
Computing and Informatics, Vol. 35, 2016, 1110–1140

EARLY FAILURE PREDICTION IN SOFTWARE
PROGRAMS: DIMENSIONALITY REDUCTION
KERNEL

Somaye Arabi Naree

Department of Computer Science
Faculty of Mathematical Sciences and Computer, Kharazmi University
Tehran, Iran
e-mail: s.arabi@khu.ac.ir

Saeed Parsa

Department of Computer Engineering
Iran University of Science and Technology
Tehran, Iran
e-mail: parsa@iust.ac.ir

Abstract. The aim of this paper is to build an online failure prediction classifier
for monitoring the behavior of programs. The classifier predicts the termination
state of the program execution paths as failing or passing. This could be achieved
by mapping each execution path as a vector into a feature space whose dimensions
represent common sub-paths amongst failing and passing execution paths. The
main contribution of this paper is to treat the failure prediction problem as a clas-
sification task of execution paths in a customized feature space. The main dilemma
is the size and the number of space dimensions, affecting the speed of the classifier.
The size of the dimensions could be reduced by shortening the length of the com-
mon sub-paths, used as the space dimensions. The length of common sub-paths is
affected by repeated patterns in program executions. Replacing the consecutively
repeated patterns with only a single iteration in execution paths, reduces the size of
the common sub-paths. The number of dimensions could be reduced by removing
dimensions which have projection onto others. This paper proposes two kernels
which measure similarity amongst execution paths in an implicit feature space with
reduced dimensionality. Our experiments demonstrate a significant reduction in
time overhead of the failure prediction classifier while preserving accuracy.



Early Failure Prediction in Software Programs: Dimensionality Reduction Kernel 1111

Keywords: Online failure prediction, kernel classifier, dimensionality reduction,
feature space, execution path

1 INTRODUCTION

Failure prediction is of great concern in safety critical software systems. To pre-
dict upcoming failures, program execution states are monitored by applying failure
prediction models. Prediction models are embedded within the program body im-
mediately after certain decision making expressions which affect program execution
paths. These expressions are called predicates [1, 2]. In this regard, the constructed
prediction models should be accurate and fast enough to avoid intolerable overhead
on the program execution time. To achieve this, we have proposed a domain spe-
cific SVM classifier, separating failing and passing execution paths in a program
execution space [3]. The execution space is built as a Cartesian space, in which
each dimension represents the number of appearance of a certain predicate within
the program execution path. The main problem is that the execution paths are not
linearly separable in the execution space. Therefore, the execution paths have to be
mapped into a new feature space. It is shown that the common sub-paths traversed
by different executions of a program are appropriate features to construct a feature
space in which passing and failing executions of the program could be classified
with a maximum possible margin [3]. Therefore we apply a feature expansion tech-
nique to map the execution space into a feature space in which dimensions represent
common sub-paths between each pair of the execution paths. To classify execution
paths in the feature space, the SVM classifier could apply a kernel function. Kernel
function enables SVM classifier to classify execution paths in a high-dimensional,
implicit feature space without ever computing the coordinates of execution paths
in that space, but rather by simply computing the inner products between the
images of all pairs of execution paths in the feature space. The inner products
between the images of all pairs of execution paths in the feature space could be
computed by a similarity measurement between the execution paths. To classify
an execution path as failing or passing its similarity with the existing execution
paths is measured using our customized kernel function, All Common Sub-paths
(ACS).

The dimensionality of the feature space apparently affects the time required for
measuring the similarities. Therefore, a major dilemma concerning the performance
of a classifier is to minimize the dimensionality of its feature space [4]. To minimize
the dimensionality, the size and the number of the feature space dimensions should
be minimized.

In order to reduce the number of dimensions, the dimensions should be selected
in such a way that they cannot be projected on each other. In other words the
selected dimensions should be independent of each other. To this end, the longest
disjoint common sub-paths amongst execution paths are considered as the dimen-



1112 S. Arabi Naree, S. Parsa

sions of the feature space [4, 5]. The resultant kernel is named All Disjoint Longest
Common Sub-paths (ADLCS) kernel.

The sizes of the dimensions are dependent on the length of the common sub-
paths, used as the space dimensions. The size of a common sub-path, represented as
a sequence of program predicates, is greatly affected by iterative executions of the
predicates. In this article, it is shown that the identical sub-paths of predicates in
loop iterations or function calls are the most important factor of increasing the size
of the feature space dimensions and subsequently slowing down the performance of
the kernel in measuring the similarities amongst execution paths. This article pro-
poses two new similarity based kernels, called Extended ACS (EACS) and Extended
ADLCS (EADLCS), which reduce the time overhead caused by the iterative loops or
function calls. To achieve this, the proposed extended kernels measure similarities
in a feature space for which the sub-paths related to the dimensions are shortened.
The sub-paths are shortened by replacing consecutively identical predicate subse-
quences with a single representative subsequence. Applying these kernels to reduce
the dimensionality of the feature space, our experiments demonstrate significant
reduction in time overhead of failure predictions while preserving the accuracy.

Our proposed technique for reducing the dimensionality of feature space is also
of great use to build relatively high speed string classification kernels. The speed
of string kernels is of great importance in online classifications used in many time
critical applications such as automotive assistant systems, remote medical devices,
disaster prediction and remote monitoring of flight control software systems. In such
applications the main goal is to accelerate the classification of successive streams of
input data to early predict the upcoming failures [6].

The remaining parts of this paper are organized as follows. In Section 2, we
discuss related works on failure prediction. An overview of the method including
some definitions and proposed kernels for online failure prediction is described in
Section 3. In Section 4 the advantages of our method over existing failure prediction
methods are demonstrated through experiments, and Section 5 concludes the paper.

2 RELATED WORKS

Most of the failure prediction methods are monitoring based methods meaning that
they monitor the current state of the running system to predict the upcoming fail-
ures [7]. The monitoring based methods can be divided into three categories: ob-
servation of failures, monitoring of symptoms, detection of errors [8, 9, 10, 11].

Observation of failures: The basic idea of failure prediction based on previously
observed failures is to estimate the probability distribution of future failure event.
The probability distribution of future failures can be estimated by formal approaches
such as Bayesian classifiers or rather heuristic approaches such as counting and
thresholding.

Monitoring of symptoms: This approach is appropriate for some type of faults
affecting the system gradually, which are also known as service degradation. A well-



Early Failure Prediction in Software Programs: Dimensionality Reduction Kernel 1113

known example for such types of faults are memory leaks. The basic idea of failure
prediction based on monitoring of symptoms is that faults like memory leaks can
be detected by their side-effects on the system such as exceptional memory usage,
CPU load, or disk I/O. These side-effects are called symptoms.

Detection of errors: The basic idea of this group of failure prediction methods is
to analyze the occurrences of previous error events in order to evaluate the current
state with regard to upcoming failures. One of the successful approaches which
are applied in this category is a pattern recognition. The main idea is to analyze
faulty sequences of system events to form faulty patterns. Then a function is applied
to measure similarities between an observed sequence of events with learned faulty
patterns. Failure prediction is then performed by classification based on pattern
similarity measures as depicted in Figure 1.

Figure 1. Failure prediction on observed sequences according to similarity measure with
failure patterns

Similarity amongst event sequences could be measured by applying an alignment
algorithm. However, to our knowledge, no failure prediction approaches applying
pair wise alignment algorithms were published. The proposed approach in this paper
uses the pairwise alignment algorithm in the kernel function of an SVM classifier to
distinguish failing and passing execution sequences of a program.

In the remaining parts of this section some well-known online failure detection
methods in the category of detection of errors are analyzed.

Failure prediction using Markov models: The Markov chains have been used as
program behavioral models to perform anomaly detection [12, 13]. Each state in
the Markov chain represents a number of distinct observations, program predicate
values, in different successful training executions at a specific instrumented location
of the program. Since all the program states may not be observed at the training
phase, an anomalous state is added to the Markov chain. This state hypothetically
contains all predicate values not observed at the training stage. After the Markov
chain is built, some thresholds are chosen for each transition. These thresholds are
further applied at runtime to determine the anomalous transitions.

Since some faults are manifested in long-range dependencies among the program
states, a model which does not consider such dependencies may fail to detect some
specific faults in the program. Using a k-order Markov chain, it is not possible to
predict bugs relevant to more than k consecutive predicates. This is due to the
fact that in the k-order Markov chain the probability of each state is independent
of the k + 1 past states which are connected, but not directly, to the state. The



1114 S. Arabi Naree, S. Parsa

time overhead imposed by this model to the program execution time is extremely
high. The main reason is that it takes a long time to compare all the values of
the predicates in an execution path with their corresponding predicates in Markov
states.

Dynamic invariant detection: Dynamic invariant detection methods [14, 15, 16]
run a program and infer those properties that are true over the observed passing ex-
ecutions. These properties are called invariants. DIDUCE [12] is an online anomaly
detection system which uses dynamic invariant detection. Anomalies could be de-
tected through any violation of the program invariants. However, dynamic invariant
detectors do not perform any analysis on the program source code to check the cor-
rectness of the inferred invariants. Therefore a large complete test suite is required
to ensure the correctness of invariants.

Online bug detection using Extended Finite State Automaton: Argus [17] con-
structs runtime statistics on a sliding window over each program execution. Run-
time statistics are used to build an extended finite-state-automaton (ext-FSA) to
monitor the programs runtime control-flow behavior. In the ext-FSA, each state
represents a runtime event, and transitions indicate the order of runtime events.
Each transition is labeled with the distribution of transition frequency in different
training executions. Argus assumes the anomalous transitions in test executions
imply faulty behavior of the program. As Markov models, FSA suffers from find-
ing faults which are related to a sequence of state transitions. Argus imposes high
run-time overhead due to the excessive number of states which increases the search
space.

Statistical techniques: Statistical approaches estimate parametric or non para-
metric models for each program execution state from the data gathered of program
executions in different input test data. Then a statistical test on the probability of
the program execution states applies to be generated by the estimated model. The
generated probabilities of the program execution states could be used to assign an
anomaly score to the test executions of program in the real environment [7, 18].

3 OVERVIEW OF THE METHOD

In this section the main idea of the proposed failure prediction method is described
in detail. To this end, first some basic definitions are depicted in Section 3.1 and
the detail of the proposed method is indicated in Section 3.2.

3.1 Problem Statements

The problem is early prediction of a program termination state based on the similar-
ity of the program execution path with training failing and passing execution paths.
Execution paths ending to each predicate are classified as failing (i.e. abnormal) or
passing (i.e. normal). The normal paths are separated from failing ones within the
program execution space through the application of a customized SVM classifier.



Early Failure Prediction in Software Programs: Dimensionality Reduction Kernel 1115

Let us assume that P = {p1, p2, . . . , pN} is a set of predicates belonging to
program R and Ei = {ei1, ei2, . . . , eim}, 1 ≤ i ≤ N is the set of all execution paths
ending to predicate pi ∈ P in m different executions of R.

Definition 1 (Execution Path). An execution path eij = 〈p1, . . . , pi〉 ∈ Ei, 1 ≤ j ≤
m, is a sequence of the predicates executed up to the predicate pi ∈ P at the jth

execution of the program R.

Definition 2 (Training Execution Path). A training execution path is represented
as a sequence teij = 〈eij, AR〉 where AR ∈ {−1, 1} indicates the actual result of the
program termination state in execution path eij while −1 and 1 represent failing
and passing program termination states, respectively. The set TEi = (TEipass ∪
TEifail) = {tei1, tei2, . . . , teim} represents all the training execution paths which are
applied to build the failure prediction classifier for the predicate pi.

Definition 3 (Failure Prediction Classifier). A failure prediction classifier is a fun-
ction Ci : eij → PR, where PR indicates the predicted program termination state
resulted from execution path eij. That is, for each execution path eij ∈ P ∗, function
Ci predicts the termination result of eij as Ci(eij) = PR ∈ {−1, 1}, where −1
and 1 indicate failing and passing termination states, respectively. To build a failure
prediction classifier, a similarity measurement function Sim is required as the core
of the classifier to measure the similarities between each pair of failing and passing
execution paths.

Definition 4 (Fault Suspicious Path). An execution path eij is classified as a fault
suspicious path provided that eij is more similar to the unsuccessful paths than
the successful ones. To be more precise, an execution path eij is reported as fault
suspicious if the conditions in Relation (1) are satisfied:

Sim(eij, TE(ipass)) < Passing-threshold and Sim(eij, TE(ifail)) > Failing-threshold.
(1)

In Relation (1), the function Sim measures the similarity amongst eij and exe-
cution paths in TE(i). We further apply Sim as the kernel function of SVM classifier,
described in Section 3.2.

Definition 5 (Cost of Failure Prediction). Let eij = 〈p1, . . . , pi〉 be an execution
path then execution sub-path eij[1, i

′] = 〈p1, . . . , pi′〉 (1 ≤ i′ ≤ i) is a prefix of eij.
The failure prediction classifier Ci is built in a way that for any execution path eij =
〈p1, . . . , pi〉, there exists a positive integer i′ such that Ci(eij[1, i

′]) = Ci(eij[1, i
′ +

1]) = Ci(eij[1, i
′+ k]) = Ci(eij) (k ≥ 0). In other words, Ci predicts the termination

state of the execution path eij based on only the prefix eij[1, i
′]. The length of the

prefix that Ci checks in order to make the failure prediction is called the cost of
the failure prediction, denoted by Cost(Ci, eij) = i′. Clearly, Cost(Ci, eij[1, i

′]) =
Cost(eij[Ci, 1, i

′ + 1]) = Cost(Ci, eij[1, i
′ + k]) for k ≥ 0 and trivially Cost(Ci, eij) ≤



1116 S. Arabi Naree, S. Parsa

‖eij‖ for any execution path eij. Given a set of training execution paths TE for the
program under test, the cost of the failure prediction is defined as in Relation (2):

Cost(C, TE) =

∑
〈e,AR〉∈TE Cost(C, e)

‖TE‖
(2)

and the accuracy of the failure prediction classifier C is denoted as in Relation (3):

Accuracy(C, TE) =
‖{e|C(e) = PR ∧ (e, PR) ∈ TE}‖

‖TE‖
. (3)

Generally, to improve the efficiency of early prediction of program failures it
is needed to reduce the prediction cost while preserving the prediction accuracy at
a satisfactory level.

3.2 Proposed Method

In this paper the aim is to classify execution paths, represented as a sequence of
predicate values, as two classes of failing or passing. The raw execution paths are
not linearly separable so we need to map paths into a feature space. Using kernel
trick, instead of explicitly mapping each execution path in the feature space, we
apply kernel functions to measure the similarities between each pair of execution
paths. We have proposed two similarity functions (kernel functions) over pairs of
execution paths. Proposed similarity functions enables SVM classifier to classify
paths in a high dimensional space, implicit feature space without ever computing
the coordinates of the mapped paths in that space, but rather by simply computing
the inner products between the images of all pairs of paths in the feature space.
Let A and B be two execution paths and A′ and B′ be the images of A and B in
the feature space respectively, then the similarity function should be defined in such
a way that Similarity(A,B) = ϕ(A).ϕ(B) = A′.B′.

In this section two algorithms describing our similarity based kernels, EACS
and EADLCS, are presented. These kernels map execution paths into an implicit
feature space FN in such a way that the distance of each pair of the mapped paths
reflects their similarity measure. The main decision to be made is to determine the
similarity notions or features of the paths to be applied in the mappings. We have
selected each sub-path s commonly appearing in two or more of the execution paths
as a distinct similarity feature. Each axis of the feature space FN corresponds to
a single similarity feature s. The mapping function ϕ(e), described in Relation (4),
maps each execution path e to a point e′ in FN . Each dimension of e′ indicates the
number of occurrences of the sub-path s corresponding to that dimension in e.

ϕ : e→ e′ = ϕ (e) ∈ FN (4)



Early Failure Prediction in Software Programs: Dimensionality Reduction Kernel 1117

where

ϕ (e) = (f (s1, e) , f (s2, e) , . . . , f (sN , e)) ∈ FN

f (si, e) = |{(s1, s2) : e = s1sis2}| , si ∈ P ∗ and 1 ≤ i ≤ N

In the above relation each dimension of e′ is computed by the function f(si, e),
as the number of occurrences of the sub-path si in e.

The speed of the kernel classifier is dependent on the number and the size of
the sub-paths, selected as the dimension of the feature space. In the following
subsections, we propose the ACS and its extended versions EACS and EADLCS
kernels. We discuss the benefits and applications of each of the EACS and EADLCS
kernels.

3.2.1 ACS-Kernel

In this section a new sequence matching algorithm, ACS-Kernel, to measure the
similarity between program execution paths is presented. ACS-Kernel measures
similarity between each pair of execution paths in an implicit feature space where
dimensions are all common sub-paths amongst execution paths. The algorithm
measures the similarity between any two given paths S and T as the sum of products
of |LS(v)| and |LT (v)|, representing the number of occurrences of sub-path v in S
and T , respectively. The ACS algorithm consists of two parts named ACS-Kernel
and ProcessNode. The ACS-Kernel function begins with identifying all sub-paths
of its inputs S and T and keeping them in LS(φ) and LT (φ), respectively. Then,
ACS-Kernel invokes the ProcessNode function to compute all the sub-paths of S
and T , including common subsequence of predicates.

Algorithm ACS-Kernel

Input: Execution paths S and T , Output: Similarity measure between S and T

ACS-Kernel (S, T )

Begin

Let LS(φ) = {(S(i, |S|), 0) : i = 1 : |S|}
Let LT (φ) = (T (i, |T |), 0) : i = 1 : |T |
Similarity = 0;

Call ProcessNode(φ, 0)

End

ProcessNode (v,depth)

Begin

if (depth ! = 0)

/* |LS(v)| is the number of supaths of S which begin with v and |LT (v)| is the

number of supaths of T which begin with v */

Similarity + = |LS(v)| × |LT (v)|
if (depth > |S| or depth > |T |)



1118 S. Arabi Naree, S. Parsa

return;

else if (LS(v) and LT (v) both are not empty)

Begin

while (There exists (u, i) in the list LS(v))

Add (u, i+ 1) to the list LS(vu(i+1) );

while (There exists (u, i) in the lists LT (v))

Add (u, i+ 1) to the list LT (vu(i+1) );

for (each p ∈ P ) // P is the set of all predicates in the program

Call ProcessNode (vp,depth + 1)

End

End

In the ACS algorithm, S(i, j) is a sub-path of S which starts at predicate num-
ber i and ends up with the predicate number j. ProcessNode(v, depth) computes
the number of sub-paths of S and T which include v and compute the value of the
Similarity variable.

The ACS kernel algorithm measures the similarity between each pair of ex-
ecution paths in a feature space in which each dimension represents a common
sub-path. The similarity measures are dependent on the length of the compared
paths. To normalize the similarity measures to range [0, 1], the following relation is
used:

NormalizedKernel (S, T ) =
Kernel(S, T )√

Kernel(S, S)×Kernel(T, T )
(5)

A. Computation cost of the ACS-Kernel algorithm

The order of ACS-Kernel to measure similarity between each pair of execution
paths, S and T , is O(|S|2 + |T |2). ACS-Kernel is applied to measure the sim-
ilarities between all possible pairs of execution paths (S, T ) ∈ TE where TE
indicates the set of execution paths used to train the SVM classifiers. The simi-
larity measure between each pair of execution paths (Si, T j) is kept in the entry
[i, j] of the kernel matrix M . Therefore the order of computation cost for each
row i of M is O(m|Si|2+

∑m
j=1 |T j|2) where m indicates the number of the paths

Si ∈ TE and |T j| indicates the length of the execution path T j. In order to
reduce the computation cost, firstly a record of all sub-paths of Si are computed
and kept in a Trie structure. This requires O(|Si|2) time. Then the similarity
between Si and the other paths represented by the columns of the matrix is
computed. In this way we traverse and process path Si only once. Therefore,
the time complexity for computing each row of the kernel matrix is reduced to
O(|Si|2 +

∑m
j=1 |T j|2).

B. Benefits of the proposed ACS-Kernel

In this section it is shown that ACS-Kernel can be efficiently applied to predict
software failures. There are three reasons for this assertion.



Early Failure Prediction in Software Programs: Dimensionality Reduction Kernel 1119

Semi positive definite: The first reason is that ACS-Kernel is semi positive
definite. A classifier which uses a semi positive definite kernel is guaranteed
to find the global optimum solution instead of local optimum [4, 6]. A kernel
such as ACS-Kernel is semi positive definite if it satisfies Relation (6) for
each pair of paths ei and ej.

ACS-Kernel(ei, ej) = 〈ϕ(ei), ϕ(ej)〉, (6)

ϕ : e→ ϕ (e) = (f (s1, e) , f (s2, e) , . . . , (sN , e)) ∈ FN , si ∈ P ∗.

If N is the number of all possible subsequences of the program predicates,
each path e is mapped into an N dimensional feature space FN where each
dimension is a subsequence of program predicates which is shared between
at least two execution paths of the program. Obviously, N can be very large
and it takes a long time to map all the program execution paths. Computing
ACS-Kernel does not involve evaluation of the mapped vectors ϕ(e), instead
it is computed directly according to the path vectors e without any direct
mapping.

It can be shown that ACS-Kernel is semi positive definite because the results
of the kernel for two path vectors ei and ej are the same as the dot product of
corresponding mapped vectors in the feature space as shown in Relation (7).

ACS-Kernel(ei, ej) = 〈ϕ(ei), ϕ(ej)〉 =
∑
s∈P ∗

ϕs(ei)ϕs(ej). (7)

Polynomial time complexity: Minimal time overhead to map execution path
vectors and measure the similarities in the feature space is another desired
feature of the ACS-Kernel. In general the time required for mapping execu-
tion paths vectors into a feature space is of an exponential order [4, 6]. As
described above, the time required by the ACS-Kernel for mapping execution
paths and computing similarities is of a polynomial order.

Customized kernel function: To predict termination state of a program exe-
cution at each program predicate, a dedicated classifier separating failing and
passing executions of the program is required. To build a dedicated classifier
a kernel function measuring similarities among program execution paths,
represented as sequences of predicates, is required. Existing SVM kernel
functions could only measure the similarities amongst execution paths based
on predicates as independent features of program executions. They cannot
be easily applied to measure the similarity amongst sequences of inter-related
predicates representing a program execution path. The ACS-Kernel function
outperforms the existing ones in the sense that it can simply measure the
similarities among program execution paths in terms of their sub-paths.



1120 S. Arabi Naree, S. Parsa

3.2.2 EACS-Kernel

The feature space dimensions of ACS-Kernel are all common sub-paths appearing
in execution paths. But there are many repeated subsequences of predicates in
these common sub-paths because the existence of iterations in the program code. It
is a time consuming task to measure the similarities among execution paths when
there are consecutive repeated patterns of predicate subsequences in the executions.
The difficulty is when these repeated patterns begin or terminate with the same
subsequence of predicates. To have a sense of difficulty, imagine two execution
paths s = 〈p1, p2, p3, p2, p3, p4, p5〉 and t = 〈p1, p2, p3, p2, p3, p2, p3, p4, p6〉. The sub-
path p2, p3 appears consecutively twice in the execution path s and three times in t
while the first and last iterations of p2, p3 begin and end up with the same predicates,
p1 and p4, in both s and t.

To resolve the difficulty we have developed the EACS-Kernel which uses the
ACS-Kernel but reduces its time overhead. Our studies show that there is no effi-
cient solution to alleviate the difficulty in the previous approaches to failure predic-
tion. Some failure prediction approaches control such iterative patterns in a random
manner [18]. For example they consider only n consecutive iterations of repeated
sub-paths where n is selected randomly. It is obvious that this random approach
considerably decreases the model precision.

In this section, an extended version of ACS-Kernel, called EACS, is proposed
to measure the similarity between pairs of execution paths including only a single
iteration of each consecutively repeated sub-path along with its number of iterations.
It should be noticed that replacing each consecutively repeated subsequence with
a single iteration of the subsequence along with its number of iteration results in
no loss of accuracy. To have a better understanding of our proposed approach let
us consider the instrumented program in Figure 2 a). As shown in Figure 2 b), the
program execution path is shortened by replacing each of its consecutively repeated
predicate subsequences with a single representative subsequence.

Algorithm EACS-Kernel

Input: Two execution paths A and B.

Output: Similarity measure, SAB, between A and B.

Step0. Shorten A and B into X and Y , respectively.

Step1. Sxy = ACS-kernel(X,Y )

Step2. // Traverse sequence A from left to right

For each subsequence, `, repeated `count times (`count > 1) in A do

Begin

Step 2.1. Inc1+ =(`count − 1)× `Y−appear let `Y−appear = total no. of ` in Y

Step 2.2.

For i = 1 to `Y−appear do

// find identical windows containing ` in both X and Y

Begin

Li = NextCommonConsecutiveIteration(`) in X and Y



Early Failure Prediction in Software Programs: Dimensionality Reduction Kernel 1121

Head = Subsequence H appearing immediately before Li in both X and Y .

Tail = Subsequence T appearing immediately after Li in both X and Y .

wi = Head + Li + Tail and wi` = Index of Li in wi

Red1+ =
∑`Y−appear

i=1 ((len(wi)− wi`)× (wi` − 1))

End For

Step 2.3. Replace ` in X with (`, `count).

End For

Step3. // Traverse sequence B from left to right

For each subsequence, `, repeated `count times in B do

Begin

Step 3.1.

`A−appear = total number of appearances of (`, `icount) in A.

`icount = number of iterations of ` in the ith appearance of (`, `icount) in A.

Inc1 + = (`count − 1)
∑`A−appear

i=1 (`icount × (`icount + 1)/2)

Step 3.2.

For i = 1 to `A−appear do

Begin

If `icount >= 3 then Red2 + = (`icount − 2)× (`icount − 1)×
(2×`icount−3)

3
+1

4

If `icount − 2 >= `count then

Red2 − = (`icount − `count − 1)× (`icount − `count)×
(2×`icount−2×`count−1)

3
+1

4

Li = NextCommonConsecutiveIteration(`) in Y and A

Head = Subsequence H appearing immediately before Li in both Y and A.

Tail = Subsequence T appearing immediately after Li in both Y and A.

wi = Head + Li + Tail and wi` = Index of Li in wi

Red1 + =
∑`A−appear

i=1 ((len(wi)− wi`)× (wi` − 1))

End For

Step 3.3. Replace ` in Y with (`, `icount).

Inc2 =
∑2×`A−appear

i=1 ((len(wi)− wi`)× (wi` − 1))

+ (len(wi)− wi` − `icount + 1)× (`icount − 1)

End For

Step4. Evaluate the overall similarity between A and B: SAB = SXY + Inc1 + Inc2 −
Red1− Red2

EACS-Kernel measures similarity between main execution paths A and B ac-
cording to the similarity between shortened execution paths X and Y . Each consec-
utively repeated subsequence ` of predicates in A or B is represented by (`, `count),
where ` count indicates the number of iterations of the subsequence ` within A
or B. The EACS-Kernel calls ACS-Kernel to measure similarity between shortened
execution paths X and Y . Then EACS-Kernel applies a windowing technique to
find identical iterative patterns in A and B and modifies the computed similarity
to the similarity between the main execution paths A and B. Step 0 in the algo-
rithm shortens A and B into X and Y by replacing each (`, `count) with `. Step 1
calls ACS-Kernel to compute similarity between shortened paths X and Y . Step 2



1122 S. Arabi Naree, S. Parsa

a)

b)

Figure 2. An example of shortening the length of execution paths: a) An instrumented
code, b) Building shortened execution paths

and Step 3 in the algorithm modify the similarity considering the repeated subse-
quences ` of predicates in the main paths A and B. Step 2 in the algorithm finds
identical windows containing ` in both A and Y . Step 3 in the algorithm finds iden-
tical windows containing ` in both B and X. In the algorithm, w means window and
len(p) represents the length of sequence p. To show how EACS-Kernel algorithm
works, let us consider the example in Figure 3.

A. Computation cost of the EACS-Kernel algorithm

The computation cost of EACS-Kernel algorithm is computed as follows:

Step 1: Cost of step 1 is equal to the computation cost of the ACS-Kernel
function on shortened paths. The cost of this step is O(|X|2 + |Y |2).

Step 2: Computing Inc1 in step 2.1 requires finding the locations in the path
Y where repeated subsequence ` is appeared. Therefore the cost of this step
is O(`Y−appear).



Early Failure Prediction in Software Programs: Dimensionality Reduction Kernel 1123

Input: A = <p1 p2 p3,4 p4 p5 p3,2 p6> B = <p8 p2 p3,3 p4 p5 p3,2 p7>
Step0: X = < p1 p2 p3 p4 p5 p3 p6> Y = < p8 p2 p3 p4 p5 p3 p7>
Step1: SX,Y = ACS �Kernel (X, Y ) = 17
Step2:Traverse A from left to right
First iteration: `=p3, `count=4
Step 2.1: p3 is appeared 2 times in Y therefore: `Y�appear=2 , Inc1 = 6
Step 2.2: for each appearance of `=p3 in Y find similarity windows with
X:
w1 = < p2 p3 p4 p5 p3 > , w1`= 2 , LW (1) = 5 , Red1 = 3 , w2= -
Step 2.3: X = < p1 p2 p3,4 p4 p5 p3 p6>
Second iteration: `=p3 , `count=2
Step 2.1: p3 is appeared 2 times in Y therefore:`Y�appear=2 , Inc1 = 8
Step 2.2: for each appearance of `=p3 in Y find similarity windows with
X:
w1= - , w2= < p3 p4 p5 p3> , w2` = 4 , LW (2) = 4 , Red1 = 3
Step 2.3: X = < p1 p2 p3,4 p4 p5 p3,2 p6>

Step3: Traverse B from left to right
First iteration: `=p3 , `count=3
Step 3.1: p3 is appeared 2 times in A therefore `A�appear=2, `1count=4 ,
`2count=2
Inc1 = Inc1 + (3 – 1) * ((4 * (4 + 1) / 2) + (2 * (2 + 1) / 2)) = 8 + 26 = 34
Step 3.2: for each appearance of `=p3 in A find similarity windows with
Y:
First iteration:
`1count � 3 therefore :Red2 = 4
w1=<p2 p3> , w1` = 2 , LW (1) = 2 , Red1 = 3
w2= < p3 p4 p5 p3> , w2` = 1 , LW (2) = 4 , Red1 = 3 , w3= -
Step 3.3: Replace ` in Y with (`, `i count): Y = < p8 p2 p3,3 p4 p5 p3 p7>
Second iteration:
w1=< p2 p3,3 > , w1` = 2 , LW (1) = 4 , L1=3 , Inc2 = 2
w2 = < p3,3 p4 p5 p3 > , w2` = 1 , LW (2) = 6 , L1 = 3 , Inc2 = 8 , w3 = -
Second iteration: `=p3 `count=2
Step 3.1: p3 is appeared 2 times in A therefore `A�appear=2
`1count=4 , `2count=2 , Inc1 = 47
Step 3.2:
First iteration:
for `=p3 in A find similarity windows with Y
L1 � 3 therefore : Red2 = 7
w1=- , w2= - , w3= <3,3 4 5 3> , w3` = 6 , LW (3) = 6 , Red1 = 3 , w4 = -
Step 3.3: Replace ` in Y with (`, `i count) : Y = < p8 p2 p3,3 p4 p5 p3,2 p7>
Step 3.2:
Second iteration: w1=- , w2 = - , w3 = < p3,3 p4 p5 p3,2 > , w3` = 6 ,
LW (3) = 7 , L1 = 2 , Inc2 = 13
Step4: SA,B = SX,Y + Inc1 + Inc2�Red1�Red2 = 17 + 47 + 13� 3� 7 = 67

1
Figure 3. An example of EACS-Kernel algorithm on two sample execution paths



1124 S. Arabi Naree, S. Parsa

Computing Red1 in step 2.2 needs to find the similarity window for each
occurrence of ` in Y . Usually in most cases the similarity windows are very
short but in the worst case finding the similarity window needs to traverse all
the predicates of path Y . Therefore the cost of this step is O(`Y−appear×|Y |).
Since steps 2.1 and 2.2 of the algorithm should be done for each iteration
of subsequence ` in A, the total cost of step 2 is O(`A−appear × (`Y−appear +
`Y−appear × |Y |)) = O(`A−appear × `Y−appear × |Y |).

Step 3: The complexity of computing Inc1 and Red2 is O(mA) as described
above.

The complexity of computing Red1 is O(`A−appear × |A|). Computing Inc2
needs to find the similarity windows therefore this step requires O(`A−appear×
|A|) time as computing Red1. Therefore the complexity of step 3 is
O(`Y−appear×(`A−appear+2×`A−appear×|A|)) = O(`A−appear×`Y−appear×|A|)).

Step 4: The cost of step 4 isO(1). The overall complexity of EACS-Kernel algo-
rithm is O(|X|2+|Y |2+`A−appear×`Y−appear×|Y |+`A−appear×`Y−appear×|A|).
Since the total number of appearances of a specific subsequence in different
locations of a program execution path is small, `Y−appear and `A−appear could
be considered as constant parameters in practice. Thus, the computation
cost of EACS-Kernel algorithm to measure the similarity between main se-
quences A and B could be considered as O(|X|2 + |Y |2). However, compu-
tation cost of ACS-Kernel algorithm to measure the similarity between A
and B is O(|A|2 + |B|2). Therefore the time overhead of EACS-Kernel algo-
rithm to measure the similarity between original paths A and B is less than
ACS-Kernel algorithm on A and B because the length of shortened paths X
and Y is very smaller than the original paths A and B. Thus EACS-Kernel
decreases the time overhead of ACS-Kernel on sequences containing repeated
patterns.

3.2.3 EADLCS-Kernel

A major difficulty with the EACS-Kernel is that its feature space dimensionality
could be very high because most of the common sub-paths considered as the di-
mensions have overlaps. In order to reduce the dimensionality, the longest disjoint
common sub-paths amongst the execution paths can be selected as the dimensions
of the feature space. To achieve this, a new algorithm, EADCLS (Extended All Dis-
joint Longest Common Sub-paths Kernel), is presented below. The basic idea behind
EADCLS is to build a similarity matrix M for each pair of execution paths A and B,
whose columns represent the predicates in A and its rows represent the predicates
in B, is built. The components Mi,j of the matrix are either one or zero dependent
on whether the ith predicate in A and the jth predicate in B are identical or not.
The longest non-overlapping consecutive ones on the main diagonals are selected
as the longest common sub-paths between the execution paths. For instance in
Figure 4, similarity matrix M and the common sub-paths between two execution
paths A = 〈p1 p2 p3 p3 p3 p3 p4 p5 p3 p3 p6〉 and B = 〈p8 p2 p3 p3 p3 p4 p5 p3 p3 p7〉



Early Failure Prediction in Software Programs: Dimensionality Reduction Kernel 1125

are represented. Two longest common sub-paths between execution paths A and B
are 〈p2 p3 p3 p3〉 and 〈p3 p3 p3 p4 p5 p3 p3〉 as shown in Figure 4. After removing
the overlaps between the longest common sub-paths, two subsequences 〈p2〉 and
〈p3 p3 p3 p4 p5 p3 p3〉 are selected as disjoint and longest common sub-paths between
A and B.

Figure 4. The basic idea of similarity measure between each pair of execution paths by
EADLCS-Kernel

The algorithm EADLCS-Kernel finds the similarity between two execution
paths S and T according to their disjoint longest common sub-paths. In step 1
of the algorithm, the longest common sub-paths between S and T , are found. In
effect, this is similar to finding the longest consecutive ones on the main diagonals of
the similarity matrix. In step 2 of the algorithm, the overlaps of the other common
sub-paths in S and T with the longest common sub-path is removed from the sub-
paths. Practically, this is similar to removing the overlaps from the main diagonals
apart from the diagonal including the longest sub-path. The longest common sub-
path is inserted in the list of dimensions for building the feature space. Removing
the longest common sub-paths from the list of common sub-paths, the algorithm is
repeated as far as there are no more overlaps.

Selecting the longest non overlapping common sub-paths as the dimensions of the
feature space, the dimensions which have full projection on the longest common sub-
paths are removed. In this way the dimensionality of the feature space is reduced.
In comparison with EACS-Kernel while preserving the accuracy, EADLCS-Kernel
increases the speed of the failure prediction, significantly.

In the algorithm EADLCS-Kernel S and T are sequences of elements where
each element contains the name Name, the number of appearance Count of a pred-
icate in the execution path of program. MaximumCommonSubpaths is a set of
sequences each representing a relatively longer Common sub-path between the ex-
ecution path sequences S and T . Step 1 in the algorithm finds common sub-paths
between S and T and collects them in the MaximumCommonSubpaths set. The re-
peated overlapping predicates S(j+Sj.count−min) . . . S(j+Sj.count) and T (k+Tk.count−



1126 S. Arabi Naree, S. Parsa

min) . . . T (k + Tk.count) are selected as starting predicates of a new common sub-
path. Step 2 in the algorithm selects maximum non-overlapping sub-paths amongst
the common sub-paths. To have a better understanding of the EADLCS-Kernel
algorithm, an example is shown in Figure 5.

Algorithm EADLCS-Kernel

Input: Let S and T be two distinct execution path sequences of a program P .

Output: Similarity measure between two execution path sequences S and T .

Step 1: For i := 1 to |T | do // Traverse T Starting at T1 to Tn, Where n = |T |
Begin

Initiate k := i;

For j := 1 to |S| do // Traverse S Starting at S1 to Sn, Where n = |S|
Begin

If the name of the predicate Tk.name is the same as Sj .name then

Begin

If the number of appearance Tk.count is equal to the Sj .count then

If a new common sub-path is not already started then

NewCommonSubpath.StartPoint :=position of Sj and Tk in paths

Else // the number of appearance Tk.count is not equal to the Sj .count

Begin

Let min := the minimum value of Sj .count, Tk.count;

If a new common sub-path is already started then

Begin

NewCommonSubpath.EndPoint :=position of Sj+min−1 and Tk+min−1 in paths

Add NewCommonSubpath to the MaximumCommonSubpaths set;

End if a new common sub-paths is already started

NewCommonSubpath.StartPoint :=position of Sj+Sj.count−min and Tk+Tk.count−min

in paths

End Else

End if the name of the predicate Tk.name is the same as Sj .name

Else If a new common sub-path is already started then

Begin

NewCommonSubpath.EndPoint :=position of Sj and Tk in paths

Add NewCommonSubpath to the MaximumCommonSubpaths set;

End Else

k++;

End For

If a new common sub-path is already started then

Begin

NewCommonSubpath.EndPoint :=position of Sj+Sj.count and Tk+Tk.count in paths

Add NewCommonSubpath to the MaximumCommonSubpaths set;

End if

End For

Step 2: While (MaximumCommonSubpaths set is not empty) do



Early Failure Prediction in Software Programs: Dimensionality Reduction Kernel 1127

Begin

Find the longestCommonSub-path in MaximumCommonSubpaths

For each Sub-Path in MaximumCommonSubpaths

Remove overlaps(Sub-Path, longestCommonSub-path)

similarity(s, t)+ = length of LongestCommonSub-path;

End While

Let ExecutionPath1=<p1p2p3p3p3p3p4p5p3p3p6> and
ExecutionPath2=<p8p2p3p3p3p4p5p3p3p7> be two execution paths
of a program P.
Input: S = <(p1,1) (p2,1) (p3,4) (p4,1) (p5,1) (p3,2) (p6,1)>
T = <(p8,1) (p2,1) (p3,3) (p4,1) (p5,1) (p3,2) (p7,1)>
Step 1:
Iteration 1:
MaximumCommonSubpaths={[StartPoint=(2,2), EndPoint=(5,5) ,
common subpath=< p2p3 p3p3>], [StartPoint =(4,3), EndPoint =(10,9) ,
common subpath=< p3 p3p3 p4p5p3 p3>]}
. . .

Iteration 4:
MaximumCommonSubpaths={[ StartPoint =(2,2), EndPoint =(5,5) ,
common subpath=< p2p3 p3p3>], [StartPoint =(4,3), EndPoint =(10,9) ,
common subpath=< p3 p3p3 p4p5p3 p3>],[ StartPoint =(3,8), EndPoint
=(4,9) , common subpath=< p3p3>]}
. . .
Step2:
longestCommonSubpath=[ StartPoint =(4,3), EndPoint =(10,9) , com-
mon subpath=< p3 p3p3 p4p5p3 p3>]
MaximumCommonSubpaths={[ StartPoint =(2,2), EndPoint =(2,2) ,
common subpath=< p2>], [StartPoint =(4,3), EndPoint=(10,9) , common
subpath=<p3 p3p3 p4p5p3 p3>]}

1

Figure 5. An example of EADLCS-Kernel algorithm on two execution paths

A. Computation cost of the EADLCS-Kernel algorithm

The time complexity of EADLCS-Kernel algorithm to measure similarity be-
tween each pair of execution paths is computed as follows:

Step 1: The complexity of step 1 to find the longest common sub-paths between
S and T is O(|S||T |).

Step 2: The complexity of step 2 for removing the ovelaps of the common sub-
paths with the longest common sub-paths is O((|S|+ |T |)2).
Therefore, the order of EADLCS-Kernel is O((|S|+ |T |)2).



1128 S. Arabi Naree, S. Parsa

B. Benefits of the proposed EADLCS-Kernel

The kernel is semi positive definite: The semi positive definiteness of the
EADLCS-Kernel could be explained as follows:

1. {disjoint longest common sub-paths between each pair of execution
paths} ⊆ {all common sub-paths amongst the execution paths}

2. Let FEADLCS indicate the feature space where all the disjoint longest com-
mon sub-paths are considered as the dimensions and FEACS indicates the
feature space where all common sub-paths are considered as the dimen-
sions. According to the previous item, FEADLCS is a subspace of FEACS.

3. If we show that FEADLCS spans FEACS, then it can be concluded that
EADLCS-Kernel is semi positive definite like EACS-Kernel. To proof
this it is enough to show that the dimensions of FEACS can be projected
onto the dimensions of FEADLCS [19]. From 1 it is obvious that all common
sub-paths have projection onto the disjoint longest common sub-paths.

EADLCS-Kernel is faster than the EACS-Kernel: EADLCS-Kernel re-
duces the number of feature space dimensions as well as the size of the
dimensions. It is important to show that the accuracy reduction of the
EADLCS-Kernel in comparison with the EACS-Kernel is tolerable. With
this assumption, EADLCS-Kernel would be efficient to apply as the core
of the failure prediction classifier. The amount of accuracy reduction of
EADLCS-Kernel is explained in Section 4.

4 EXPERIMENTAL RESULTS

In order to demonstrate the performance of EADLCS-Kernel, the results of several
experiments conducted on two well-known test suites, Siemens and SPEC2000, are
described in this section. A brief description of the Siemens and SPEC2000 test
suites is presented in Table 1.

Siemens is one of the benchmark suites more related to bug detection for soft-
ware testing. Siemens benchmark contains seven small programs each program is
associated with some versions. Each version is injected with one bug. Faulty ver-
sions simulate a wide variety of realistic bugs. Better testing tools can distinguish
more buggy versions from correct ones. Siemens programs and related test cases are
obtained from Software Repository Infrastructure (SIR) [20]. SPEC2000 benchmark
have been used before by several failure prediction methods to measure the perfor-
mance. SPEC2000 programs are obtained from Standard Performance Evaluation
Corporation website [21]. In order to evaluate our failure prediction method, the
following criteria are applied:

1. Code coverage: The effect of code coverage property and the size of the training
dataset, applied for building the failure prediction classifier on its performance,
accuracy and precision.



Early Failure Prediction in Software Programs: Dimensionality Reduction Kernel 1129

Table 1. A brief description of two test suites

2. Alarm notification: The amount of time a predicted failure notification could
be postponed.

3. Quality: Evaluation and comparison of the quality, in terms of performance,
precision and accuracy, of the proposed failure prediction approach with the
existing ones.

4. Dimensionality: The effect of feature space dimensionality on the failure pre-
diction speed and accuracy.

5. Time overhead: The amount of time overhead imposed by the failure predic-
tion classifier on the program execution time.

4.1 Code Coverage

The code coverage criterion uses the measure of the program execution paths cov-
ered by the training data set to evaluate the thoroughness of the resultant failure
prediction classifier. Figure 6 shows the impact of the code coverage, by the data
set applied to run the Siemens programs, on the resultant SVM classifier quality.
We have applied a code coverage measurement tool, Testwell CTC++ tool [22], to
measure the coverage of our training data set. CTC++ applies a code coverage
metric called Linear Code Sequence and Jump (LCSAJ) to measure the coverage of
acyclic paths resulted from a test suite. In order to measure the LCSAJ coverage
capability of an applied test suite, a metrics called Test Effectiveness Ratio (TER)
is used. The TER metric for a test set T , applied to run a program P , is computed
as follows:

TER =
# LCSAJs exercised in program P by T

# feasible LCSAJs of program P
. (8)

Figure 6 shows the F -measure of the failure prediction classifier built with
EADLCS and EACS proposed kernels on seven programs of Siemens test suite ac-



1130 S. Arabi Naree, S. Parsa

cording to TER metric. As shown in Figure 6, F -measure of the proposed failure
prediction classifier with the EADLCS kernel is 0.82 while its test effectiveness ratio
is about 60 %.

Figure 6. F -Measure of failure prediction classifier with EACS and EADLCS kernels on
Siemens according to TER metric

The path coverage capability of the test suites is measured by applying mutation
testing as well. Faults or mutations, some small changes in the code, are automati-
cally seeded into program code, then tests are run. If the tests fail then the mutation
is killed and if the tests pass then the mutation lives. The quality of the tests can
be gauged from the percentage of mutations killed. Mutation testing is applied to
examine whether the test suite is sufficiently complete to detect the incorrect paths
due to the faults seeded in the program [23, 24, 25]. Milu is an efficient and flexible
C mutation testing tool [26].

In practice, it is difficult to obtain failing execution paths on programs that are
ready for deployment. Therefore the sizes of failing and passing training sets are
unbalanced. In Figure 6 the proportion of failing to passing test cases is only about
16 %. But it is interesting to note that the quality of the proposed method is not
appreciably affected by these imbalanced data sets. This advantage is achieved by
SVM which does not lose its accuracy with unbalanced data [27]. When there is
a small number of failing runs, SVM classifier, in a conservative manner, predicts
failure by mistake and, as could be seen in Figure 7, the False-Positive Rate increases
while Precision is decreased. Consequently, the failure prediction model tends to
increase the number of alerts. However, the less number of failing executions are
left without failure alert and hence the Recall rate increases. The interesting point
is that, in practice, the quality of the proposed technique which is specified by F
and Accuracy metrics does not harm, noticeably, as shown in Figure 7.

4.2 Alarm Notification

When the execution path of a program is detected as anomalous by the failure pre-
diction classifier, the classifier could warn the upcoming failure in the early stages
of the execution or the alarm could be postponed for some time before program fail-
ure. In this section we study the effect of postponing the failure warnings during the
execution of programs in real environments. In this experiment, Failure Notification



Early Failure Prediction in Software Programs: Dimensionality Reduction Kernel 1131

a)

b)

c)



1132 S. Arabi Naree, S. Parsa

d)

e)

Figure 7. Evaluation of failure prediction classifier with EACS-Kernel according to dif-
ferent percentages of failing executions: a) Precision, b) False Positive, c) Recall,
d) F -measure, e) Accuracy

Postponing (FNP) metric is defined:

FNP = the number of times the execution path of the program is detected

as failing by the classifier before the failure warning is announced.

Early warnings of failure could provide programmers enough time to understand
and fix the problematic errors. Our experiments show that usually postponing fail-
ure alarm could reduce the number of incorrect failure warnings (i.e. false positive)
and the precision of the failure prediction classifier increases as shown in Figure 8.
However, in some of the faulty execution paths, the early failure detections of the
classifier could be missed by increasing FNP and the program may run in an ap-
parently correct execution flow in subsequent stages of execution. This situation
may result in increasing false negative rate. With due attention to increase false
negative and decrease false positive by increasing the FNP, the accuracy of the pre-
diction classifier usually remains constant. F -Measure is completely dependent on



Early Failure Prediction in Software Programs: Dimensionality Reduction Kernel 1133

the changes of precision and accuracy therefore it could be a suitable metric to select
the appropriate FNP for the programs under test. From the results in Figure 8, it is
evident that the three programs of Siemens, print tokens2, schedule and schedule2,
have highly distinguishing sub-paths around the very beginning of the executions.
However, it is dependent on the location of faults in the program.

4.3 Quality

To have an appropriate basis for estimating the quality of EACS and EADLCS
kernels, we have compared them to each other and to some other approaches on
seven programs of Siemens and 13 programs of SPEC2000 test suite. The kernels
are applied in the SVM classifier. Figure 9 shows the experiments on Siemens
programs. Figure 9 shows that the failure prediction classifier by the proposed
kernels provides more accurate failure predictions than the known approaches like
Argus and DIDUCE. As shown in Figure 9, EADLCS kernel has slightly more false
positive alarms compared with EACS kernel and therefore the overall precision of
EACS is greater than EADLCS kernel. However, false negative alarms of EADLCS
are lower than EACS kernel, indicating higher Recall of EADLCS kernel.

According to these experiments, we may conclude that the failure prediction
model with EADLCS kernel acts more conservatively compared to the model with
EACS kernel. But there is a smaller number of failing executions in which the
EADLCS kernel cannot predict failure. Figure 10 shows the comparison of the
failure prediction classifier to some known existing approaches in the field of failure
detection of software programs. The horizontal axis shows the human effort to
reach the main cause of failure from the predictions reported by the bug detection
approach. In the worst case 100 % of program code is examined to distinguish the
main cause of failure. On average, when 10 % of code are examined, failure prediction
classifier can help the user localize 63 % of the bugs. Argus and DIDUCE are able to
localize 58 % and 60 % of the bugs respectively when 10 % of the code are examined.
Although online failure prediction major design goal is runtime bug detection, the
Figure 10 shows that the bug reports our approach generates are precise enough
that it can be used for efficient bug localization as well.

4.4 Dimensionality

Figure 11 shows the impact of reducing the size and the number of dimensions of
the feature space on time overhead and accuracy of the failure prediction classifier.

As shown in Figure 11, it is concluded that the size reduction of feature space
dimensions reduces the accuracy of the EADLCS and EACS kernel classifier by 8.6 %
and 9 % while it reduces time overhead by 40 % and 43 %, respectively, compared to
ADLCS and ACS kernels.

From Figure 11 it is concluded that the dimensionality reduction in EADLCS
kernel improves the time overhead on program execution time by 62 % compared to
EACS kernel while the accuracy is reduced by only 0.01 %.



1134 S. Arabi Naree, S. Parsa

a)

b)

c)

Figure 8. Effect of FNP choice on the EACS kernel failure prediction classifier in Siemens
programs: a) Precision, b) Recall, c) F -Measure



Early Failure Prediction in Software Programs: Dimensionality Reduction Kernel 1135

a)

b)

c)

Figure 9. Compare failure prediction classifier to existing approaches: a) False Positive,
b) False Negative, c) Accuracy



1136 S. Arabi Naree, S. Parsa

Figure 10. Compare failure prediction classifier to existing approaches: bug located vs.
code examined manually

4.5 Time Overhead

In Figure 12, the runtime overhead of SVM classifier with EACS, EADLCS and poly-
nomial [28] kernels are compared with C-DIDUCE [16] and Argus [17] on SPEC2000
programs. Siemens benchmark applications are very small (some are less than
100 lines of code), hence not suitable to measure time overhead.

As shown in Figure 12, the runtime detection overhead of SVM failure predic-
tion classifier with EADLCS kernel is less than the existing approaches. The SVM
classifier with EADLCS kernel suffers from an average of 120 % execution time over-
head on SPEC2000 programs which is nearly 30 % better than the approaches like
C-DIDUCE. As shown in Figure 9 and Figure 10, the failure prediction classifier
generates more accurate predictions than the best known bug detection techniques.
Therefore it can be concluded that the proposed approach not only reduces the over-
head at run time but provides more accurate predictions than the existing methods
like Argus and DIDUCE.

5 CONCLUSIONS AND FUTURE WORKS

In this paper, a kernel classifier for online prediction of upcoming failures in software
programs is presented. The classifier predicts the termination state of a program ex-
ecution path as failing or passing by computing its similarity with two regions of fail-
ing and passing training executions in a customized feature space. The feature space
dimensions are the commonly traversed paths among failing and passing training
executions. The speed of the classifier mainly depends on the size and the number of
the feature space dimensions. The main contribution of this paper is to improve the
speed of the failure prediction classifier by reducing the dimensionality, number and
the size of the dimensions of the classifier feature space. The number of feature space
dimensions is reduced by removing the dimensions which have projection on each
other. Moreover, the sizes of the dimensions are reduced by replacing each consecu-
tively repeated pattern with a single iteration of the pattern. We have proposed two
new kernels to measure similarities in the feature space with reduced dimensionality.



Early Failure Prediction in Software Programs: Dimensionality Reduction Kernel 1137

a)

b)

Figure 11. Failure prediction classifier with EACS and EADLCS kernels: a) Time over-
head, b) Accuracy

Figure 12. Time overhead of EACS and EADLCS kernel classifiers compared with Poly-
nomial kernel classifier, Argus and C-DIDUCE



1138 S. Arabi Naree, S. Parsa

The experimental results show that the proposed kernel classifier improves the
speed of the failure prediction while preserving accuracy of the predictions. Our
future study is going to focus on the reduction of failure prediction overhead by
applying a window on execution paths of programs to reduce the size of the execution
path sequences to be classified.

REFERENCES

[1] Zeller, A.: Why Programs Fail: A Guide to Systematic Debugging. 2nd Edition.
Morgan Kaufmann, 2009.

[2] Liblit, B.: Cooperative Bug Isolation. Doctoral dissertation, University of Califor-
nia, 2004.

[3] Parsa, S.—Arabi, S.: Software Online Bug Detection: Applying a New Kernel
Method. IET Software, Vol. 6, No. 1, February 2012, pp. 61–73.

[4] Shawe-Taylor, J.—Cristianini, N.: Kernel Methods for Pattern Analysis. Cam-
bridge University Press, 2004.

[5] Parsa, S.—Arabi, S.: A New Semantic Kernel Function for Online Anomaly De-
tection of Software. ETRI Journal, Vol. 34, 2012, No. 2, pp. 288–291.

[6] Herbrich, R.: Learning Kernel Classifiers Theory and Algorithms. 1st Edition. MIT
Press, 2002.

[7] Salfner, F.—Lenk, M.—Malek, M.: A Survey of Online Failure Prediction
Methods. ACM Computing Survey, Vol. 42, 2010, No. 3, pp. 1–42.

[8] Mili, A.—Tchier, F.: Software Testing: Concepts and Operations, Quantitative
Software Engineering Series. 1st Edition. John Wiley and Sons, 2015.

[9] Liu, H.—Xu, L.—Yang, M.—Yan, M.—Zhang, X.: Predicting Component
Failures Using Latent Dirichlet Allocation. Mathematical Problems in Engineering,
Vol. 2015, Article ID 562716, 2015.

[10] Hamill, M.—Goseva, K.: Exploring Fault Types, Detection Activities, and Failure
Severity in an Evolving Safety-Critical Software System. Software Quality Journal,
Vol. 23, 2015, No. 2, pp. 229–265.

[11] Zhang, P.—Muccini, H.—Polini, A.—Li, X.: Run-Time Systems Failure
Prediction Via Proactive Monitoring. Proceedings of 26th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE 2011), November 2011,
pp. 484–487.

[12] Baah, G.K.—Gray, A.—Harrold, M. J.: OnLine Anomaly Detection of De-
ployed Software: A Statistical Machine Learning Approach. Proceedings SOQUA,
2006, pp. 70–77.

[13] Salfner, F.: Event-Based Failure Prediction: An Extended Hidden Markov Model
Approach. Doctoral dissertation, Humboldt-Universität zu Berlin, Germany, 2008.

[14] Pytlik, B.—Renieris, M.—Krishnamurthi, S.—Reiss, S.: Automated Fault
Localization Using Potential Invariants. Proceedings International Workshop Auto-
mated and Algorithmic Debugging, Ghent, Belgium, 2003, pp. 273–276.



Early Failure Prediction in Software Programs: Dimensionality Reduction Kernel 1139

[15] Alipour, M.A.—Groce, A.: Extended Program Invariants: Applications in Test-
ing and Fault Localization. Proceedings of the Ninth International Workshop on Dy-
namic Analysis (WODA 2012), 2012, pp. 7–11.

[16] Fei, L.—Midkiff, S. P.: Artemis: Practical Runtime Monitoring of Applications
for Execution Anomalies. Proceedings PLDI, 2006, pp. 84–95.

[17] Fei, L.—Lee, K.—Li, F.—Midkiff, S. P.: Argus: Online Statistical Bug Detec-
tion. Proceedings FASE, 2006, pp. 308–323.

[18] Chandola, V.—Banerjee, A.—Kumar, V.: Anomaly Detection: A Survey.
ACM Computing Surveys (CSUR), Vol. 41, 2009, No. 3, Article No. 15.

[19] Strang, G.: Introduction to Linear Algebra. Fourth Edition, Wellesley Cambridge
Press, 2009.

[20] Software Infrastructure Repository. Available on: http://sir.unl.edu/.

[21] Standard Performance Evaluation Corporation. Available on: https://www.spec.

org/cpu2000/.

[22] Testwell CTC++ tool. Available on: http://www.testwell.fi/.

[23] Ammann, P.—Offutt, J.: Introduction to Software Testing. 1st Edition. Cam-
bridge University Press, 2008.

[24] Untch, R.H.—Offutt, J.—Harrold, M. J.: Mutation Analysis Using Mutant
Schemata. Proceedings Introduction Symposium Software Testing and Analysis, New
York, NY, USA, 1993, pp. 139–148.

[25] Jia, Y.—Milu, M.H.: A Customizable, Runtime-Optimized Higher Order Muta-
tion Testing Tool for the Full C Language. Proceedings Introduction Conference Test-
ing: Academic and Industrial Conference Practice and Research Techniques, Windsor,
UK, August 2008, pp. 29–31.

[26] Milu. Available on: http://www.dcs.kcl.ac.uk/pg/jiayue/milu.

[27] Chen, D.—He, Q.—Wang, X.: On Linear Separability of Data Sets in Feature
Space. Intell Conference Development and Learning, Vol. 70, London, UK, 2007,
pp. 2441–2448.

[28] Chang, C.C.: LIBSVM: A Library for Support Vector Machines. ACM Transactions
on Intelligent Systems and Technology (TIST), Vol. 2, 2011, No. 3, Article No. 27.



1140 S. Arabi Naree, S. Parsa

Somaye Arabi Naree received her B.Sc. in computer science
from Alzahra University, Iran, and both her M.Sc. and Ph.D.
degrees in computer science, from the Iran University of Science
and Technology. She is Associate Professor of mathematics and
computer science at the Kharazmi University. Her research in-
terests include software testing, software engineering and data
mining.

Saeed Parsa received his B.Sc. in mathematics and computer
science from Sharif University of Technology, Iran, and both his
M.Sc. and Ph.D. degrees in computer science from the Univer-
sity of Salford, England. He is Associate Professor of computer
science at the Iran University of Science and Technology. His
research interests include software testing, software engineering
and reverse engineering.


