
ble 5. Only 3 iterations are needed to calculate the natural logarithm with the
single precision of input value 0.9 and 5 iterations to reach the double precision
result. However, 5 iterations are needed to calculate the natural logarithm of in-
put value 0.5 to reach the single precision and 11 iterations to reach the double
precision.

3.2.5 Evaluation of Natural Logarithm Models

The generalized continued fractions model has the fastest converge rate from all
presented models when the input values are close to 1. The disadvantage is the
more complex computational process based on divisions. The exactly opposite re-
sults are for the Taylor power series model. All results show that the input in-
terval from 0.5 to 1 is too wide for fast natural logarithm computations. The
most evaluated computational techniques converge much faster with input value
close to 1. This can be achieved by input transformation that utilizes the natu-
ral logarithm characteristic (11). This characteristic is also used to calculate the
multiplication factor (exponent) and focuses only on the short input interval. The
Taylor power series uses only multiplications and additions. A very short input
interval close to 1 reduces the polynomial degree necessary to calculate the Taylor



1450 P. Maĺık

Iter- Relative Error of Input Value
ation 0.5 0.6 0.7 0.8 0.9

1 0.038203 0.021192 0.010468 0.0041289 0.00092404
2 0.0012111 0.00036671 8.856e−05 1.3693e−05 6.837e−07
3 3.6771e−05 6.0939e−06 7.2093e−07 4.3751e−08 4.8771e−10
4 1.1009e−06 9.994e−08 5.7942e−09 1.3805e−10 3.4352e−13
5 3.2759e−08 1.6293e−09 4.6299e−11 4.3311e−13 2.6343e−16
6 9.7154e−10 2.6476e−11 3.6886e−13 1.3682e−15 0
7 2.8756e−11 4.2946e−13 2.9571e−15 0 0
8 8.5003e−13 7.1722e−15 0 0 0
9 2.4987e−14 2.1734e−16 0 0 0
10 8.0086e−16 2.1734e−16 0 0 0
11 0 2.1734e−16 0 0 0

Table 7. Relative error of the generalized continued fractions based natural logarithm
model

power series with selected precision. It results in the simple and fast computation
in comparison to other algorithms (including minimax function or Chebyshev poly-
nomials). Therefore, it is suitable for hardware implementation when it is used
only for input values close to 1. The division complexity requires more hardware
resources or more time (more iteration steps) to be calculated and therefore the
generalized continued fractions model is less suitable for the hardware implementa-
tion.

3.3 Exponential Function Computational Models

The third mathematical operation to evaluate is the exponential function. This
operation is selected because it is the inverse operation to the natural logarithm
and they are often used together in signal processing. The three computational
techniques defined in the section Exponential Function are evaluated.

3.3.1 Power Series Based Exponential Function Model

The power series exponential function definition (20) represents the continual ad-
dition of increasing power values divided by increasing factorial. The relative er-
rors of the power series model in the specific iteration cycle are shown in Table 8.
The first column represents the iteration cycle number and the next five columns
show the relative errors of input values 0.1, 0.5, 1, 1.5 and 2. The convergence rate
of the power series model is decreasing with the increasing input absolute value.
Only 5 iterations are needed to calculate the exponential function with the single
precision of input value 0.1 and 9 iterations to reach the double precision result.
However, 13 iterations are needed to calculate the exponential function of input
value 2 to reach the single precision and 22 iterations to reach the double preci-
sion.



Dedicated Hardware for Complex Mathematical Operations 1451

Iter- Relative Error of Input Value
ation 0.1 0.5 1.0 1.5 2.0

1 −0.0046788 −0.090204 −0.26424 −0.44217 −0.59399
2 −0.00015465 −0.014388 −0.080301 −0.19115 −0.32332
3 −3.8468e−06 −0.0017516 −0.018988 −0.065642 −0.14288
4 −7.6678e−08 −0.00017212 −0.0036598 −0.018576 −0.052653
5 −1.2749e−09 −1.4165e−05 −0.00059418 −0.004456 −0.016564
6 −1.818e−11 −1.0024e−06 −8.3241e−05 −0.00092599 −0.0045338
7 −2.2723e−13 −6.2197e−08 −1.0249e−05 −0.00016957 −0.0010967
8 −2.8128e−15 −3.4355e−09 −1.1252e−06 −2.7736e−05 −0.00023745
9 −4.0183e−16 −1.7097e−10 −1.1143e−07 −4.0975e−06 −4.6498e−05
10 −4.0183e−16 −7.741e−12 −1.0048e−08 −5.5175e−07 −8.3082e−06
11 −4.0183e−16 −3.2161e−13 −8.3161e−10 −6.8242e−08 −1.3646e−06
12 −4.0183e−16 −1.2525e−14 −6.3598e−11 −7.8033e−09 −2.0735e−07
13 −4.0183e−16 −6.7338e−16 −4.5198e−12 −8.2958e−10 −2.9306e−08
14 −4.0183e−16 −2.6935e−16 −2.9995e−13 −8.2397e−11 −3.8712e−09
15 −4.0183e−16 −2.6935e−16 −1.8624e−14 −7.6787e−12 −4.7997e−10
17 −4.0183e−16 −2.6935e−16 0 −5.5688e−14 −6.1892e−12
19 −4.0183e−16 −2.6935e−16 0 0 −6.4548e−14
22 −4.0183e−16 −2.6935e−16 0 3.9636e−16 −2.404e−16

Table 8. Relative error of the power series based exponential function model

3.3.2 Continued Fraction Based Exponential Function Models

The continued fraction exponential function definition (21) and the generalized con-
tinued fraction exponential function definition (22) represent the continual denom-
inator division which becomes more and more complex. The denominator in the
generalized continued fraction definition is less complex and uses lower number
of additions in comparison to the continued fraction definition. The relative er-
rors of the continued fraction model are very similar to the power series model
in Table 8. The minimal differences are only at later iterations and therefore the
results are not presented. The relative errors of the generalized continued frac-
tion model in the specific iteration cycle are shown in Table 9. The first column
represents the iteration cycle number and the next five columns show the relative
errors of input values 0.1, 0.5, 1, 1.5 and 2. The convergence rate is decreasing
with the increasing input absolute value much faster in comparison to the power
series model. Only 2 iterations are needed to calculate the exponential function
with the single precision of input value 0.1 and 4 iterations to reach the double
precision result. Six iterations are needed to calculate the exponential function of
input value 2 to reach the single precision and 9 iterations to reach the double
precision.



1452 P. Maĺık

Iter- Relative Error of Input Value
ation 0.1 0.5 1.0 1.5 2.0

1 8.3462e−05 0.010884 0.10364 0.56191 ∞
2 −1.3897e−08 −4.4048e−05 −0.0014701 −0.011852 −0.052653
3 9.9232e−13 7.8261e−08 1.0312e−05 0.00018484 0.0014811
4 −2.0091e−16 −7.7453e−11 −4.0532e−08 −1.6157e−06 −2.2629e−05
5 0 4.8753e−14 1.0177e−10 9.0645e−09 2.2355e−07
6 0 0 −1.7742e−13 −3.5354e−11 −1.54e−09
7 0 0 0 1.0147e−13 7.8126e−12
8 0 0 −1.6337e−16 −1.9818e−16 −3.0411e−14
9 0 0 −1.6337e−16 1.9818e−16 1.202e−16

Table 9. Relative error of the generalized continued fraction based exponential function
model

3.3.3 Evaluation of Exponential Function Models

The generalized continued fractions model has the fastest converge rate from all
presented models. The disadvantage is the more complex computational process
based on divisions. The power series model uses only multiplications and additions
and converges very slowly. All results show that the input interval from −2 to 2 is
too wide for fast exponential function computations. All evaluated computational
techniques converge much faster with input value close to 0. This can be achieved
by input transformation that utilizes the exponentiation identity (23). A very short
input interval close to 0 reduces the polynomial degree necessary to calculate the
power series with selected precision. It results in the simple and fast computation in
comparison to other algorithms (including minimax function or Chebyshev polyno-
mials). Therefore, it is suitable for hardware implementation when it is used only for
input values close to 1. The division complexity requires more hardware resources
or more time (more iteration steps) to be calculated. This makes the generalized
continued fractions model less suitable for hardware implementation.

4 DEDICATED HARDWARE

Every complex algorithm can be divided to the sequence of simple mathematical
operations that can be calculated by general processing units. This is an universal
solution that is used by many applications. The dedicated hardware offers faster
computations, less data traffic and lower power consumption in comparison to gen-
eral processing units. This is achieved by creating the data flow optimized hard-
ware architecture for the specific task. The operations are grouped together to the
more unified computations lengths with better optimized small local memory while
parallel computation is introduced. This results in the parallel computation that
efficiently utilizes hardware area and requires less access to general memory. The
modern design tools from Xilinx or Altera include IP core generators capable to
generate specialized IPs which are technology dependent. The higher computation



Dedicated Hardware for Complex Mathematical Operations 1453

speed is achieved by using long pipeline, e.g.: Xilinx generated fast divider with the
single precision has the latency equaled to 29 clock cycles and natural logarithm
with the single precision has the latency equaled to 23 clock cycles. The disadvan-
tage is in no hardware sharing option. The proposed hardware implementations
utilize general floating-point multiplier and adder that are aimed to be used for
MAC calculations when the computation of division, natural logarithm or exponen-
tial function is not needed. This approach introduces hardware resources sharing.
MAC operations are much more used in signal processing in comparison to natural
logarithm or exponential function. Hardware resources sharing proposes better area
utilization leading to higher throughput.

The floating-point hardware implementation requires much more complex com-
putational blocks for multiplication and addition in comparison to the integer hard-
ware implementation. This is caused by maintaining floating-point data format.
The advantage is the high precision with general unrestricted input values. Only
32-bit floating-point precision implementation has been selected for the hardware im-
plementation in FPGA. The new reduced 32-bit floating-point adder and multiplier
have been designed and implemented. They are technology independent which is the
main advantage. The specification of IEEE 754-2008 standard has been simplified
by removing support for denormal numbers, similarly as is done in other commercial
IP generator design tools. The denormal numbers are allowed as inputs. However,
they are internally recognized as zero value. Removing this support has reduced
the area of these computational blocks. This results in the increased number of
parallel computing blocks and higher throughput. The reduced 32-bit adder and
multiplier produce results in one clock cycle. All presenting designs are technology
independent. They have been implemented with Xilinx ISE Design suite 14.5 in
Xilinx Virtex4 SX35 FPGA with FF668 package. This FPGA contains 4-input look
up tables (LUTs) and embedded DPS48 blocks. The utilization of DSP48 blocks
significantly reduces the final number of used LUTs and slices in FPGA design. All
results are post-place and route results and the verification is done by the post-place
and route simulation. VHDL hardware description language is used in all designs.

4.1 Multiplicative Inverse

The Newton-Raphson, Goldschmidt and Goldschmidt with binomial simplification
multiplicative inverse models have been designed and implemented. These models
require one addition/subtraction and two multiplications to calculate an iteration
cycle. Table 10 shows implementation results of these models. The area consumed
by computational logic (LUTs) is very similar in all three designs. All three de-
signs have been optimized to high speed computation and throughput. This has
been achieved by the parallel computation of several input values at the same time.
The Newton-Raphson implementation calculates 3 and the Goldschmidt and Gold-
schmidt with binomial simplification implementations calculate 2 multiplicative in-
verses at the same time. This is the reason why the Newton-Raphson implementa-
tion has the computational time one and a half times higher than the Goldschmidt



1454 P. Maĺık

implementation while they both have the same throughput. The Goldschmidt with
binomial simplification implementation requires one clock cycle to calculate the ini-
tial condition which is calculated by the adder. This results in increased time of the
computation to 12 clock cycles and reduced throughput to 0.1667 per clock cycle.
The Goldschmidt implementation is the best.

The Multiplicative Inverse of
Newton-Raphson Goldschmidt Goldschmidt

+ Binomial

LUTs as logic 2 352 2 343 2 350
LUTs as route-thru 96 98 103
Total LUTs 2 448 2 441 2 453
Occupied Slices 1 334 1 273 1 282
Flip Flops 291 161 195
Delay 13 ∗ clk 11 ∗ clk 13 ∗ clk
Time of computation 15 ∗ clk 10 ∗ clk 12 ∗ clk
Throughput 0.2/clk 0.2/clk 0.1667/clk
Delay (ns) 14.957 14.990 14.902
Maximum frequency (MHz) 66.858 66.711 67.105

Xilinx Virtex4 SX35 FPGA used

Table 10. Multiplicative inverse implementation in FPGA

The Table 11 shows the relative errors of Newton-Raphson multiplicative inverse
32-bit implementation in FPGA. Input values are shown in the first column. The
next 4 columns show the decreasing relative error calculated in each iteration cycle.
The decreasing rate is slower in comparison with data shown in Table 1 due to 32-
bit physical limitations of used computational blocks. Similarly, the relative errors
of Goldschmidt and Goldschmidt with binomial simplification multiplicative inverse
32-bit FPGA implementations are shown in Table 12 and Table 13. The relative
errors are calculated from the output values and correct results generated with the
double precision in Matlab. The relative error equaled to 1.1011e−7 represents one
bit error or 1 ULP (Unit in the Last Place) which corresponds to the mantissa least
significant bit negation of the single precision IEEE 754-2008 standard. This value
also represents the machine epsilon of the single precision IEEE 754-2008 standard.

Input Relative Error at Iteration Cycle
Value 1 2 3 4

0.500 −0.0588 −0.0035 −1.2040e−05 −1.7881e−07
0.625 0.0294 −8.6515e−04 −9.5367e−07 −5.9605e−08
0.750 0.0588 −0.0035 −1.1951e−05 −5.9605e−08
0.825 0.0294 −8.6519e−04 −7.8976e−07 −1.6391e−07

Table 11. Relative errors of the Newton-Raphson multiplicative inverse 32-bit implemen-
tation in FPGA



Dedicated Hardware for Complex Mathematical Operations 1455

Input Relative Error at Iteration Cycle
Value 1 2 3 4 5

0.500 −0.2500 −0.0625 −0.0039 −1.5259e−05 −5.9605e−08
0.625 −0.1406 −0.0198 −3.9107e−04 −2.8312e−07 −5.9605e−08
0.750 −0.0625 −0.0039 −1.5259e−05 −5.9605e−08 −5.9605e−08
0.825 −0.0156 −2.4414e−04 −5.9605e−08 −5.9605e−08 −5.9605e−08

Table 12. Relative errors of the Goldschmidt multiplicative inverse 32-bit implementation
in FPGA

Input Relative Error at Iteration Cycle
Value 1 2 3 4 5

0.500 −0.2500 −0.0625 −0.0039 −1.5259e−05 −5.9605e−08
0.625 −0.1406 −0.0198 −3.9107e−04 −2.8312e−07 −5.9605e−08
0.750 −0.0625 −0.0039 −1.5259e−05 −5.9605e−08 −5.9605e−08
0.825 −0.0156 −2.4414e−04 −5.9605e−08 −5.9605e−08 −5.9605e−08

Table 13. Relative errors of the Goldschmidt with binomial simplification multiplicative
inverse 32-bit implementation in FPGA

4.2 Division

The Goldschmidt division models have been designed and implemented in two 32-
bit floating-point versions. The first version represents a minimal modification by
introducing the nominator value as general input. The second version, marked as
universal Goldschmidt, is additionally modified to correctly calculate the division
results from all input values of the single precision IEEE 754-2008 standard in-
cluding infinity and zero. The division by zero generates infinity result and error
signal. All these models require one addition/subtraction and two multiplications
to calculate an iteration cycle. Table 14 shows implementation results of these mod-
els. The second and third columns correspond to implementation with no DSP48s
and the fourth column to implementation with smart DSP48s utilization. The area
consumed by computational logic (LUTs) is only slightly bigger in the universal
Goldschmidt divider. However, the use of DSP48 blocks significantly reduces the
final area. The number of used registers (Flip Flops) is slightly increased which
results in the small improvements of delay and computational speed.

4.3 Natural Logarithm

The Taylor power series natural logarithm based model has been designed and
implemented in five 32-bit floating-point versions. All of them require one addi-
tion/subtraction and one multiplication to calculate an iteration cycle. The first
version is designed based on the Taylor power series based natural logarithm model
with only limited input value transformation. The computation is rendered with
input data from interval from 0.5 to 1 while the input transformation processes the



1456 P. Maĺık

Universal Universal
Goldschmidt Goldschmidt Goldschmidt

Divider Divider Divider

LUTs as logic 2 374 2 406 1 274
LUTs as route-thru 98 106 3

Total LUTs 2 472 2 512 1 277
Occupied Slices 1 285 1 314 688

Flip Flops 193 216 217
DSP48s 0 0 8
Delay 11 ∗ clk 11 ∗ clk 11 ∗ clk

Time of computation 10 ∗ clk 10 ∗ clk 10 ∗ clk
Throughput 0.2/clk 0.2/clk 0.2/clk
Delay (ns) 14.892 13.981 13.964

Maximum frequency (MHz) 67.150 71.526 71.693

Xilinx Virtex4 SX35 FPGA used

Table 14. Division implementation in FPGA

other values and special values as infinity. The corresponding output transformation
restores the correct results. Therefore, the input value can be any number in 32-bit
IEEE 754-2008 format. The implementation results are shown in the second column
in Table 15. It can be seen that the limited input value transformation represents
slow computation with delay equaled to 50 clock cycles and computational speed
equaled to 23 clock cycles. The internal pipeline structure computes two natural log-
arithm concurrently and therefore the new natural logarithm value is calculated on
average in 23 clock cycles when at least 2 input values are in a sequence. The 2nd, 3rd

and 4th versions of the Taylor power series natural logarithm based model gradually
improve the input value transformation and reduce the core computational interval.
The implementation results are shown in the last 3 columns in Table 15. It can be
seen that the time of the computation is gradually reduced from 50 to only 9 clock
cycles in version 4. The additional optimizations reduced the computational logic
area to 2043 LUTs in version 2. However, the more powerful input transformation
increased the computational logic area to 2183 LUTs in version 4.

The 5th version of the Taylor power series natural logarithm based model fur-
ther improves the input value transformation and reduces the core computational
interval. The input transformation has been divided to 2 stages to limit the increase
of the computational logic area. The more stages have the multiplicative effect.
Each stage requires one clock cycle which results in the slower computation of the
input value transformation. This increases the overall time of the computation by
2 clock cycles. The implementation results are shown in Table 16. The second
column corresponds to implementation with no DSP48s and the third column to
implementation with smart DSP48s utilization. The computational logic consumes
area corresponding to 2 274 LUTs and the internal registers require 289 Flip Flops.
The overall delay is reduced to 14 clock cycles and the time of the computation is



Dedicated Hardware for Complex Mathematical Operations 1457

Taylor Taylor Taylor Taylor
Version 1 Version 2 Version 3 Version 4

LUTs as logic 2 124 2 043 2 059 2 183
LUTs as route-thru 67 67 67 67

Total LUTs 2 191 2 110 2 126 2 250
Occupied Slices 1 203 1 116 1 126 1 198

Flip Flops 277 213 216 228
DSP48s 0 0 0 0
Delay 50 ∗ clk 33 ∗ clk 25 ∗ clk 19 ∗ clk

Time of computation 23 ∗ clk 16 ∗ clk 12 ∗ clk 9 ∗ clk
Throughput 0.043/clk 0.063/clk 0.083/clk 0.111/clk
Delay (ns) 16.928 16.691 17.767 17.828

Maximal frequency (MHz) 59.074 59.913 56.284 56.092

Xilinx Virtex4 SX35 FPGA used

Table 15. Natural logarithm 32-bit floating-point implementations in FPGA

equaled to only 6 clock cycles when at least 2 input data are in a sequence. The
input value can be any number in 32-bit IEEE 754-2008 format.

Taylor Version 5 Taylor Version 5

LUTs as logic 2 274 1 731
LUTs as route-thru 51 2

Total LUTs 2 325 1 733
Occupied Slices 1 264 975

Flip Flops 289 281
DSP48s 0 4
Delay 14 ∗ clk 14 ∗ clk

Time of computation 6 ∗ clk 6 ∗ clk
Throughput 0.167/clk 0.167/clk
Delay (ns) 16.568 16.941

Maximal frequency (MHz) 60.357 59.028

Xilinx Virtex4 SX35 FPGA used

Table 16. Natural logarithm 32-bit floating-point implementation in FPGA

The comparison of the Taylor power series based natural logarithm implemen-
tations in FPGA are shown in Table 17. The second and the third columns compare
the Taylor version 5 with Taylor version 4, and the last two columns compare Taylor
version 5 with Taylor version 1. The area consumed by logic is increased by 4.17 %
and 7.06 % in comparison to the version 4 and version 1, respectively. The registers
are increased by 26.75 % and 4.33 % in comparison to the version 4 and version 1.
This area increase is more than balanced with the throughput increase which has
risen by 50 % and more than 288 % in comparison to the version 4 and version 1.

Table 18 shows the relative errors comparison of all five 32-bit floating-point
FPGA implementation versions of the Taylor power series based natural logarithm.



1458 P. Maĺık

Comparison of Comparison of
Version 5 & Version 4 Version 5 & Version 1

LUTs as logic 91 4.17 % 150 7.06 %
LUTs as route-thru −16 −23.88 % −16 −23.88 %

Total LUTs 75 3.33 % 134 6.12 %
Occupied Slices 66 5.51 % 61 5.07 %

Flip Flops 61 26.75 % 12 4.33 %
Delay −5 ∗ clk −26.32 % −36 ∗ clk −72.00 %

Time of computation −3 ∗ clk −33.33 % −17 ∗ clk −73.91 %
Throughput 0.056/clk 50 % 0.124/clk 288.4 %
Delay (ns) −1.26 −7.08 % −0.36 −2.13 %

Maximal frequency (MHz) 4.265 7.60 % 1.28 2.17 %

Xilinx Virtex4 SX35 FPGA used

Table 17. Comparison of natural logarithm 32-bit floating-point implementations in FPGA

The input data in decimal formatting are shown in the first column. The 2nd, 3rd,
4th, 5th and 6th columns show the relative errors corresponding to the version 1,
version 2, version 3, version 4 and version 5, respectively. The relative errors are
calculated from the output values and correct results generated with the double
precision in Matlab. It can be seen that the differences in the relative errors are
minimal. The highest relative errors are produced with input values very close to 1
which is caused by calculation of the relative error from very small numbers close
to 0. The error absolute value can be neglected. The input values greatly distanced
from 1 produce nearly no relative error. The relative error equaled to 1.1011e−7
represents 1-bit error or 1 ULP which corresponds to the mantissa least significant
bit negation of the single precision IEEE 754-2008 standard.

4.4 Exponential Function

The power series based exponential function model has been designed and imple-
mented in four 32-bit floating-point versions. The first 3 versions require one addi-
tion/subtraction and two multiplications to calculate an iteration cycle. The first
version is designed based on the power series based exponential function model with
no input value transformation. The computation is optimized for input data from
the interval from −2 to 2. The input values outside of this interval are computed
correctly. However, the computational precision decreases with the absolute input
value. The implementation results are shown in the second column in Table 19.
It can be seen that no input value transformation represents the slow computation
equal to 15 clock cycles and delay equal to 17 clock cycles. The 2nd and 3rd versions
of the power series based exponential function model introduce input value trans-
formation which limit the core computational interval. The implementation results
are shown in the last 2 columns in Table 19. It can be seen that the time of the
computation is gradually reduced from 15 to 11 clock cycles in the version 3 while



Dedicated Hardware for Complex Mathematical Operations 1459

Decimal
Input Relative Errors of 32-Bit Power Series
Values Version 1 Version 2 Version 3 Version 4 Version 5

0.50 8.3243e−08 −2.7478e−09 −2.7478e−09 −8.8739e−08 −2.7478e−09
0.55 −5.0402e−08 4.9299e−08 4.9299e−08 −5.0402e−08 −3.8576e−07
0.60 2.1333e−07 −2.004e−08 9.6643e−08 9.6643e−08 −3.3119e−07
0.65 4.482e−09 −2.7225e−07 −2.7225e−07 −1.3388e−07 −1.8710e−07
0.70 −1.5437e−07 −1.5437e−07 −1.5437e−07 −1.5437e−07 −2.3068e−08
0.75 5.5703e−08 5.5703e−08 −1.5149e−07 −1.5149e−07 −1.5149e−07
0.80 −1.8447e−07 −1.8447e−07 −1.8447e−07 −2.5125e−07 −9.8581e−07
0.85 2.5096e−07 2.5096e−07 4.3434e−07 4.3434e−07 −8.3852e−07
0.90 −1.3913e−07 −1.3913e−07 −1.3913e−07 −7.7557e−07 −1.3727e−06
0.95 −1.3895e−06 −1.3895e−06 −1.3895e−06 −1.3895e−06 −3.6141e−06

1 5.9605e−08 0 0 −5.9605e−08 0
5 1.8684e−08 −1.2945e−07 −1.2945e−07 −1.2945e−07 −5.5385e−08

125 −8.0075e−08 −8.0075e−08 −8.0075e−08 −8.0075e−08 −8.0075e−08
3e05 −6.1369e−08 −6.1369e−08 −6.1369e−08 −6.1369e−08 −6.1369e−08
5e15 −1.5738e−07 −1.5738e−07 −1.5738e−07 −1.5738e−07 −5.2610e−08
7e30 −3.5913e−08 −3.5913e−08 −3.5913e−08 −3.5913e−08 −3.6429e−08
0.20 −1.8684e−08 −1.8684e−08 −1.8684e−08 −1.8684e−08 −1.7608e−07

3e−02 −1.2581e−08 −1.2581e−08 −1.2581e−08 −1.2581e−08 −1.4219e−07
5e−05 3.5041e−08 3.5041e−08 3.5041e−08 3.5041e−08 −5.8705e−08
7e−15 1.5557e−07 1.5557e−07 1.5557e−07 1.5557e−07 −7.9092e−08
9e−30 4.3288e−08 4.3288e−08 4.3288e−08 4.3288e−08 −7.0835e−08

Table 18. Comparison of five 32-bit floating-point versions of the Taylor power series im-
plementation in FPGA

one clock cycle is used for the input value transformation. The additional optimiza-
tions reduced computational logic area to 2559 LUTs in the version 3 which has
more powerful input value transformation.

The 4th version of the power series based exponential function model is com-
pletely redesigned. One multiplication has been removed. The calculation process
requires one addition and one multiplication at each iteration cycle. The computa-
tional pipeline is improved and processing of two input values in parallel is intro-
duced. Additionally, the input value transformation is further improved. All input
values of 32-bit IEEE 754-2008 format are computed with the full single floating-
point precision. This has been achieved by using the 3 stage input value transfor-
mation. The transformation requires memory for storing the necessary constants.
The memory requirements increase with the quadratic dependency while the ef-
fect of the transformation increases only with the linear dependency. This problem
have been solved by segmenting the transformation into 3 separate parts that are
calculated consequently each one in 1 clock cycle. Each part uses different con-
stants, while the number of all used constants and corresponding computational
logic area are minimized. The final results are restored by the output transforma-



1460 P. Maĺık

Power Series Power Series Power Series
Version 1 Version 2 Version 3

LUTs as logic 2 498 2 585 2 559
LUTs as route-thru 117 94 96

Total LUTs 2 615 2 679 2 655
Occupied Slices 1 350 1 380 1 351

Flip Flops 141 136 141
Delay 17 ∗ clk 15 ∗ clk 13 ∗ clk

Time of computation 15 ∗ clk 15 ∗ clk 11 ∗ clk
Throughput 0.067/clk 0.067/clk 0.091/clk
Delay (ns) 14.957 15.335 15.360

Maximal frequency (MHz) 66.858 65.210 65.104

Xilinx Virtex4 SX35 FPGA used

Table 19. Exponential function 32-bit floating-point implementations in FPGA

tion which also requires 3 clock cycles. The implementation results are shown in
Table 20. The second column corresponds to implementation with no DSP48s and
the third column to implementation with smart DSP48s utilization. The computa-
tional logic consumes area corresponding to 2415 LUTs and the internal registers
require 229 Flip Flops. The delay is increased to 17 clock cycles because parallel
processing of 2 input values has been introduced. The time of the computation
is reduced to only 6 clock cycles when at least 2 input data are in a sequence.
The third column shows the single precision exponential unit implemented in Xil-
inx Virtex 5 SX95T-1 FPGA [24]. From the available data, it can be seen, that
this implementation is less computationally efficient in comparison to the presented
implementations.

Power Series Power Series SP-EAU
Version 4 DSP Version 4 [24]

LUTs as logic 2 415 1 757 n.a.
LUTs as route-thru 64 15 n.a.

Total LUTs 2 479 1 772 1 669
Occupied Slices 1 277 911 724

Flip Flops 229 229 1792
DSP48s 0 4 6

36k block RAM 0 0 2
Delay 17 ∗ clk 17 ∗ clk 212 ∗ clk

Time of computation 6 ∗ clk 6 ∗ clk n.a.
Throughput 0.167/clk 0.167/clk n.a.
Delay (ns) 14.234 13.996 3.149

Maximal frequency (MHz) 70.254 71.449 317.6

Xilinx Virtex4 SX35 FPGA used

Table 20. Exponential function 32-bit floating-point implementations in FPGA



Dedicated Hardware for Complex Mathematical Operations 1461

The comparison of the power series based exponential function implementations
in FPGA are shown in Table 21. The second and the third columns compare the
version 4 with the version 3, and the last two columns compare the DSP version 4
with the DSP version 3. The area consumed by logic is decreased by 5.63 % in the
version 4 and by 31.34 % in the DSP version 4 in comparison to the version 3. The
registers are increased by 62.41 %. This increase improved the delay that has fallen
by 7.33 % in the version 4 and 8.88 % in the DSP version 4. The throughput is
increased by 83.52 %.

Comparison of Comparison of
Version 4 & Version 3 DSP Version 4 & Version 3

LUTs as logic −144 −5.63 % −802 −31.34 %
LUTs as route-thru −32 −33.33 % −81 −84.38 %

Total LUTs −176 −6.63 % −883 −33.26 %
Occupied Slices −74 −5.48 % −440 −32.57 %

Flip Flops 88 62.41 % 88 62.41 %
Delay 4 ∗ clk 30.77 % 4 ∗ clk 30.77 %

Time of computation −5 ∗ clk −45.45 % −5 ∗ clk −45.45 %
Throughput 0.076 / clk 83.52 % 0.076 / clk 83.52 %
Delay (ns) −1.126 −7.33 % −1.364 −8.88 %

Maximal frequency (MHz) 5.15 7.91 % 6.345 9.75 %

Xilinx Virtex4 SX35 FPGA used

Table 21. Comparison of exponential function 32-bit floating-point implementations in
FPGA

Table 22 shows the relative errors comparison of all four 32-bit floating-point
FPGA implementation versions of the power series based exponential function. The
input data in decimal formatting are shown in the first column. The 2nd, 3rd, 4th

and 5th columns show the relative errors corresponding to the version 1, version 2,
version 3 and version 4, respectively. The relative errors are calculated from the
output values and correct results generated with the double precision in Matlab. It
can be seen that the differences in the relative errors are minimal. The lowest relative
errors are generated by the version 4 which produces nearly no error. The relative
error equaled to 1.1011e−7 represents 1-bit error or 1 ULP which corresponds to
the mantissa least significant bit negation of the single precision IEEE 754-2008
standard.

5 SPECIALIZED PROCESSING CORES

Dedicated hardware computational cores are designed for high performance that is
achieved by efficient utilizing the computational logic area and memory. This de-
sign technique is used in many processors and systems on chips where many small
dedicated hardware blocks are accessed on the demand. Many signal processing
applications are so complex that a processor cannot compute results in the specified



1462 P. Maĺık

Decimal
Input Relative Errors of 32-Bit Power Series
Values Version 1 Version 2 Version 3 Version 4

−2.00 −8.9374e−07 −2.3311e−07 −4.5332e−07 0
−1.80 −5.9578e−07 −3.2534e−07 −1.4505e−07 −1.0258e−07
−1.60 −3.6668e−07 −3.6668e−07 −2.1907e−07 −4.7615e−08
−1.35 −6.5499e−07 −4.2507e−07 −4.2507e−07 5.8617e−08
−1.15 −4.656e−07 −1.8324e−07 −1.8324e−07 −1.1296e−07
−0.90 −2.1998e−07 −2.1998e−07 −2.1998e−07 −1.7052e−07
−0.70 −4.6861e−07 −4.6861e−07 −2.2855e−07 −1.2044e−07
−0.45 −3.017e−07 −3.017e−07 −3.017e−07 −3.3182e−08
−0.25 −1.499e−07 −1.499e−07 −1.499e−07 3.1717e−09
−0.05 −1.5793e−07 −1.5793e−07 −1.5793e−07 −1.5719e−07

0 0 0 0 0
0.05 −2.4144e−07 −2.4144e−07 −2.4144e−07 −1.2879e−07
0.25 −1.7478e−07 −1.7478e−07 −1.7478e−07 1.0897e−08
0.45 −3.9113e−07 −3.9113e−07 −3.9113e−07 −1.5118e−07
0.70 −5.9623e−07 −5.9623e−07 −3.5944e−07 −2.2913e−07
0.90 −5.0091e−07 −5.0091e−07 −4.0398e−07 −8.9332e−08
1.15 −4.6457e−07 −3.8908e−07 −3.8908e−07 −1.3876e−07
1.35 −3.9143e−07 −2.0601e−07 −2.0601e−07 −1.6805e−07
1.60 −4.6739e−07 −3.7112e−07 −2.7484e−07 −1.0614e−07
1.80 −5.7376e−07 −4.9494e−07 −3.373e−07 −2.1079e−07
2.00 −4.3727e−07 −3.7274e−07 −2.4368e−07 1.4456e−08

Table 22. Precision comparison of four 32-bit floating-point versions of the power series
implementation in FPGA

time. The simple access on the demand technique does not utilize the whole hard-
ware area completely. The dedicated hardware computational core can be modified
to additionally compute other computationally simpler tasks with original hardware
resulting in the more universal specialized processing core which is used very fre-
quently. This approach introduces hardware resources sharing which proposes better
area utilization leading to higher throughput.

5.1 Arithmetic Floating-Point Unit

The arithmetic floating-point unit 1 (AFPU1) is the modified dedicated hardware
divider with the Goldschmidt division Algorithm (3). It is designed to calculate
division and MAC effectively. AFPU1 uses two multipliers and one subtracter
of the original divider for calculating MACs. AFPU1 calculates results with 32-
bit floating-point precision of IEEE 754-2008 standard. The operation code of
AFPU1 and delay values are shown in Table 23. Logical 0 on input signal op-
eration selects MAC and logical 1 selects division. MAC has delay equaled to
(n + 2) clock cycles, where n is the number of input values. Two division results



Dedicated Hardware for Complex Mathematical Operations 1463

are produced after 11 clock cycles. AFPU1 is optimized for the continuous opera-
tion.

Operation Operation Delay
Code Type Values

0 MAC (n + 2)× CLK
1 division 11× CLK

Table 23. AFPU1 operation code and delay values

The arithmetic floating-point unit 2 (AFPU2) is the modified version of AFPU1
with extended ability to calculate addition, subtraction and multiplication. AFPU2
is designed primarily for the effective calculation of division and MAC. The cal-
culations of the other operations utilize only small portions of AFPU2 area. The
operation code of AFPU2 and delay values are shown in Table 24. Logical combina-
tion 000 or 001 on input signal operation selects multiplication. Logical combination
010 or 011 selects MAC. Logical combination 100 selects addition. Logical combi-
nation 101 selects subtraction and logical combination 110 or 111 selects division.
Addition, subtraction and multiplication are delayed by 2 clock cycles. Other delays
are the same as in AFPU1. AFPU2 is optimized for continuous operation.

Operation Operation Delay
Code Type Values

00x multiplication 2× CLK
01x MAC (n + 2)× CLK
100 addition 2× CLK
101 subtraction 2× CLK
11x division 11× CLK

Table 24. AFPU2 operation code and delay values

Table 25 shows the implementation results of AFPU1 and AFPU2. The second
and third columns correspond to the implementations with no DSP48s and the
fourth and fifth columns to the implementations with smart DSP48s utilization.
The computational logic area (LUTs) of AFPU1 and AFPU2 are increased by 9.9 %
and 14.5 % in comparison to the original Goldschmidt divider, see Table 14. It is
caused by the additional logic that creates new data flow between original hardware
components necessary for computing the additional operations. The new control and
signal logic increases the area minimally. The differences in the number of registers
(Flip Flops) are minimal. The AFPU1 and APFU2 maximal operational frequencies
are decreased by 9 % and 12.3 % in comparison to the original Goldschmidt divider.

6 CONCLUSIONS

The new hardware implementations for efficient computation of division, natural
logarithm and exponential function have been presented. They have been imple-



1464 P. Maĺık

AFPU1 AFPU2 AFPU1 AFPU2
DSP DSP

LUTs as logic 2 644 2 756 1 502 1 507
LUTs as route-thru 97 97 3 2

Total LUTs 2 741 2 853 1 505 1 509
Occupied Slices 1 413 1 474 791 798

Flip Flops 207 208 207 207
DSP48s 0 0 8 8

Delay (ns) 15.363 15.947 15.332 15.587
Maximal frequency (MHz) 65.091 62.708 65.223 64.156

Xilinx Virtex4 SX35 FPGA used

Table 25. Arithmetic Floating-point Unit 1 and 2 implementations in FPGA

mented with the 32-bit floating-point single precision in FPGA. The time of the
computation has been reduced to only 6 clock cycles when the natural logarithm
and exponential function are calculated. The division is calculated in 5 clock cycles.
The division implementation has been modified to compute division and MACs.
This resulted in the new arithmetic floating-point unit. The further modifications
extended support for addition, subtraction and multiplication calculation. The pre-
sented implementations are technology independent. They are designed with the
high speed computation and throughput. They are oriented to high computational
demanding signal processing applications. They are all designed as independent
computing cores with minimized memory requirements which can be used in higher
numbers to significantly increased calculation speed in spectral processing. All pre-
sented implementation use the general single precision multiplier and adder which
can be utilized for MAC calculation. This hardware resource sharing will be further
evaluated in the future work. The access to the source codes can be found at the
website [25].

Acknowledgment

This work has been supported by Slovak national project VEGA 2/0192/15 and
ERDF – ITMS 26240220060.

REFERENCES

[1] Fit-Florea, A.—Lin, L.—Thornton, M. A.—Matula, D. W.: A Discrete Log-
arithm Number System for Integer Arithmetic Modulo 2k: Algorithms and Lookup
Structures. IEEE Transactions on Computers, Vol. 58, 2009, No. 2, pp. 163–174.

[2] Pineiro, J.-A.—Ercegovac, M. D.—Bruguera, J. D.: Algorithm and Architec-
ture for Logarithm, Exponential, and Powering Computation. IEEE Transactions on
Computers, Vol. 53, 2004, No. 9, pp. 1085–1096.



Dedicated Hardware for Complex Mathematical Operations 1465

[3] Vazquez, A.—Bruguera, J. D.: Iterative Algorithm and Architecture for Expo-
nential, Logarithm, Powering, and Root Extraction. IEEE Transactions on Comput-
ers, Vol. 62, 2013, No. 9, pp. 1721–1731.

[4] Turner, C. S.: A Fast Binary Logarithm Algorithm [DSP Tips & Tricks]. IEEE
Signal Processing Magazine, Vol. 27, 2010, No. 5, pp. 124–140.

[5] Aroutchelvame, S. M.—Raahemifar, K.: An Efficient Algorithm and Architec-
ture for Natural Logarithm Using Maclaurin Series. Proceedings of the 12th IEEE
International Conference on Electronics, Circuits and Systems (ICECS 2005), 2005,
Gammarth, Tunisia, pp. 1–4.

[6] Lyons, R. G.: Streamlining Digital Signal Processing: A Tricks of the Trade Guide-
book. 2nd Edition. Wiley-IEEE Press, 2012.

[7] Changfeng, Y.—Yongjuan, M.—Jin, X.: A Quick Algorithms of High Precision
on the Exponential and Logarithmic Functions. Proceedings of the 2011 IEEE 2nd

International Conference on Computing, Control and Industrial Engineering (CCIE),
2011, Wuhan, China, pp. 159–162.

[8] Chang, Ch. H.—Chen, S. H.—Chen, B. W.—Wang, J. Ch.—Wang, J. F.:
A division-Free Algorithm for Fixed-Point Power Exponential Function in Embedded
System. Proceedings of the International Conference on Orange Technologies (ICOT),
Tainan, Taiwan, 2013, pp. 223–226.

[9] Nilsson, P.—Shaik, A. U. R.—Gangarajaiah, R.—Hertz, E.: Hardware Im-
plementation of the Exponential Function Using Taylor Series. Proceedings of the
32nd Norchip Conference The Nordic Microelectronics event, Tampere, Finland, 2014,
pp. 1–4.

[10] Wang, L.—Chen, Y.—Huang, S.: Efficient Argument Range Reduction for Imple-
mentation of Double-Precision Floating-Point Exponential Function. Proceedings of
the Sixth World Congress on Intelligent Control and Automation (WCICA), Dalian,
China, 2006, pp. 6800–6803.

[11] Pouyan, P.—Hertz, E.—Nilsson, P.: A VLSI Implementation of Logarithmic
and Exponential Functions Using a Novel Parabolic Synthesis Methodology Com-
pared to the CORDIC Algorithm. Proceedings of the 20th European Conference on
Circuit Theory and Design (ECCTD), Linkoping, Sweden, 2011, pp. 709–712.

[12] Rodriguez-Garcia, A.—Pizano-Escalante, L.—Parra-Michel, R.—Lon-
goria-Gandara, O. H.—González, J. C.: Fast Fixed-Point Divider Based on
Newton-Raphson Method and Piecewise Polynomial Approximation. Proceedings of
International Conference on Reconfigurable Computing and FPGAs (ReConFig),
Cancun, 2013, pp. 1–6.

[13] Muller, J.-M.: Avoiding Double Roundings in Scaled Newton-Raphson Division.
Proceedings of Asilomar Conference on Signals, Systems and Computers, Pacific
Grove, CA, 2013, pp. 396–399.

[14] Kong, I.—Swartzlander, E. E.: A Rounding Method to Reduce the Required
Multiplier Precision for Goldschmidt Division. IEEE Transactions on Computers,
Vol. 59, 2010, No. 12, pp. 1703–1708.



1466 P. Maĺık

[15] Kong, I.—Swartzlander, E. E.: A Goldschmidt Division Method with Faster
Than Quadratic Convergence. IEEE Transactions on Very Large Scale Integration
(VLSI) System, Vol. 19, 2011, No. 4, pp. 696–700.

[16] Viitanen, T.—Jaaskelainen, P.—Takala, J.: Inexpensive Correctly Rounded
Floating-Point Division and Square Root with Input Scaling. Proceedings of the IEEE
Workshop on Signal Processing Systems (SiPS), Taipei City, 2013, pp. 159–164.

[17] 754-2008 – IEEE Standard for Floating-Point Arithmetic. August 2008, http://

ieeexplore.ieee.org/servlet/opac?punumber=4610933.

[18] Hollasch, S.: IEEE Standard 754 Floating Point Numbers. http://steve.

hollasch.net/cgindex/coding/ieeefloat.html. Last update 2015Dec2.

[19] Maor, E.: The Story of a Number. Princeton University Press, Princeton, NJ, 2009.

[20] Abramowitz, M.—Stegun, I. A.: Handbook of Mathematical Functions with For-
mulas, Graphs, and Mathematical Tables. 10th Ed., New York, Dover Publications,
1972.

[21] Sasaki, T.—Kanada, Y.: Practically Fast Multiple-Precision Evaluation of log(x).
Journal of Information Processing, Vol. 5, 1982, No. 4, pp. 247–250.

[22] Lorentzen, L.—Waadeland, H.: Continued Fractions. Atlantis Press, 2008.

[23] Rudin, W.: Real and Complex Analysis. 3rd Ed. McGraw-Hill, 1986.

[24] Alachiotis, N.—Stamatakis, A.: FPGA Optimizations for a Pipelined Floating-
Point Exponential Unit. Reconfigurable Computing: Architectures, Tools and Appli-
cations, Vol. 6578, 2011, pp. 316–327.

[25] Maĺık, P.: The Access to the Source Codes of the Presented IP Cores. Available at:
http://www.ui.sav.sk/w/en/dep/ddds/app.

Peter Mal��k works as a senior researcher at the Institute of In-
formatics of the Slovak Academy of Sciences in the Department
of Design and Diagnostics of Digital Systems. He received his
Master’s and Ph.D. degrees in electrical engineering in 2004 and
2010 from the Faculty of Electrical Engineering and Information
Technology of the Slovak Technical University in Bratislava. His
research interests include digital design, FPGA, signal process-
ing, and hardware reliability.


