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Abstract. The work described in this paper aims at effective computation resilience
for complex simulations in high performance and distributed environments. Com-
putation resilience is a complicated and delicate area; it deals with many types of
simulation cores, many types of data on various input levels and also with many
types of end-users, which have different requirements and expectations. Predictions
about system and computation behaviors must be done based on deep knowledge
about underlying infrastructures, and simulations’ mathematical and realization
backgrounds. Our conceptual framework is intended to allow independent collabo-
rations between domain experts as end-users and providers of the computational
power by taking on all of the deployment troubles arising within a given computing
environment. The goal of our work is to provide a generalized approach for effective
scalable usage of the computing power and to help domain-experts, so that they
could concentrate more intensive on their domain solutions without the need of
investing efforts in learning and adapting to the new IT backbone technologies.
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1 INTRODUCTION

Computer simulations represent a very important and useful adjunct by understand-
ing and solving problems. Thanks to the new computation and information technolo-
gies the field of mathematical modeling and computer simulation has enjoyed rapid
advances not only in various engineering disciplines, but in social, economics and
political sciences as well. However, the efficient exploitation of the computational
power is still not easy and straightforward, neither from the technological back-
ground viewpoint for common end-users, nor from the computing power utility or
energy consumption viewpoint for computing resources providers. Though the avai-
lable services offered by computing infrastructures deliver most of the functionalities
necessary for the development, mapping, scheduling and running of complex simula-
tions, in many cases they are rather complicated and require non-trivial knowledge
and skills to be used perfectly.

In the following text the term large-scale simulation (or applications) is being
used for denoting computationally and/or data intensive simulation problems that
can not be executed on convenient sequential computing machines, because of the
complexity of input specifications, and/or requirements of diverse types, e.g. difficult
real-life scenarios, massive input data, fast responses, high accuracy and reliability
of calculations, and others.

To simplify the process of the job submission and to improve the execution ef-
ficiency of sophisticated, long runtime simulations, our conceptual framework for
computation resilience has been designed. The realization of the framework has the
capability to isolate end-users from all of the middleware difficulties, it gives them
the impression of comfortable working in a coherent virtual computer center. Addi-
tionally, the framework provides the possibility to allocate a (sub)optimum hardware
and software configuration needed for running large-scale simulations, which proves
to be beneficial for both parties: providers of computing resources and end-users as
well.

Considering all the mentioned facts, the central goal of our work was to attain the
resilient and effective distribution of the computational load under the generalized
framework applied to complex simulations running on High Performance Computing
(HPC) infrastructures. Moreover, it simplifies the end-users life and thereby they
can concentrate themselves more on their own domain problems with less effort
adapting to the new IT infrastructure technologies.

The content of this paper is organized as follows:

• Section 2 presents backgrounds and the conceptual framework of the compu-
tation resilience for the workload distribution in large-scale simulations, inclu-
ding the principle of the computational intensive strategy (Section 2.2), and the
technological concept of high performance and distributed computing systems
(Section 2.1).

• Section 3 describes realizations of the conceptual framework for several real and
complex applications as case studies, and herewith it illustrates the potential of
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the employment of high performance and distributed infrastructures in carrying
out complex and large-scale simulations.

• The conclusion of the paper is given in Section 4 introducing the main advantages
and drawbacks of the work.

2 BACKGROUNDS TOWARDS COMPUTATION RESILIENCE

Computation resilience for complex and large-scale simulations in high performance
and distributed environments is built based:

1. on deep knowledge about

(a) high performance and distributed environments, such as infrastructures, in-
terconnection networks, middleware involvements, process states, program-
ming environment settings, and alternatives for data creations and realloca-
tions,

(b) computational intensive strategies;

2. on the uniform conceptual framework involving at least the first three of the
following issues:

(a) understanding mathematical background of the simulation models,

(b) simulation preparation,

(c) computation management and data distribution,

(d) know-how for the upper layer of the computation management to obtain
a more comfortable access to the high performance computational power,
e.g. portal/gateway access.

Taking into account the viewpoint of computational power providers and the
benefit viewpoint of end-users, the point 2 (c) above (computation management and
data distribution) lies in the center of our interests. It determines the effective
usage of the computing power, which still needs a generalized adaptive approach to
produce the actionable knowledge from different domain sources.

Regarding the user-friendliness point of view, here we introduce two template-
based approaches to control the created instruments that a user can choose according
to his preferred comfortable level. Both approaches enable to make scenario modi-
fications and system requirements:

1. through a separate tool using an input text file containing all the rules to vary
the object quantities,

2. as a part of the functionality of the portal/gateway access, where input values
specified within the web form are processed using the support for statistical
calculations (if it is available in the given specific domain).

End-users can utilize the domain realizations of the conceptual framework:
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1. easily to perform the complex simulation process running primarily on the IISAS
HPC cluster, but with the option to exploit also the computational power of the
European Grid infrastructure,

2. to find out the optimal setting of hardware and/or software configuration which
seems the most suitable for making simulations with the given input scenario.

Particulars of the subjects introduced above are presented in the following sub-
sections. The practical usage and implementation details are described in Section 3
as case studies of real complex and large-scale simulations running on IISAS high
performance and distributed environments.

2.1 High Performance and Distributed Environments

The architecture of modern computing systems is different from the traditional
sequential one. Most compute clusters are composed of well-elaborated nodes which
can consist of multi-core processors, floating-point accelerators, graphics processing
units, complex memory hierarchies and infinity bandwidth network connections.
Grid systems are able to join thousands of various computing resources which may
be geographically spread. A compute cluster can be exploited as local, stand-alone
computer, or it can be integrated in a Grid system as a computing element, or it
can be involved in the shared pool of configurable computing resources in Cloud.
The local access to the cluster is provided generally through a batch system, and
the remote access is enabled using the Grid or Cloud services.

Grid computing [8, 9, 10] is defined as a form of distributed system that provides
a seamless access to the computational power and data storage capacity distributed
over the world. In Europe, the motivation which calls Grid computing into exis-
tence is the need to analyze the huge volume of experimental data produced by
the particle accelerator LHC (Large Hadron Collider) at CERN (Conseil Européen
pour la Recherche Nucléaire) [56], i.e. large-scale simulations. The research and de-
velopment of Grid technologies started within the project European DataGrid [39]
and proceeded in projects EGEE [47], EGI-InSPIRE [46] and EGI-Engage [45]. In
the last stage of EGI-InSPIRE the Grid infrastructure integrates about 350 centres
distributed across 56 countries, with about 43 million jobs running per month.

Slovakia participates in the European Grid Infrastructure EGI [40] including the
SlovakGrid [41]. Its role is to bind and coordinate Slovak computing centres supply-
ing all works to be done at a national level. At present, six computing centres are
integrated in the production Grid infrastructure making available the high perfor-
mance computing systems. In order to meet the demands of researchers working in
various scientific domains, the SlovakGrid was extended by the Slovak Infrastructure
for High Performance Computing (SIVVP, Figure 1) [42], which can be used within
the virtual organization sivvp.slovakgrid.sk.

The IISAS production cluster [43], which is a part of SIVVP and Grid site, has
the following hardware configuration: 52×IBM dx360 M3 (2×Intel E5645 @2.4 GHz,
48 GB RAM, 2×500 GB scratch disk), 2×IBM dx360 M3 (2×Intel E5645 @2.4 GHz,
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Figure 1. SIVVP – Slovak infrastructure for High Performance Computing [42]

48 GB RAM, 2 × 500 GB scratch disk, NVIDIA Tesla M2070: 6 GB RAM + 448
CUDA cores), 2 × x3650 M3 managing servers (2 × Intel E5645 @2.4 GHz, 48 GB
RAM, 6 × 500 GB disks), 4 × x3650 M3 data-managing servers (2 × Intel E5645
@2.4 GHz, 48 GB RAM, 2 × 500 GB disks, 2 × 8 Gbps FC), 1 × x3550 M4 server
(1× Intel E5-2640 @2.5 GHz, 8 GB RAM, 2×500 GB disks), InfiniBand 2×40 Gbps
(in 52 + 2 + 2 + 4 nodes), 2×DS3512 with 72 TB disks.

Nowadays, IISAS also offers the Cloud infrastructure, which is a part of the EGI
Federated Cloud Infrastructure designed in cooperation with the EU projects EGI-
Engage H2020 [45], EGI-InSPIRE [46], Helix Nebula [84] and Cloud Plugfests [83].
On IISAS Cloud infrastructure the middleware OpenStack [85] is available together
with various management and optimization tools [24, 5].

Cluster computing. Typically, to submit and start a job on a computing cluster
(Figure 2 left) the workload management system (PBS Portable Batch Sys-
tem) [59] is used. PBS fulfills three primary roles: Queuing (jobs submitted to
the resource management system are held until the system is ready to run them),
Scheduling (selecting which jobs to run, when and where, according to a prede-
termined policy), and Monitoring (tracking and reserving resources, enforcing
usage policy, and monitoring and tracking user jobs). PBS provides a set of
commands that the user can apply for the job management operations. The job
submission process returns a job identifier used in any next actions, such as job
status checking, modifying, tracking, or deleting the job. After submitting, the
job can get the following states: Held, Queued, Waiting, Running, Completed,
Exiting, Suspend and Moved.

Grid computing. In a computational Grid, a large number of computational tasks
can be distributed among geographically distant individual machines. The Grid
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Figure 2. HPC cluster and Grid site anatomy

architecture (Figure 2 right) is based on the Open Grid Services Architecture
(OGSA) and the Web Services Resource Framework (WSRF) [60], which support
the coordinated resource sharing and collaboration in problem solving within the
Virtual Organization (VO). The access to the globally distributed Grid resources
is enabled by interacting with a Grid middleware, e.g. EMI (European Middle-
ware Initiative) [54], which delivers high-level services [54, 55] for scheduling
and running jobs, accessing and moving data, and obtaining information on
the Grid infrastructure, as well as Grid applications, all embedded in a consis-
tent Grid security framework. The Workload Management System (WMS) [61]
takes care for the distribution and management of jobs across computing and
storage resources available in the EGI infrastructure. After submitting, the job
is pushed along the following states: Submitted, Waiting, Ready, Scheduled, Run-
ning, Aborted, Done and Cleared. If the job status is Done, then the user can
retrieve the job output to the Grid User Interface (UI), which represents his
entry point to the Grid infrastructure.

2.2 Computational Intensive Strategy

The behavior of a distributed system can be presented based on [14] as follows:

Definition 1. The system topology ST is defined as a quintuple

ST = (CE, SW,CL,AST , sST (t))

where

• CE is a set of available and assigned computing elements,

• SW is a set of switch elements,

• CL is a set of communication links,
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• AST is the incident matrix of the system topology ST , which determines con-
nections among computing elements CE and switching elements SW by means
of communication links CL,

• sST (t) is the state of the system topology ST in the time t.

Definition 2. The state sST (t) of the system topology ST in the time t represents
the vector

sST (t) = (sce1(t), . . . , scek(t), scl1(t), . . . , sclm(t), ssw1(t), . . . , sswn(t))

where

• scei(t) is the state in the time t of the computing element cei, for i = 1, . . . , k,

• sclj(t) is the state in the time t of the communication link clj, for j = 1, . . . ,m,

• sswh
(t) is the state in the time t of the switch element swh, for h = 1, . . . , n,

• k, m, n are the numbers of computing elements in CE, communication links in
CL, and switching elements in SW , respectively.

Definition 3. The computational model CM is defined as a triple

CM = (P,CC, VCM(t))

where

• P is a set of processes of the computational model CM ,

• CC is a set of communication channels among processes in P ,

• VCM(t) is an incident vector of the computational model CM in the time t, it
identifies linking among processes and communication channels.

Definition 4. Let the system topology be ST = (CE, SW,CL,AST , sST (t)), and
the computational model be CM = (P,CC, VCM(t)). Then the mapping

m : CM → ST is m(VCM(t), AST ) = (AP , ACC)

where

• ACC is the allocation matrix of communication channels of the computational
model CM to the system topology ST ,

• AP is the allocation matrix of processes of the computational model CM to the
system topology ST .

The mapping m can change over the time, it is a function of the state of the
system topology sST (t) at time t: m(SST (t)) : CM → ST . The communication
channel presents the data exchange among processes using the mapping m and is
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projected in computing elements in CE, communication links in CL and switch-
ing elements in SW . The realization of the mapping computational model within
a complex simulation on a system topology is delicate and complicated.

In practice, the solution of this problem is moved to identification of the appli-
cation programming model which should reflect the architecture of potential target
computing platform. The structure of the application is strongly influenced by the
problem domain and its computational nature (computation-centric, data-centric,
or community-centric problems, etc.) as well. In our work we are concerned mainly
with applications which can be divided according to their structural granularity into
two basic classes:

• a set of loosely-coupled tasks which are relatively independent and can be exe-
cuted separately or in a predefined order (workflow) in networks of distributed
Computing Elements (CEs),

• a set of tightly-coupled tasks which are highly dependent on each other and run
altogether on CEs equipped with a fast interconnection network; tasks commu-
nicate usually with each other over the communication channels.

2.3 Conceptual Framework for Computation Resilience

As stated above, each instrument for the computation resilience is designed and
developed based on the same concept following at least the first three from the
next steps and based on deep knowledge about the behavior of the underlying high
performance environments.

Understanding the mathematical background of simulation models.
A mathematical model is defined as a representation of the essential aspects
about an existing system, or a system to be constructed, in a usable form. It
uses a mathematical language to define the characteristics and to describe the
behavior of the system or process. The term simulation refers to the process of
applying a mathematical model of a real system in order to predict the behavior
of the system from a given set of parameters and initial conditions in order to
find out solutions before some time, money, and materials are invested.

A critical part of the modeling process is the test of reliability to ensure that
the simulation using the proposed mathematical model produces authentic true
results for the given input scenario. This verification task requires to investigate
and resolve several issues, among others, the calibration and adjustment of the
simulation model which consists generally of the analysis and comparison of
simulation results and data gathered from experimental measurements.

Simulation preparations. The first step in the simulation process is the prepa-
ration of input scenarios, i.e. the creation of the mathematical representation
of the simulated object. Typically, this task can be realized separately from
the simulation, either manually or through various software tools which may be
combined together and linked to different databases. Another possibility is to
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integrate the preparation of the input scenario into the simulation process as
its preprocessing phase. Commonly, this problem cannot be solved fully auto-
matically, in most cases domain-experts must determine how to define objects
attributes in order to be interesting for the research and meaningful in the prac-
tice. However, a semi-automatic method working on the basis of fixed template
specifying rules for the modification of the object characteristics presents a good
alternative.

Computation management and data distribution. The wide availability of
HPC systems and information technologies enables scientists to develop more
and more complex and exact simulation models. In our work we concentrate on
large-scale simulation models arising in many contexts:

• applications which come under the class of loosely-coupled tasks,

• applications which can be structured as a scientific workflow represented by
a Directed Acyclic Graph (DAG).

Loosely-coupled tasks, due to their inherent parallelism, can be performed in
a distributed way thus significantly reducing the execution time. In some cases,
the input represents a collection including a great number of autonomous data
files. Then, the set of input files can be divided into a number of independent
subsets of arbitrary sizes which may be processed separately in any order on
different hardware resources. To achieve a good performance, the computation
management must ensure that the input data are distributed appropriately, and
the strategy for scheduling of independent tasks should be chosen regarding pre-
dictions about the computation, communication and data distribution workload,
and balance.

A scientific workflow provides a methodology of composing different predefined
programs, data, services, and other software modules running in collaborative
environments. Compared with a business workflow it has special features such
as the computation, data and transaction intensity, less human interaction, and
a large number of activities. The complexity of a workflow depends on the
application, it can range from the simplest linear form up to a very compound
hierarchical graph. In general, the computation management has the ability to
provide definition, creation, and execution of application workflows in parallel
and distributed computing environments. A scientific workflow can also contain
tightly-coupled tasks.

Portal access as upper layer of the computation management. A portal
provides a comfortable bridge to the computational power for performing com-
plex simulations. Besides the simulation execution itself, the portal can include
various functionalities which are beneficial in the phase of input preprocessing,
output post-processing or in various interactivity actions. It can also serve as
an upper layer in collaboration with the computation management.
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3 EFFECTIVE RESILIENCE FOR DISTRIBUTED COMPUTATIONS

This section includes several large-scale applications for which the realization of
our conceptual framework for effective computation resilience has been developed.
The implementation is based on the Manager-Worker (or Master-Slave) parallel
programming paradigm and management of DAG scientific workflows applied for
complex and large-scale simulations. The following parts are focused mainly on the
central issue “Computation management and data distribution” introduced in the
previous section.

3.1 Training of Predictive Analytic Models with Big Data

The simplest case study of the resilient computation management and data distri-
bution for independent tasks is grid-search realization in the field of data mining
(DM) using machine learning (ML) technique [29, 7, 26] where input data for ML
is large-scale or Big Data. Today, raw data comes from many processes such as
information retrieval, web monitoring, ubiquitous mobile devices, IoT (Internet of
Things) and IoT systems [76]. IoT refers to the world of devices connected to the
Internet, which is the way the extensive large-scale data is continuously collected,
concentrated and managed [76]. Mining in such data means analysing in order to
obtain usable results and/or knowledge. The research in this direction is currently
a hot topic in both academic and commercial spheres due to technological resources
and accessible larger amount of data for the DM/ML process.

One of the most used data mining concept and methodology is CRISP-DM
(Cross-Industry Process for Data Mining, Figure 3), which consists of six steps:

1. Business Understanding,

2. Data Understanding,

3. Data Preparation,

4. Modeling,

5. Evaluation,

6. Deployment.

The group of the first five steps is also called the development phase. The Data
Preparation step consists of sub-steps, namely:

1. Data Transformation,

2. Exploratory Data Analysis (EDA),

3. Feature Engineering.

Each sub-step can be further divided into many smaller steps, e.g. feature extraction,
feature selection/dimension reduction, etc.

Usually, a large number of available ML methods, each with a large number of
specifications in combinations with variability of data and time frames, time series
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Figure 3. CRISP-DM methodology – Cross-Industry Process for Data Mining [82]

can lead to the examination of the large number of ML cycles train-test-evaluate in
the development phase [22, 21, 28]. Other problem-solving techniques, e.g. forward
selection, backward eliminations (feature selection), can also lead to computation
intensive tasks, especially, when input data for ML is large-scale or Big Data. The
whole process is therefore time-consuming and computation intensive due to the size
of input data and the above-mentioned problem-solving techniques.

Besides the primary focus on the DM process, which is not presented in this
paper, we are also interested in the performance of the development phase. The con-
current approach provides significantly lower running time in comparison with the
sequential way if the training, testing and evaluation of individual predictive models
can be distributed simultaneously among the cluster Computing Nodes, called also
Worker Nodes (WNs, Figure 2). Theoretically, the maximum parallelism is equal
to the number of necessary trained models and it is limited by the available com-
putational power, e.g. a number of available WNs. There is also additional cost of
the resource management, communications, data distribution and result aggrega-
tion.

The demonstration of the Algorithms 1 and 2 realization is shown in Table 1 as
the running time of ML cycles on the HPC cluster. The shortcut NFS in algorithms
stands for the Network/Shared File System (Figure 2).

• The Manager process (Algorithm 1) runs through three primary steps: configu-
ration creation (lines 5 to 10) for workers’ processes, work distribution (lines 11
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Algorithm 1 Concurrent training of predictive models: Manager

Require: locationdata, locationresult, timeseries , specifications , criterions
1: procedure Manager
2: L← generated set of data locations from locationdata and timeseries
3: P ← generated set of ML specifications from specifications
4: CF ← ∅

. Configuration creation
5: for all location ∈ L do
6: for all param ∈ P do
7: cf ← {location, param, criterions}
8: CF ← CF ∪ {cf}
9: end for

10: end for
. Work distribution

11: for all cf ∈ CF do
12: create ML train-test-evaluate cycle as workercode(cf)
13: submit a request to run Worker(cf) to PBS
14: end for

. Result aggregation
15: wait for all Worker(cf)s to finish their works
16: R← ∅
17: for all cf ∈ CF do
18: result ← NFS locationresult(cf)

19: R← R ∪ {result}
20: end for
21: return R
22: end procedure

to 14), where the requests to run a worker code with a specific configuration
enter the system, result aggregation (lines 15 to 22) from all concurrent running
distributed workers.

• The Worker processes (Algorithm 2) are running parallel on WNs. Each worker
process fetches assigned input data and requirements based on the specific con-
figuration from the shared space (NFS) and returns results after training a pre-
dictive model.

The number of available WNs while testing is quite high in comparison with
the number of ML cycles. The current hardware configuration (Section 2.1) allows
running more than one cycle per node in the same time without significant perfor-
mance degradation (concretely three simultaneous cycles per WN). One ML cycle
running in the sequential mode has the following characteristics as reported by the
system:
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user time (seconds): 2 853.15
system time (seconds): 242.33
elapsed (wall clock) time (h:mm:ss or m:ss): 49:04.88
maximum resident set size (kbytes): 29 202 032 (approx. 29 GB)
file system inputs: 8 297 816
file system outputs: 11 475 400

Each input file in the compressed format (bzip2 with 10× compression rate)
has approximately 0.5 GB size (5 GB in uncompressed text format) and contains
nearly 2 million records. One ML cycle uses many input files in predefined time
frames based on the setting. The ML approach applied for such big input data is
incremental learning to overcome the machine memory limitation. In practice, the
number of generated ML cycles is relatively high in repeated hundred ranges.

Algorithm 2 Training of one predictive model: Worker

1: procedure Worker(cf)

2: data
fetch←− NFS location : location ∈ cf

3: result ← (model , performance)← workercode(cf)

4: result
store−→ NFS locationresult(cf)

5: remove data
6: end procedure

In theory, the speedup of concurrent ML training is expected to be nearly linear,
as the input dataset is divided into fairly equal groups and processed independently.
In practice, the speedup is lower due to the data distribution from NFS to WNs
local spaces. The use of bzip2 (free open-source software that uses Burrows-Wheeler
algorithm) makes the data transfer more effective.

number of cycles 1 cycle/node 2 cycles/node 3 cycles/node

1 00:49:04 00:56:23 1:04:52

10 00:56:45 1:05:52

Table 1. Running time of ML cycles on HPC environment

The next issue that slows down simulations, is the green computing management
which requires a certain time interval to start up sleeping WNs on demands. The
whole runtime of all ML cycles in concurrence can be in a simplified form estimated
like in the following formula:

tall ≈
ncycles

nnodes × ncycles per node

(tfetch data + tcycle) + tmanagement. (1)

This concurrent ML approach was realized for EDA and for faster model selec-
tion (Figure 3) [82]. The realization of our conceptual framework enables
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• a near-linear performance scalability for concurrent training of predictive models
achieved by optimal data and computation distributions,

• shortening of time required for ML development phase, i.e. by carrying out the
complex simulation process and finding out the suitable configuration setting
for applications.

The conceptual framework realization was applied for two commercial applica-
tions:

1. click-through-rate advertising and

2. malicious behavior detection based on available logs from mobile devices.

The novelty is the technological meet of the HPC environment and DM using ML
techniques for large-scale ML input data, which accelerates the ML development
phase.

Remarks: When raw input data is really Big Data, the use of a Hadoop/Apache
Spark cluster [80, 81] is often mentioned in the context of data processing, data
integration and data management in data-centric distributed computing. IISAS
also provides Hadoop cluster [44] with 1× server and 11× clients with the fol-
lowing node’s specification: 2× Intel R© Xeon R© Processor E5-2620 (15 MB cache,
2.00 GHz, 7.20 GT/s Intel R© QPI, 6 × cores, 12 × threads), HyperX threading
(24 simultaneous tasks per client), 32 GB RAM, 1 TB HDD per node.

In the recent years, GPU accelerators have been successfully used in the context
of ML, neural networks and deep learning applications [27]. The capacity of the
IISAS production cluster [43] is also extended by GPU capacity of 8 × IBM dx360
M4 (2×Intel E5-2670 @ 2.6 GHz, 64 GB RAM, 2×500 GB scratch disk, 2×NVIDIA
Tesla K20 with 5 GB RAM and 2 496 CUDA cores) and 10 Gbps Ethernet.

3.2 Adaptable and Fault-Tolerant Porting Simulations to Grid

The more complex computation management and data distribution case study of
our conceptual framework realization is the adaptable and fault-tolerant porting
a large number of long running and continuously incoming simulations to the Grid
infrastructure. The main problem with such simulations in the Grid is varying
availability and reliability of Grid resources. If the run-time spans over multiple
months and number of jobs reaches multiple thousands, end-users have to deal with
erroneous Computing Elements (CEs). Grid sites became unavailable because of
various reasons from network or power failures due to system maintenance or from
unknown reasons.

However, the users expect that they just put their application code and data
into the Grid and after a certain time they get the output data for further analysis.
Therefore, the main motivation for development of adaptable and fault-tolerant job
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Algorithm 3 Adaptable and fault-tolerant porting simulations to Grid: Manager

Require: SEinput, SEworking, SEoutput, applicationcode,workers limit, time interval

1: procedure Manager
2: collection list ← ∅
3: collectionarchive ← ∅
4: workers list ← ∅
5: blacklist ← ∅
6: while True do
7: if lifetimevoms proxy > 0 then
8: n← count(SEinput)
9: m← workers limit − count(workerslist)

. Start new workers in a new collection
10: if (n > 0) AND (m > 0) then
11: request ← min(n,m)×Worker()
12: collection id ← submit the request to WMS

13: collection list
add←− collection id

14: for all worker id ∈ collection id do

15: worker list
add←− worker id

16: end for
17: end if

. Monitor states of collections and active workers
18: for all collection id ∈ collections list do
19: statecollectionid

← get the state of collection id from WMS
20: end for
21: for all worker id ∈ workers list do
22: if stateworkerid = Done then
23: remove worker id from workers list

24: else if stateworkerid = Aborted then

25: blacklist
add←− CE of worker id

26: end if
27: end for

. Remove finished collections
28: for all collection id ∈ collections list do
29: if statecollectionid

∈ {Done,Aborted} then

30: collectionsarchive
move←− collection id

31: end if
32: end for
33: else
34: return
35: end if
36: sleep time interval

37: end while
38: end procedure
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Figure 4. Adaptable and fault-tolerant porting simulations to Grid

Algorithm 4 Adaptable and fault-tolerant porting simulations to Grid: Worker

Require: SEinput, SEworking, SEoutput, applicationcode, time limit

1: procedure Worker(id)

2: timer id
start←− 0

3: start worker’s background heart-beat monitoring
4: while SEinput 6= ∅ do
5: if (lifetimevoms proxy > 0) AND (time limit − timer id > 0) then

6: SEworking
move←− random(dataset input ∈ SEinput)

7: localdir
fetch←− dataset input ∈ SEworking

8: datasetoutput ← applicationcode(dataset input ∈ localdir)

9: SEworking
upload←− datasetoutput

10: SEoutput
move←− datasetoutput ∈ SEworking

11: else
12: return
13: end if
14: end while
15: end procedure

management framework is to minimize the effort needed for managing long running
simulations based on reusable job wrappers.

The long running application in this case is from the astrophysical area. Its
aim was to work out a theory of the formation of Jovian planets, Kuiper belt,
Scattered Disc and Oort cloud based on the dynamical evolution of a large number
planetesimals treated as test particles in the proto-planetary disc. It consists of
a sequence of simulations with many independent tasks within each sub-simulation.
The necessary requirement is to finish all the tasks of a given sub-simulation before
starting the next sub-simulation.
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The adaptable and fault-tolerant porting simulations to Grid works as follows.

• Workers (Algorithm 4) are executing the application code in a cycle with ran-
domly selected input datasets downloaded from the input area on Storage Ele-
ment (SE). When the processing finishes, the worker uploads output dataset
back to SE.

• To identify hanging jobs or jobs that perform too slowly, the workers start
a background process which is capturing monitoring information (heart beat)
and sending it to SE. To avoid termination of workers by the queuing system,
workers are running only for a limited time.

• To check the progress, the user just occasionally checks the contents of the
working area and the output folder.

• The Manager main goal (Algorithm 3) is to maintain the requested number of
active workers. Some of the workers do not start and some reach their time
limit, so, the manager needs to detect the failed submissions and finished or
waiting workers. To speed-up the start-up of workers it submits workers in so
called collections while automatically detecting and excluding full or erroneous
CE.

single CPU machine ideal case in Grid real case in Grid

21 years 3 months 5 months

Table 2. Runtime estimation and runtime with automatic Grid job management

Even with the automatic management some of the computing tasks have failed
and needed to be re-processed which caused a delay in the overall computation.
However, the effort for re-processing was limited to only moving the datasets that
need to be reprocessed back to the input area and starting the manager. The runtime
estimation of the simulation execution on a single CPU machine is around 21 years.
In ideal case without fault facilities, the run with Grid computational power would
take nearly 3 months. In reality, the simulation was completed within 5 months,
which is certainly more human-acceptable response than 21 years [20].

3.3 Workflow Scheduling and Data Management

The mathematical modeling and computation management was put into practice to
implement the workflow scheduling and data management for many sophisticated
applications coming from various scientific areas. We focused especially on the
environmental modeling and forecasting included in the Earth science. Within the
environmental domain many simulation models have been developed and utilized.
Using the HPC power with workflow scheduling and data management gives the
opportunity to explore the real life situations, such as natural disasters, before they
actually occurred. Simulating systems, which have been used as the heart of large-
scale simulations running in our HPC environment, are listed in the following:
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• Hydraulic models: DaveF [36], FESWMS (Finite Element Surface Water Mo-
deling System) [66], SMS (Surface-water Modeling System) [77], MIKE-2D [70],
TELEMAC [78], CFD (Computational Fluid Dynamics [64], which is also a core
of other simulation systems, e.g. FDS [67, 17]), EPANET [65].

• Hydrological models: HSPF (Hydrological Simulation Program–Fortran) [69],
NLC (National Land Cover) [72], HEC (Hydrologic Engineering Center) [68],
MIKE-1D [70].

• Meteorological models: ALADIN (High Resolution Numerical Weather Predic-
tion Project) [62], MM5 (Fifth-Generation Penn State/NCAR Mesoscale Mo-
del) [71], WRF (Weather Research and Forecasting) [79].

• Nanoscale frameworks: OOMMF (Object Oriented MicroMagnetic Frame-
work) [73], Quantum Monte Carlo for electrons in real materials [74].

Our research and development of high-performance technologies, especially in
the scheduling field [11, 12] applied for long running and complex applications in
the domain of environmental modeling and forecasting, started within the project
EU IST RTD ANFAS [53] and proceeded in EGEE [47], CrossGRID [52], Medi-
GRID [50], K-Wf Grid [51], DEGREE [49], ADMIRE [48, 2], several international
and Slovak national projects, in most cases under collaborations with domain expert
institutes and commercial sphere [13, 36, 4, 19].

In most cases simulation processes have been designed as cascading workflows
(e.g. Figure 5) represented by the DAG structure composed of a set of software
modules, where the input, output, or execution of one or more modules is dependent
on one or more other modules. Software components in the DAG may be of different
types:

• sequential,

• parallel MPI (Message Passing Interface) [58],

• OpenMP (Open Multi-Processing) [57],

• hybrid parallel MPI+OpenMP,

and may collaborate with large-scale data distribution and data mining systems.
The workflow management for complex grid-based simulations controls and exe-

cutes jobs with data dependences, co-operates with the resource broker to search
out a suitable computing element for running simulations, and monitors the status
of submitted jobs. It has the capabilities to work according to predefined workflow
templates, to spawn the running workflow, and to modify parameters of jobs.

Before the real simulation itself, it is often necessary to carry out a number
of experiments (i.e. a test of reliability) using some test data in order to find out
the most suitable modeling configuration e.g. the number of compute nodes, cores,
MPI processes and/or OpenMP threads, data and simulation time ranges, suitable
software configurations and user’s requirement settings etc. for given input scena-
rios. Due to the time and computing power consuming nature of large-scale real
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Figure 5. An example of complex grid-based flood application with DAG workflow [48]
(scheme by the courtesy of Ondrej Habala)
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simulations, the testing ones are usually smaller samples. At the end, the final,
(sub)optimal configuration is delivered to domain experts (end-users) for repeatedly
running of time and computing power consuming simulations making use of real and
more extensive input data [38, 33].

Many publications can be found in the research field of workflow scheduling and
management [30, 31, 15, 35, 23] within the high performance and distributed en-
vironments, including Grid and Cloud computing. These works present also many
advantages and disadvantages of the variety of hardware infrastructures, difficulties
arisen in the environment setup, and options for flexible handling. Many of them
are narrowed to domain-oriented problem-solving solutions and optimizations. The
works [18, 3] describe the ongoing research on the theme “e-Infrastructure concep-
tualization and implementation as ecosystem”, that points out the need and the
actuality of our conceptual framework for both parties: providers of the computing
power and end-users.

3.4 Portal Access as an Upper Layer of Computation Management

The next case studies of our computation management are portals realizations, which
came into existence as a team-work with domain experts from several scientific
areas [25, 26, 19]. A portal represents a layer of our framework which can incorporate
applications, data and tools to enable running applications on HPC infrastructures.
It enables user communities associated with a common discipline to use compute
and data resources in an easy way through a graphical user interface. As a result,
users can focus on their applications instead of learning and managing the complex
underlying infrastructure. They do not feel any difference while running their ap-
plications, no matter which HPC infrastructure is employed. If the computational
capacity is available in the local computing cluster, users can exploit it directly. If
not, then the Grid computational capacity accessible within our VO is provided.

Figure 6. Simulation states through the portal

The simulation execution through the portal begins by sending a user request
with input data placed in the request pool of the Web Server together with simu-
lation requirements and specifications. The user has the possibility to keep track of
the execution process through the service of the Monitoring tool (Algorithm 5) in
the login host or Grid UI (see Figure 2), which are from here denoted under the same
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name appServer. The Web Server is built separately from the rest of the computing
site due to security reasons.

Algorithm 5 Monitoring tool (described in collaboration with Miroslav Dobrucký)

Require: webServer , appServer , datapool , intervalMT

1: procedure Monitoring
2: select PBS or EMI based on settings with restricted rights
3: while True do
4: synchronize webServerdatapool and appServerdatapool

5: for all simid ∈ appServerdatapool do
6: if state id ∈ {Waiting , Submitted ,Running} then

7: state id
get←− PBS/EMI

8: if state id = Waiting then
9: create on-fly-code(sim id)

10: submit a request to run on-fly-code(sim id) to PBS/EMI

11: state id
get←− PBS/EMI

12: else if state id = Finished then
13: appServerdatapoolid

move←− output id
14: end if
15: end if
16: end for
17: sleep intervalMT

18: end while
19: end procedure

Simulation states displayed in the portal are a little different from states achieved
by PBS and EMI, they are: Waiting (W), Submitted (S), Running (R), Finished (F),
Cancelled (C), Failed (E). Transitions among states are described in Figure 6.

Nanoscale framework. The first presented case study for which the portal ap-
proach was realized comes from the area of nanotechnology research that is
focused on the temperature effect on magnetic structures [25]. Nanoscale simu-
lations are performed by means of the system OOMMF (Object Oriented Micro-
Magnetic Framework) [73]. The original total time of simulations takes about
4.5 days on the four-core PC for small physical model. If simulations run on
HPC cluster using 100 cores, the total simulation time was reduced to 8 hours
for larger physical model, which additionally produces larger and more detailed
output data (approx. 3.5 GB per each simulation).

The temperature is introduced to simulations via stochastic noise added to the
magnetization dynamics. To get reliable results for making a reliable statistics
one has to repeat simulations with various realizations of stochastic noise. This
task can be partitioned naturally by running multiple instances of the simulation
with various random noises. The simulation performance results demonstrate
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the needful of the HPC power, they cannot be achieved on the original ma-
chine configuration with a human-acceptable feedback. In the nanoscale (micro-
magnetism) experiments, the input is created automatically using experimental
data of the fabrication device in order of thousands devices at once. This is
the reason to make the statistics over fabricated samples. The portal approach
is one of the ways to automatize experimental process providing feedbacks in
a short time (i.e. overnight) when experiment devices can work in continuation.

Hydraulic simulations. The next case study of the portal approach realization
presents a gateway to the HPC power to perform risk analysis of the water-
supply in big cities [26]. The portal engages also other modern information
technologies such as GIS and data mining. The integrated system for hydraulic
simulations works as follows: input data are prepared in the GIS environment
and ported to the HPC environment through the hydraulic portal (Algorithm 5
and Figure 6). After obtaining simulation results from the HPC environment,
output data are transformed back into the GIS format [63] for further use by
the cross-platform python script combined with ArcGIS geographical python
tools. The core of whole integrated simulation system is EPANET, which calcu-
lates the friction headloss using one of the Hazen-Williams, Darcy-Weisbach, or
Chezy-Manning methods, and its solver applies the Todini’s gradient – a variant
of the Newton-Raphson method [65]). Modeling the water quality is based on
the principle of conservation of mass coupled with the reaction kinetics.

Complex grid-based applications. The portal approach was also created for
complex grid-based applications as a pioneering upper layer of computation
management within projects [32, 19], with the aim to provide a comfortable
access to the HPC power including the collaborating features for domain-experts.
There exist several grid-based implementations [16, 37] for portal/gateway access
to HPC power. In general, they fulfill their expected objectives but in most cases
they are too general and need a complicated customization to be adapted for
the specific domain.

Though our approach to portal access is user-centric and domain-oriented, it is
commonly usable and easily customizable for another domain. It is applicable
not only for computing clusters and Grid, but also for cloud computing [25, 26].

4 CONCLUSIONS

Our work aims at computation management for complex and large-scale simulations
intended for a domain expert user category. The main emphasis was put on the ef-
fective workload balance and data distribution along with the achievement of the
possible shortest execution time. The central role of the computation resilience ope-
rating, based on the installed middleware on the target high performance machine,
is to simplify the computation management process and to improve the execution
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efficiency of sophisticated, long runtime simulations. It brings out the following
positive points:

1. It enables to carry out in a easy way the complex simulation process running
primarily on IISAS production cluster (SIVVP) with the optional possibility to
exploit also the computational power of the European Grid infrastructure. It is
also designed towards cloud computing.

2. It enables to find out the most suitable combination of hardware and/or soft-
ware configuration setting for the simulation made with the given input scenario
and/or based on input data. The aim is the efficient exploitation of the compu-
tational power an its effective usage.

3. The framework realizations are in many cases implemented in collaborations
with domain-experts, following and satisfying their requirements by taking all
of the deployment troubles arising within a given computing environment. The
final result is that users are less exposed to a burden of the underlying infra-
structure complexity which enables them to concentrate more on the particular
domain solutions.

4. It offers a fragile balance between the domain-oriented and user-centric vs. the
generalized realization and tailoring the portal access as an upper layer of com-
putational management.

In the near future, our work will be improved in the following:

1. Although the conceptual framework is designed with a partial tailoring portal
implementation, a lot of work need to be done concerning divergences of hard-
ware infrastructures, difficulties in the environment setup and handling that
require special cases customizations.

2. (Sub)optimal configuration is still open issue with various optimization strategies
towards the cloud computing and green computing.

This paper presents the work which has been a part of a long-time precise and
strenuous scientific research in the Department of Parallel and Distributed Informa-
tion Processing, Institute of Informatics, Slovak Academy of Sciences.
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Manufacturing of Weather Forecasting Simulations on High Performance Infrastruc-
tures. 2016 IEEE 12th International Conference on eScience, Environmental Compu-
ting Workshop (ECW), Baltimore, Maryland, USA, 2016.
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