
Computing and Informatics, Vol. 35, 2016, 1005–1026

LEARNING AGENT FOR A SERVICE-ORIENTED
CONTEXT-AWARE RECOMMENDER SYSTEM
IN HETEROGENEOUS ENVIRONMENT

Piotr Nawrocki, Bart lomiej Śnieżyński, Jakub Czyżewski

AGH University of Science and Technology
Faculty of Computer Science, Electronics and Telecommunications
Department of Computer Science
al. A. Mickiewicza 30
30-059 Krakow, Poland
e-mail: piotr.nawrocki@agh.edu.pl

Abstract. Traditional recommender systems provide users with customized rec-
ommendations of products or services. They employ various technologies and al-
gorithms in order to search and select the best options available while taking into
account the user’s context. Increasingly often, such systems run on devices in hete-
rogeneous environments (including mobile devices) making use of their functionali-
ties: various sensors (e.g. movement, light), wireless data transmission technologies
and positioning systems (e.g. GPS) among others. In this paper, we propose an in-
novative recommender system that determines the best service (including photo
and movie conversion) and simultaneously accommodates the context of the device
in a heterogeneous environment. The system allows the choice between various
service providers that make their resources available using cloud computing as well
as having the services performed locally. In order to determine the best possible
recommendation for users, we employ the concept of learning agents, which has not
been thoroughly researched in connection with recommender systems so far.

Keywords: Service-oriented recommender system, context-aware, heterogeneous
environment, learning agent, supervised learning, cloud computing

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computing and Informatics (E-Journal - Institute of Informatics,...

https://core.ac.uk/display/267942043?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1006 P. Nawrocki, B. Śnieżyński, J. Czyżewski

1 INTRODUCTION AND MOTIVATION

The concept of recommender systems was born in the 1990s [19] when client-server
architecture was broadly applied and heterogeneity was not crucial. This is why
such systems, which supported the users’ decision-making, did not accommodate
the peculiar features of heterogeneous environments at the beginning. Nowadays,
there are many types of devices on which such systems may be executed. The
use of devices in heterogeneous environments (characterized by mobility, different
processing power and the ability to use different data transmission technologies)
has enabled the extension of their functionality and the creation of systems that
are aware of their position and time, among other things. Therefore, recommender
systems should be able to use the functionalities of such devices, including wire-
less connections, various sensors (accelerometer, light, etc.), and positioning sys-
tems.

Currently, research on such systems focuses mainly on supporting decision-
making in terms of selecting movies, music, TV channels, books, applications,
etc. [20]. However, recommender systems as tools for selecting the best service
and the place where it is to be performed have not been thoroughly researched yet.

In our research, we focused on the possibility of building a novel recommender
solution for heterogeneous environments that would deal with the choice of services
(and the locations to perform them) and accommodate the context. In order to ob-
tain service recommendations, we used the learning agents concept, which has not
been thoroughly researched in this field so far. Only a few authors [7] attempted
to make use of the learning agents concept in connection with recommender sys-
tems.

Classic recommender systems search a significant number of information sources
in order to find the best product. As far as our research is concerned, we decided
to focus on the system’s recommendations concerning the location to perform the
service rather than on the service search itself. We assume that the user knows
what kind of service he or she is looking for (e.g. movie conversion, text recognition,
etc.), but does not know where to have it performed most efficiently. We considered
the mobile device itself or various Mobile Cloud Computing (MCC) platforms (such
as Google Cloud Computing or Amazon EC2) as potential locations to perform the
service. Numerous providers may make a certain service available using mobile cloud
computing and the recommender system should be able to determine the place where
the service will be performed in the optimal way. While conducting our research, we
took into account the context of service performance on a mobile device, including
the positioning of the device, the condition of its battery, the possibility of data
transmission using wireless data transmission technologies (Wi-Fi, 3G, 4G) [17] and
the time of service performance as well as its cost. In order to suggest the best (least
costly and optimal from the point of view of the mobile device) location for service
performance, we made use of the learning agents mechanism.

The paper is structured as follows: Section 2 includes the review of related
work, Section 3 focuses on using learning agents in optimizing service performance,

Learning Agent for a Service-Oriented Context-Aware Recommender System 1007

Section 4 describes a context-aware recommender system for heterogeneous environ-
ments that recommends video conversion services, Section 5 presents the results of
the tests conducted, and Section 6 contains the conclusion.

2 RELATED WORK

In recent years, the significance of recommender systems that operate in heteroge-
neous environments and of context information has greatly increased. Therefore,
numerous papers describing various concepts related to such systems have been
written.

In [8] the authors present a context-aware recommender system named South
Tyrol Suggests (STS) that recommends places of interest (POIs) using mobile de-
vices. The system learns the users’ preferences on the basis of their previous reviews
and personal choices.

In another paper [29] the authors propose a recommender system based on social
networks. The inclusion of such information may significantly enhance the outcome
and provide more accurate recommendations. Empirical analysis of real data has
shown that the solutions proposed achieve better results than earlier systems of the
same kind.

The authors of yet another paper [12] offer an example of a classic recommender
system called RecomMetz, which focuses on movies, cinemas and movie screenings.
The system is based on Semantic Web technologies and accommodates various pa-
rameters such as positioning, numbers of viewers and time. The system was tested
in a real-life environment on various Android mobile devices.

There are also recommender systems using hardware solutions. In [30] the au-
thors present a Collaborative Filtering (CF) recommender system using a Single
Chip Cloud computer (SCC) and a Field-Programmable Gate Array (FPGA) [9, 11].

Recommender systems based on services are also a valid area of research. The
Context-Aware Recommender System (CARS) described in [1], is one such system.
Based on the Personalized Access Model (PAM) framework, it provides recommen-
dations based on services that make context available. The use of services [10] (or
hardware-based services [5]) in recommender systems is related to the problem of
service search [16] and the SLA (Service Level Agreement) concept [15] that defines
the terms of using certain services.

There are several other studies of multi-agent system applications in heteroge-
neous environments [2, 21]. A problem similar to the one considered here is presented
in [4], where an agent-based system for MCC optimization is investigated. The main
component of the system is the Execution Manager, which is a service on a mobile
device that is responsible for deciding where to execute application components. In
order to make this decision, a cost model is used, in which execution times are col-
lected offline by the application profiler (in our solution we leverage online learning).
Learning on a mobile device is used in [22], where an agent performing behavioral
detection is discussed that samples selected system metrics (e.g. CPU usage, net-

1008 P. Nawrocki, B. Śnieżyński, J. Czyżewski

work communication, active processes, battery level) and detects anomalies using
classification methods.

Autonomous reasoning about resources and tasks by agents is discussed in [32].
Domain knowledge is represented using ontology but no learning is used. The ap-
plication of machine learning algorithms in agent-based systems has been broadly
discussed in literature. Valuable studies in this area include [18, 31]. In most cases,
reinforcement learning or evolutionary computations are applied for the purpose of
agent adaptation. However, there are also works where supervised learning was
used [24, 13], like in this paper. Such learning was applied for the purposes of
adapting service-oriented applications as described in [28]. It is an approach similar
to the one presented in this paper, but the choice of the service is based on one
criterion only (calculation time). It is worth noting that there are advantages to su-
pervised learning since it accelerates the learning process compared to reinforcement
learning, especially if the state space is large [25, 27]. In contrast to evolutionary
computation (where a population of agents is necessary), a single agent can learn
a strategy autonomously [26].

Several studies of using genetic algorithms and machine-learning methods on
mobile devices, e.g. for computation offloading, have been published. The MAL-
MOS environment [14] is an adaptable offloading scheduler. It works in two modes:
the scheduling phase (in which tasks are executed locally or remotely) and the
online training phase (in which two separate threads for offloading and local pro-
cessing are created to compare execution times). In contrast, our method does not
need a separate training phase. Three supervised learning algorithms are applied:
instance-based learning, single layer perceptron, and Näıve Bayes. Potentially, vari-
ous attributes may be used to describe the task and the context, but in experiments
described in the article, only the amount of data to be sent and network bandwidth
were taken into account. During these experiments, a Traffic Control (TC) tool
was applied to emulate various types of networks between mobile devices and lap-
tops/PCs; in our experiments, the mobile device connects to the Google cloud using
real LTE and EDGE networks.

In [6] the authors present the partitioning of monolithic applications and the
appropriate allocation of the resulting parts in order to optimize energy consumption
of a mobile device. In order to properly deploy the tasks on the resources, they
used two genetic algorithms. The simulations performed showed that the proposed
method of task deployment made it possible to save 35 % energy of the mobile
device. In contrast to our solution, the authors of the article did not use machine-
learning algorithms but genetic algorithms to optimize the allocation of resources.
The optimization only takes into account energy consumption and the task execution
time is not included. The tests were carried out only by simulation without using
real devices and therefore the authors did not take into account the characteristics
of wireless transmission using technologies such as EDGE or LTE.

In [3] machine learning algorithms are applied in the context of mobile devices.
However, rather than touching upon the problem of task allocation that we are work-
ing on, mobile device location is predicted using supervised learning with a sliding

Learning Agent for a Service-Oriented Context-Aware Recommender System 1009

window. Three algorithms included in the Weka [33] library are applied: 1NN, C4.5,
and voting (based on 1NN and C4.5). Experiments are also performed offline on
previously generated data, while in our experiments learning is performed online.

In [23] task execution time (on the mobile device and in the cloud) is predicted
using machine learning. The prediction system consists of two components: an of-
fline one (developing a task performance model for each computational device before
deploying the app) and an online one (applying the model learned to the current
case). Additionally, Internet connection quality is predicted based on historical in-
formation about the user and signal strength. Risk-controlled decisions are made
where to execute the task. Our system includes exclusively an online part, which
learns local, device-specific models and therefore no task performance model needs
to be developed offline for every computational device.

3 SERVICE RECOMMENDATIONS BY LEARNING AGENTS

In the application considered, recommendations are provided by an agent, which
operates on a device in a heterogeneous environment and monitors the environment
and may collect information on:

• the task to be executed in the service in question, including its type, key argu-
ments, estimated data input/output size, estimated execution time, the cost of
performing the computation and the time when the result is required;

• the cost of performing the service in the cloud, which affects the assessment of
service cost-effectiveness;

• other parameters of the cloud service (such as quality, reliability, speed). Cloud-
based service parameters may also be described according to the SMI (Service
Measurement Index) which allows the user to rate various types of services in
terms of six key metrics (quality, agility, risk, cost, capability, and security);

• in case of the mobile device, the location of the device (domestic/roaming),
indicating whether the device uses data transmission services from local carriers
(lower costs) or must use roaming services abroad (higher transmission costs);

• possible device connection modes (wired/wireless), technologies (Ethernet, Wi-
Fi, 2G/3G/4G) and connection quality affecting network throughput between
the device and the cloud. The type of connection may also affect the power
consumption of the device;

• battery status specifies for how long the device can operate (without being
plugged in) and for how long the service can be performed on this device;

• the current time and date (including day of week, holidays, etc.) affect the abil-
ity to take advantage of better rates related to data transmission or to trans-
mit/receive data during periods when the carrier’s infrastructure is less busy;

• readings of sensors such as the accelerometer, light sensor, etc. for determining
the status of the device (device movement, ambient lighting, etc.).

1010 P. Nawrocki, B. Śnieżyński, J. Czyżewski

On the basis of the information collected, the agent makes decisions when and
where to perform the service (locally or in the cloud). After completing the task,
the agent assesses its decision, considering one or more criteria such as:

• device power consumption;

• the time spent waiting for the result;

• the user’s satisfaction (the user could override the agent’s decision, which means
that he or she does not agree with it);

• costs (e.g. charges related to data transfer or using cloud resources).

The agent gathers experience and updates its strategy, applying some learning
algorithm. Simultaneously, the agent may generate:

• models of the user’s behavior that enable it to assess the impact of factors such
as his or her location/connection accessibility/ability to charge the device;

• models of estimated outcomes of performing a service locally/in the cloud (en-
ergy consumption, time).

These models may be used to improve the estimates of decision consequences.

Energy consumption and time during task execution depend on the task type
and parameters, context and device characteristics (CPU, GPU, RAM etc.). The
first two will be observed by the agent. The latter will be represented indirectly
by observing execution time, because learning is local (performed on a device) and
therefore the knowledge learned is device-specific. If the knowledge were general,
covering various devices, such characteristic should be also taken into account.

Let us define the Task Allocation Learning Agent (Ag) as a tuple:

Ag = (T, S,A,GK, TD,Act), (1)

where T is a set of computational tasks, S is a set of states of the heterogeneous
environment (connection, date, processing power, cloud service description, available
energy source, etc.), A is a set of attributes, which are used to describe percepts, GK
is generated knowledge, and TD is training data. The goal of the agent is to select
an action a ∈ Act = {l, c}, which corresponds to engaging local or cloud resources
for a given task in a given state (t, s) ∈ T × S, using GK.

The agent observes x = (t, s) ∈ T × S, and its processing module describes it
with attributes O = {o1, o2, . . . on} which yields

xO = (o1(x), o2(x), . . . on(x)), (2)

i.e. a description of the Problem. Next, using the knowledge stored in GK it solves
the Problem by selecting a ∈ Act, which has the minimum predicted cost. If GK is
empty, a is randomized.

Learning Agent for a Service-Oriented Context-Aware Recommender System 1011

The agent’s action a is then executed and the task is run locally or in the cloud.
The agent observes execution results, which are described by attributes

R = {r1, r2, . . . rm} (3)

(e.g. whether execution was successful es(x, a), battery consumption b(x, a), calcu-
lation time ct(x, a) and user’s dissatisfaction d(x, a), which may be measured by
observing if the user overrode the agent’s decision). Therefore, the set of all at-
tributes used to describe percepts is a sum of O and R

A = O ∪R. (4)

The agent stores these results together with xO and action a in TD. Therefore the
complete example description stored in TD has the form

xA∪Act = (a1(x), a2(x), . . . an(x), r1(x, a), r2(x, a), . . . rm(x, a), a). (5)

The models to predict R values based on x and a are constructed using machine
learning algorithms and stored in GK. These models influence the choice of the
action to be taken. They are independent and may be learned separately, using
a different algorithm for every model. Any supervised learning algorithm may be
used. However, one should remember that learning is executed on a device in a het-
erogeneous environment (using battery power and having limited resources), and
therefore algorithms with low computational complexity are preferred. In our ex-
periments, we applied the Näıve Bayes and random forest algorithms (see Section 5
for details).

Using value predictions ri(x, d), the agent may rate its decisions d ∈ Act by
calculating predicted expenses e(x, d):

e(x, d) =
m∑
i=1

wi ∗ ri(x, d), (6)

where wi are weights of the result ri.

The agent should select the action for which execution is predicted to be suc-
cessful and the expense is predicted to be the lowest.

The internal structure of the agent should reflect its learning abilities. The
architecture of the agent is presented in Figure 1; the agent consists of four main
modules:

• Processing Module, which is responsible for basic agent activities such as pro-
cessing the percepts, storing training data, executing the learning process and
leveraging the knowledge learned;

• Learning Module, which is responsible for executing the learning algorithms and
providing answers to problems using the knowledge learned;

1012 P. Nawrocki, B. Śnieżyński, J. Czyżewski

• Training Data, (TD) which provides storage for the examples (experience) used
in learning;

• Generated Knowledge, (GK) which provides storage for the knowledge learned
(models).

Learning agent

Processing Module Training
Data

Generated
Knowledge

Learning Module

Training
Data

Problem

Answer

Figure 1. Agent architecture reflecting its learning abilities

These components interact in the following way: the Processing Module receives
Percepts from the environment (the parameters listed in the previous subsection),
may process them and execute Actions. If the knowledge learned is required dur-
ing processing, it formulates a Problem by describing observations with available
attributes and sends it to the Learning Module, which generates an Answer for
the Problem using GK. The Processing Module also decides what data should be
placed in TD storage. When required (e.g. periodically or when TD contains many
new examples), it calls the Learning Module to execute the learning algorithm that
generates new knowledge from TD. The knowledge learned is stored in the GK
base.

The agent’s algorithm, which is executed in the Processing Module, is presented
in Figure 2. At the beginning, GK and TD are empty. Next, if there is no learned
knowledge, the action is randomized. If there is some knowledge, Problem is a de-
scription of the observations (xO). Next, Learning Module is used to select the best
action for the Problem according to the current knowledge. Results are observed
and example (xA∪Act) is stored in the TD. After processing a given number of tasks,
Learning module is called to generate a new knowledge from TD. This knowledge
is stored in GK.

The form of the knowledge stored in GK depends on the learning algorithm
utilized. It may have an explicit form, e.g. rules, a decision tree or a Bayesian
model in the case of supervised learning. It may also be stored in a lower-level form
such as parameters representing a linear regression model, an action-value function

Learning Agent for a Service-Oriented Context-Aware Recommender System 1013

begin
Generated Knowledge:= ∅;
Training Data:= ∅;
while agent is alive do

if Generated Knowledge = ∅ then
a:= random action

end
else

Problem := description of the current
(observed) state;
a:= action determined for Problem by
model(s) stored in Generated Knowledge

end
execute a;
observe execution results;
store example in the Training Data;
if it is learning time (e.g. every 100 steps)
then

learn from Training Data;
store knowledge in Generated Knowledge;

end

end

end

Figure 2. Learning agent algorithm that makes it possible to generate the agent’s strategy
using online supervised learning based on the agent’s experience

or a neural network approximator of such a function if reinforcement learning is
applied. It is also possible to store multiple models in GK.

4 SERVICE-ORIENTED CONTEXT-AWARE RECOMMENDER
SYSTEM USING LEARNING AGENTS

Peculiar features of systems that use mobile cloud computing have necessitated
a different look at recommender systems. The mobile cloud computing environment
consists of devices that use wireless data transmission technologies, among other
things. The use of such devices may result in a significant variability in terms
of available network communication bandwidth and – since they rely on battery
power – limit the possible time during which the service can be used. Therefore the
classic approach, in which the best services (available through cloud computing) are
recommended mainly on the basis of their ratings, must be modified. Recommender
systems should accommodate cases where using a service locally on a mobile device
is better than leveraging cloud computing.

1014 P. Nawrocki, B. Śnieżyński, J. Czyżewski

On the basis of prior analysis of existing solutions related to recommender sys-
tems and machine learning methods, in this paper we propose an innovative service
recommendation system that operates in a heterogeneous environment and takes
into account the context and employs learning agents.

The general concept of the system’s operation is presented in Figure 3. The
decision-making process recommending the location where the service can be per-
formed (through cloud computing or on a mobile device) incorporates two stages.
During the first stage, a recommendation request is processed by a classic recom-
mender system that chooses the cloud computing system available in which the
service can be performed best. The process that determines which cloud computing
system should be selected takes into account parameters such as, inter alia, the cost
of the service and previous ratings by users. In the first stage of implementation
(the scope of classic recommender systems), various solutions may be applied. The
choice of this solution is beyond the scope of this paper. During the second stage,
on the basis of the data collected and the device context (location, time, battery
level, movement of the device), the learning agent chooses where the service should
be performed – using the cloud computing system selected in the first stage or on
the mobile device. The agent should be aware of the fact that there are several
clouds with possibly different characteristics and therefore it should observe the
cloud selected in the first stage, allowing it to account for cloud characteristics in
the learned knowledge. The detailed structure of the recommender system developed
is presented in Figure 4.

Classic Recommender System

Service-oriented Context-aware
Recommender System

Recommendation Request

Mobile Cloud
Computing

Initial Recommendation

Figure 3. Processing the recommendation request is divided into two phases: classic rec-
ommendation, which is based on user opinions processed in a central system, and context-
based stage involving local learning on a mobile device using the service characteristics
observed

A user who wants to receive a recommendation concerning a certain service (e.g.
a video file processing service) sends a request to the Recommendation Engine (RE),
which is the main element of the novel solution developed by us. During the first
stage, the request is sent by the Processing Module (PM) to the classic recommender
system that selects the service performed by the best cloud computing system in its
opinion. In order to determine which cloud computing system is the best, various

Learning Agent for a Service-Oriented Context-Aware Recommender System 1015

parameters are taken into account, including the cost of performing the service and
the ratings given by previous users to the service (and the cloud computing system).
As a result of the operation of the classic recommender system, a single cloud com-
puting system and the video file processing service offered by it are indicated. In the
second stage, the PM uses information from various sensors present in the mobile
device (accelerometer, GPS module, light sensor, clock) to determine the context
in which the service is to be performed. The context, information about the cloud
computing system and the possibility to perform the service directly on the mobile
device constitute the basis on which the recommendation process using the Learn-
ing Module operates. Based on the data collected and training data obtained from
previous recommendations, information about which service should be selected, i.e.
where the video file processing service should be performed, is sent by the PM to the
user. The user, in turn, can express satisfaction or dissatisfaction after the service
has been rendered. This information may be taken into account by the PM and the
learning agent during the learning process and by the classic recommender system
in the rating of the service offered by the cloud computing system. The ratings
(user satisfaction or dissatisfaction) of service provision quality include a context
in which a given service was provided, i.e. among others: the communication tech-
nologies used (e.g. usage of WiFi, 3G or EDGE), the parameters of a given mobile
device and other information on where the service was provided: in a cloud or on
a mobile device. Adding the context to the service rating, allows a classic recom-
mender system to create a database of user ratings including information relating
to the environment in which the service was activated. Such a solution improves the
precision of the process for recommending services in a classic recommender system.
Examples of video file processing service ratings are presented in Figure 4 in the
form of stars.

During learning, two models are built. The first one is GKsucc – a classifier,
which allows to predict the successful category from O∪Act attributes. The second
one is GKct – a random forest model which is used to predict calctime from O∪Act.
The calctime is discretized into 5 equal ranges. As a result, GK = (GKsucc, GKct).

The learning agent only takes ct(a) into account in cost calculations (wb = wd =
0, wct = 1). Hence, the action is selected in the following way: first, GKsucc is used
to determine if for the task observed t and state s calculations will be successful
locally: successl = GKsucc(t, s, l) and using the cloud: successc = GKsucc(t, s, c).
Next, computation time is predicted for both resources: ctl = GKct(t, s, l), ctc =
GKct(t, s, c). If successl is true and successc is false, local execution a = l is selected.
Conversely, if successc is true and successl is false, cloud execution a = c is selected.
If both predictions are false, the action is randomized with uniform probability
distribution. If both predictions are true, the action is selected based on predicted
calculation time: if ctl > ctc the cloud is selected as the execution place, otherwise
local execution is chosen. If ctl = ctc, the action is selected randomly. The action
selected is returned by the PM as a recommendation in the second stage.

Recommendation divided into two stages – initial and subsequently using context
and learning mechanisms – makes it possible to account for the ratings given by users

1016 P. Nawrocki, B. Śnieżyński, J. Czyżewski

Recommendation Engine

Learning agent

Mobile Cloud
Computing

Date/
Time

Processing Module Training
Data

Generated
Knowledge

Recommendation Request

Recommendation

Learning Module

Training
Data

Problem

Answer

Mobile Cloud
Computing

Accelerometer
Light

sensor
GPS

User Satisfaction

Video File
Processing Service

Video File
Processing Service

Video File
Processing Service

Classic
Recommender

System

Initial
Recommendation

Figure 4. Service-oriented context-aware recommender system architecture

in connection with the performance of the service by a certain cloud computing
system. As a result, peculiar features of mobile devices and mobile cloud computing
systems are accommodated.

5 EXPERIMENTAL RESULTS

In this section, we describe experiments where the purpose was to check how our
novel solution performs in a real-life heterogeneous environment. We assume that
the first stage, i.e. the classic recommender system, is well tested and therefore we
have concentrated on testing the second stage, where we focused on estimating the
calculation time required for the task to be performed in a given location. Experi-
ments were performed using an application written especially for this purpose1.

Every experiment consists of a series of task packages being executed. Every task
package is a combination of selected task parameters and system state values. Each
test package involves measuring conversion time for the multimedia file in question
on the mobile device and using MCC for various file sizes (with the maximum file
size being 650 kB), five different conversion types and three network connection

1 Software may be downloaded from the following address: http://home.agh.edu.pl/
piter/resources/RecommenderSystem/software-v0.1.zip.

http://home.agh.edu.pl/piter/resources/RecommenderSystem/software-v0.1.zip
http://home.agh.edu.pl/piter/resources/RecommenderSystem/software-v0.1.zip

Learning Agent for a Service-Oriented Context-Aware Recommender System 1017

statuses (LTE/HSPA/EDGE) representing the context (adding other parameters to
the context is planned as a future work). Each package includes tasks that may
potentially run faster in the cloud (e.g. conversion while connected via LTE) as well
as tasks where local execution may be more beneficial in terms of computation time
(e.g. conversion while connected via EDGE). During the series of measurements
conducted, information is collected on conversion time and its result (task execution
success or failure). Examples (xO∪R∪Act) are stored in TD. After every task package
executed, the decision module initiates the learning process and builds the GKsucc

classifier based on the Näıve Bayes and GKct classifier based on random forest
model, which are used to process the task package in the next round. Learning
algorithms were selected during preliminary experiments and the best performance
criterion was applied. Numerical values of the time observed are grouped into seven
bins of equal frequency using unsupervised discretization. We have used Weka [33]
implementations of the classifiers with default values of all parameters. During
round n, the decision module uses the examples collected in rounds 1...n − 1 for
learning purposes. When the series is completed, TD and GK are cleared and the
next series is executed to collect statistical data. For every round, task package
execution time is measured. If task execution results in failure, task execution time
is set to the maximum successful execution time observed.

The experiment consisted of executing tests in series of ten rounds, which were
repeated eight times. The results of that experiment are shown in Table 1.

Round execution time (s) 1 2 3 4 5 6 7 8 9 10

Minimum 2 126 2 592 2 222 2 123 2 544 2 619 2 090 2 205 2 404 2 362
Maximum 7 847 7 753 8 593 6 963 4 289 5 417 5 257 6 947 5 188 5 720
Average 4 214 4 765 4 723 3 803 3 347 3 601 3 442 3 512 3 341 3 535

Table 1. Experiment results – task package execution time for ten subsequent rounds

As Table 1 demonstrates, the application of machine learning in making the de-
cision as to the location where the task should be performed (mobile device/MCC)
significantly increases execution speed for the tasks requested. The mean task exe-
cution time in subsequent rounds of tests using the knowledge gained as a result of
machine learning shows a downward trend. Figure 5 shows how task package calcu-
lation time changes in ten subsequent rounds. One may notice that after the initial
random round, time increases in round two. At this point, after a random round, the
system does not have sufficient knowledge about the environment and how tasks are
performed for each combination of system state values. As the system gains more
information, times drop notably until round 5 where average execution time reaches
its minimum. After that, the value does not change significantly, which means that
sufficient knowledge has been gathered by the system to perform optimally. Further
learning may cause overfitting and thus increase the execution time.

Figure 5 also presents the results of executing the entire task package in a single
location (in the cloud and locally). Experimental results show that the execution
time of multimedia file conversion services was significantly decreased and after three

1018 P. Nawrocki, B. Śnieżyński, J. Czyżewski

 0

 2000

 4000

 6000

 8000

 10000

 1 2 3 4 5 6 7 8 9 10

T
im

e
,s

Rounds

With recommender system
Cloud only
Local only

Figure 5. Average task package calculation time (triangles) and minimum/maximum val-
ues (circles) for ten subsequent rounds

model updates (rounds) it is lower than both single-location execution times. This
suggests that the autonomous context-based service optimization method, which we
have proposed, may be applied to improve Quality of Experience in real scenarios
as part of a Mobile Recommender System.

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 3 4 5 6 7 8 9 10

C
lo

u
d

 s
e
rv

ic
e
 e

x
e
cu

ti
o
n
s

Rounds

Figure 6. Average number of service executions in the cloud (triangles) and mini-
mum/maximum values (circles)

We have also checked how the location of executing the service (in the cloud or
locally) changes. Figure 6 presents the average numbers of times the multimedia file

Learning Agent for a Service-Oriented Context-Aware Recommender System 1019

conversion service was started within the cloud in subsequent rounds. The number
of all service calls in every round was 60. It can be noticed that, based on Figure 5
and Figure 6, shorter service execution times occur when most calls are executed on
the device. However, it should be remembered that executing the service locally (on
a mobile device) in a heterogeneous environment may result in a higher load on the
device and the resulting faster battery drain leading to a shorter device operation
time. Moreover, executing all services locally in all conditions results in a higher
total execution time (see Figure 5). This means that the agent has to learn the
execution strategy, which is not trivial.

It should be noted that the experiments were performed in a real-world MCC
environment (using Google App Engine) and using a real mobile network. As a re-
sult, we cannot control transmission delays or cloud load. Therefore it may happen
that for some tasks executed in the cloud the execution time is much higher than
the average.

To visualize the knowledge learned, we have applied the C4.5 algorithm to gen-
erate GKct from the training data collected by the agent in one of the series of
previous experiments. To make the knowledge more compact, the time observed
was discretized into three bins of equal frequency (with values FAST, MEDIUM,
SLOW). The accuracy of this model calculated using 10-fold cross validation is
81.6. The classifier is presented in Figure 7. The decision tree has 53 nodes. Part of
the knowledge can now be analyzed. In line 3 we see the leaf with FAST category,
which means that for small multimedia files, EDGE connection and local process-
ing the computation is fast. The prediction is correct for 35 examples fulfilling
these conditions and incorrect for three of them (see the numbers in parentheses).
For longer multimedia files and local execution of tasks 0-5 the processing is slow
(line 24). For such files, cloud execution and HSPA+ the connection time for task
number 0 is fast (line 51), while the time for the other tasks is medium (line 52). The
model can be further simplified by applying discretization (with equal frequency) to
all numerical attributes (task and file length as well). The learned decision tree is
presented in Figure 8. The accuracy decreases to 77.3, but the number of nodes is
much smaller (19). Therefore the entire classifier may be analyzed. In the first line,
all processing of small files is classified as fast (180 examples are classified correctly
and 22 incorrectly). The speed of processing medium files locally is medium (line 3).
The speed of processing medium files in the cloud depends on the connection type
and task number. For EDGE it is medium for tasks 0–7 (line 6) and slow for the
others (lines 7–8). For HSPA, HSPA+ and LTE connections the processing is fast
(lines 9–11). The local processing of large files is slow (line 13). The processing
of such files in the cloud is slow in the case of the EDGE connection (line 15) or
medium in the other cases (lines 16–18). Generally, the knowledge represented by
the decision trees is quite intuitive.

We have also checked the complexity of the learning process by measuring how
much time and battery it consumes. CPU energy consumption was measured by the
Power Tutor package [34] integrated with our project. Three learning algorithms
(C4.5, Random Forest and Näıve Bayes) were executed on the mobile device for 25,

1020 P. Nawrocki, B. Śnieżyński, J. Czyżewski

1. fileLength <= 61128
2. | connectionType = EDGE
3. | | engine = mobile: FAST (35/3)
4. | | engine = cloud
5. | | | task <= 5
6. | | | | task <= 0: FAST (6/1)
7. | | | | task > 0: SLOW (6)
8. | | | task > 5: MEDIUM (13/4)
9. | connectionType = HSPA: FAST (22)
10. | connectionType = LTE: FAST (60/1)
11. | connectionType = HSPA+: FAST (38/1)
12. fileLength > 61128
13. | fileLength <= 305530
14. | | engine = mobile: MEDIUM (117/34)
15. | | engine = cloud
16. | | | connectionType = EDGE
17. | | | | task <= 5: MEDIUM (11)
18. | | | | task > 5: SLOW (10/1)
19. | | | connectionType = HSPA: FAST (12/2)
20. | | | connectionType = LTE: FAST (18/2)
21. | | | connectionType = HSPA+: FAST (11/1)
22. | fileLength > 305530
23. | | engine = mobile
24. | | | task <= 5: SLOW (80/5)
25. | | | task > 5
26. | | | | fileLength <= 458566
27. | | | | | connectionType = EDGE: SLOW (25/12)
28. | | | | | connectionType = HSPA: SLOW (8/2)
29. | | | | | connectionType = LTE: MEDIUM (18/8)
30. | | | | | connectionType = HSPA+: MEDIUM (9/1)
31. | | | | fileLength > 458566: SLOW (53/11)
32. | | engine = cloud
33. | | | connectionType = EDGE
34. | | | | task <= 0
35. | | | | | fileLength <= 458566: MEDIUM (5)
36. | | | | | fileLength > 458566: SLOW (8)
37. | | | | task > 0: SLOW (39/1)
38. | | | connectionType = HSPA
39. | | | | task <= 0: FAST (5)
40. | | | | task > 0: MEDIUM (18/3)
41. | | | connectionType = LTE
42. | | | | task <= 0: FAST (10)
43. | | | | task > 0
44. | | | | | fileLength <= 458566
45. | | | | | | task <= 10
46. | | | | | | | task <= 5: MEDIUM (2)
47. | | | | | | | task > 5: FAST (6/1)
48. | | | | | | task > 10: MEDIUM (12/2)
49. | | | | | fileLength > 458566: MEDIUM (27/2)
50. | | | connectionType = HSPA+
51. | | | | task <= 0: FAST (6)
52. | | | | task > 0: MEDIUM (27/6)

Figure 7. Classifier predicting the calculation time discretized into 3 ranges and learned by
the C4.5 algorithm (the numbers of examples covered by every leaf with correct/incorrect
predictions are stated in parentheses)

Learning Agent for a Service-Oriented Context-Aware Recommender System 1021

1. fileLength = small: FAST (180/22)
2. fileLength = medium
3. | engine = mobile: MEDIUM (117/34)
4. | engine = cloud
5. | | connectionType = EDGE
6. | | | task = 0-7: MEDIUM (11)
7. | | | task = 8-20: SLOW (7)
8. | | | task = 21-25: SLOW (3/1)
9. | | connectionType = HSPA: FAST (12/2)
10. | | connectionType = LTE: FAST (18/2)
11. | | connectionType = HSPA+: FAST (11/1)
12. fileLength = large
13. | engine = mobile: SLOW (193/48)
14. | engine = cloud
15. | | connectionType = EDGE: SLOW (52/6)
16. | | connectionType = HSPA: MEDIUM (23/8)
17. | | connectionType = LTE: MEDIUM (57/19)
18. | | connectionType = HSPA+: MEDIUM (33/12)

Figure 8. Classifier predicting the calculation time learned by the C4.5 algorithm, with
all attributes discretized into 3 ranges (the numbers of examples covered by every leaf
with correct/incorrect predictions are stated in parentheses)

50, 75 and 100 % of the training data collected in one of the previous experiments,
which consisted of 720 examples. It was repeated 100 times. Average execution
time and power consumption are presented in Tables 2, 3 and 4. The lowest learning
time and energy consumption were observed for the Näıve Bayes algorithm and the
highest values were for Random Forest. Values in both sets increase when more
training examples are processed but remain acceptable in all cases. Learning time
is well below one second with the only exception of the Random Forest, for which
the average learning time is about 1.2 seconds. Energy consumption for all learning
algorithms is very low (below 0.06 % of battery capacity).

Where experience is collected for a long time, multiple examples may be stored
in the Training Data and as a result, the learning time and energy consumption
may become excessive. In this case, the oldest examples can be removed to save
time and energy.

Number
of examples

Time (ms) Energy (% of the battery)
min max average min max average

181 60.8 137.6 77.71 0.0001 0.0008 0.0003

361 134.8 163.1 146.37 0.0006 0.0017 0.0010

541 198.4 212.6 206.2 0.0015 0.0022 0.0018

720 303.6 339.1 324.65 0.0030 0.0062 0.0045

Table 2. Execution time and energy consumption of the C4.5 machine learning algorithm
executed on the mobile device

1022 P. Nawrocki, B. Śnieżyński, J. Czyżewski

Number
of examples

Time (ms) Energy (% of the battery)
min max average min max average

181 277.4 328.9 299.24 0.0024 0.0051 0.0036

361 554.1 598.7 576.65 0.0108 0.0170 0.0144

541 846.4 886.7 871.33 0.0262 0.0349 0.0312

720 1177.6 1229.4 1197.65 0.0509 0.0670 0.0592

Table 3. Execution time and energy consumption of the Random Forest machine learning
algorithm executed on the mobile device

Number
of examples

Time (ms) Energy (% of the battery)
min max average min max average

181 32.6 83.2 42.15 0.00006 0.00050 0.00018

361 57.7 67.3 64.03 0.00021 0.00039 0.00030

541 87 109.8 96.29 0.00032 0.00085 0.00052

720 119.8 174.6 137.38 0.00045 0.00198 0.00092

Table 4. Execution time and energy consumption of the Näıve Bayes machine learning
algorithm executed on the mobile device

6 CONCLUSIONS

In this research, we have investigated recommender systems and proposed a novel
solution, which includes a formal model of agent-based architecture using super-
vised learning designed for service recommendation in a heterogeneous environ-
ment. The experiments related to recommending video file processing services
have demonstrated that the main objective of our studies has been achieved and
after the learning process, the optimal service in the MCC environment is se-
lected.

The results demonstrate a statistically significant decrease in the time required
for the execution of conversion services owing to the automatic selection (using
learning methods) of the location (mobile device or cloud) where the conversion
of multimedia data is to be performed. The learning algorithm was executed by
the learning agent autonomously and online on the mobile device. As a result,
agent strategy was updated and recommendations were improved. We have also
measured the time taken, and the energy consumed, by the learning process exe-
cuted on the mobile device. The time is acceptable and energy consumption is very
low.

Further research in this area could involve more extensive testing of both recom-
mendation stages for different types of services, taking into account battery usage
and context data from the wide range of sensors installed in mobile devices such
as GPS modules, accelerometers and light sensors. We also plan to apply other
knowledge representation techniques and learning algorithms, e.g. neural networks
or support vector machines.

Learning Agent for a Service-Oriented Context-Aware Recommender System 1023

Acknowledgements

The research presented in this paper was supported by the Polish Ministry of Sci-
ence and Higher Education under AGH University of Science and Technology Grant
11.11.230.124. We would like to thank Karol Bukowski for assistance with the im-
plementation and testing.

REFERENCES

[1] Abbar, S.—Bouzeghoub, M.—Lopez, S.: Context-Aware Recommender Sys-
tems: A Service-Oriented Approach. Proceedings of the 3rd International Workshop
on Personalized Access, Profile Management and Context Awareness in Databases
(PersDB), in conjunction with the International Conference on Very Large Data Bases
(VLDB), Lyon, France, 2009, pp. 1–6.

[2] Abidar, R.—Moummadi, K.—Medromi, H.: Mobile Device and Multi
Agent Systems: An Implemented Platform of Real Time Data Communication
and Synchronization. Proceedings of the International Conference on Multime-
dia Computing and Systems (ICMCS), Ouarzazate, Morocco, 2011, pp. 1–6,
doi:10.1109/ICMCS.2011.5945595.

[3] Anagnostopoulos, T.—Anagnostopoulos, C.—Hadjiefthymiades, S.: Mo-
bility Prediction Based on Machine Learning. Proceedings of the 12th IEEE Interna-
tional Conference on Mobile Data Management, Lulea, Sweden, 2011, pp. 27–30, doi:
10.1109/MDM.2011.60.

[4] Angin, P.—Bhargava, B.: An Agent-Based Optimization Framework for Mobile-
Cloud Computing. Journal of Wireless Mobile Networks, Ubiquitous Computing, and
Dependable Applications (JoWUA), Vol. 4, 2013, No. 2, pp. 1–17.

[5] Bachara, P.—Brzoza-Woch, R.—D lugopolski, J.—Nawrocki, P.—
Zaborowski, W.—Zieliński, K.—Ruta, A.: Construction of Hardware Compo-
nents for the Internet of Services. Computing and Informatics, Vol. 34, 2015, No. 4,
pp. 911–940.

[6] Balakrishnan, P.—Tham, C. K.: Energy-Efficient Mapping and Scheduling of
Task Interaction Graphs for Code Offloading in Mobile Cloud Computing. Proceed-
ings of the 6th IEEE/ACM International Conference on Utility and Cloud Computing
(UCC), Dresden, Germany, 2013, pp. 34–41, doi: 10.1109/UCC.2013.23.

[7] Bouneffouf, D.: Improving Adaptation of Ubiquitous Recommander Systems by
Using Reinforcement Learning And Collaborative Filtering. Computing Research
Repository (CoRR), 2013, arXiv:1303.2308.

[8] Braunhofer, M.—Elahi, M.—Ricci, F.: STS: A Context-Aware Mobile Rec-
ommender System for Places of Interest. In: Cantador, I., Chi, M. (Eds.): Pro-
ceedings of the 22nd Conference on User Modeling, Adaptation, and Personalization
Co-Located with the 22nd Conference on User Modeling, Adaptation, and Personal-
ization (UMAP) – Posters, Demos, Late-Breaking Results and Workshop, Aalborg,
Denmark, 2014, pp. 75–80.

1024 P. Nawrocki, B. Śnieżyński, J. Czyżewski

[9] Brzoza-Woch, R.—D lugopolski, J.—Nawrocki, P.—Zieliński, K.: Applica-
tion of FPGA Integrated Circuits for Acquisition and Providing Information in Com-
pliance with Web Service Model. Przeglad Elektrotechniczny, Vol. 89, 2013, No. 7,
pp. 340–347.

[10] Brzoza-Woch, R.—Czekierda, L.—D lugopolski, J.—Nawrocki, P.—
Psiuk, M.—Szyd lo, T.—Zaborowski, W.—Zieliński, K.—Żmuda, D.: Im-
plementation, Deployment and Governance of SOA Adaptive Systems. In: Am-
broszkiewicz, S., Brzeziński, J., Cellary, W., Grzech, A., Zieliński, K. (Eds.): Ad-
vanced SOA Tools and Applications, Springer Berlin/Heidelberg, 2014, pp. 261–323,
doi:10.1007/978-3-642-38957-3 6.

[11] Brzoza-Woch, R.—Nawrocki, P.: FPGA-Based Web Services – Infinite Poten-
tial or a Road to Nowhere? IEEE Internet Computing, Vol. 20, 2016, No. 1, pp. 44–51,
doi: 10.1109/MIC.2015.23.

[12] Colombo-Mendoza, L. O.—Valencia-Garćıa, R.—Rodŕıguez-Gonzá-
lez, A.—Alor-Hernández, G.—Samper-Zapater, J. J.: Recommetz:
A Context-Aware Knowledge-Based Mobile Recommender System for Movie
Showtimes. Expert Systems with Applications, Vol. 42, 2015, No. 3, pp. 1202–1222,
doi:10.1016/j.eswa.2014.09.016.

[13] Czarnowski, I.—Jedrzejowicz, P.: Machine Learning and Multiagent Systems
as Interrelated Technologies. In: Czarnowski, I., Jedrzejowicz, P., Kacprzyk, J.
(Eds.): Agent-Based Optimization. Studies in Computational Intelligence, Springer
Berlin/Heidelberg, Vol. 456, 2013, pp. 1–28, doi:10.1007/978-3-642-34097-0 1.

[14] Eom, H.—Figueiredo, R.—Cai, H.—Zhang, Y.—Huang, G.: MALMOS: Ma-
chine Learning-Based Mobile Offloading Scheduler with Online Training. Proceed-
ings of the 3rd IEEE International Conference on Mobile Cloud Computing, Ser-
vices, and Engineering (MobileCloud), San Francisco, CA, USA, 2015, pp. 51-60, doi:
10.1109/MobileCloud.2015.19.

[15] Kosinski, J.—Nawrocki, P.—Radziszowski, D.—Zielinski, K.—Zielin-
ski, S.—Przybylski, G.—Wnek, P.: SLA Monitoring and Management Frame-
work for Telecommunication Services. In: Bi, J., Chin, K., Dini, C., Lehmann,
L., Pheanis, D. C. (Eds.): Proceedings of the 4th International Conference on Net-
working and Services (ICNS), Gosier, Guadeloupe, 2008, IEEE Computer Society,
pp. 170–175, doi:10.1109/ICNS.2008.31.

[16] Nawrocki, P.—Mamla, A.: Distributed Web Service Repository. Computer Scien-
ce, Vol. 16, 2015, No. 1, pp. 55–73, doi:10.7494/csci.2015.16.1.55.

[17] Nawrocki, P.—Jakubowski, M.—Godzik, T.: Analysis of Notification Meth-
ods with Respect to Mobile System Characteristics. Proceedings of the Federated
Conference on Computer Science and Information Systems, Lodz, Poland, 2015,
pp. 1183–1189, doi: 10.15439/2015F6.

[18] Panait, L.—Luke, S.: Cooperative Multi-Agent Learning: The State of the Art.
Autonomous Agents and Multi-Agent Systems, Vol. 11, 2005, No. 3, pp. 387–434.

[19] Resnick, P.—Varian, H. R.: Recommender Systems. Communications of the
ACM, Vol. 40, 1997, No. 3, pp. 56–58, doi:10.1145/245108.245121.

Learning Agent for a Service-Oriented Context-Aware Recommender System 1025

[20] Ricci, F.: Mobile Recommender Systems. Information Technology and Tourism,
Vol. 12, 2010, No. 3, pp. 205–231, doi:10.3727/109830511X12978702284390.

[21] Sankaranarayanan, S.—Cuffe, K.: Intelligent Agent Based Scheduling of Stu-
dent Appointment-Android Environment. Proceedings of the 5th International Con-
ference on Computer Sciences and Convergence Information Technology (ICCIT),
Seoul, Korea, 2010, pp. 46–51, doi:10.1109/ICCIT.2010.5711027.

[22] Shabtai, A.—Elovici, Y.: Applying Behavioral Detection on Android-Based De-
vices. In: Cai, Y., Magedanz, T., Li, M., Xia, J., Giannelli, C. (Eds.): Mobile Wire-
less Middleware, Operating Systems, and Applications. Lecture Notes of the Insti-
tute for Computer Sciences, Social Informatics and Telecommunications Engineering,
Springer Berlin/Heidelberg, Vol. 48, 2010, pp. 235–249, doi:10.1007/978-3-642-17758-
3 17.

[23] Shi, C.—Pandurangan, P.—Ni, K.—Yang, J.—Ammar, M.—Naik, M.—
Zegura, E.: IC-Cloud: Computation Offloading to an Intermittently-Connected
Cloud. Technical Report GT-CS-13-01, Georgia Institute of Technology, USA, 2013.

[24] Singh, D.—Sardina, S.—Padgham, L.—Airiau, S.: Learning Context Condi-
tions for BDI Plan Selection. Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS) – Volume 1, International
Foundation for Autonomous Agents and Multiagent Systems, Toronto, Canada, 2010,
pp. 325–332.

[25] Śnieżyński, B.—Dajda, J.: Comparison of Strategy Learning Methods in Farmer-
Pest Problem for Various Complexity Environments without Delays. Journal of Com-
putational Science, Vol. 4, 2013, No. 3, pp. 144–151.

[26] Śnieżyński, B.: Agent Strategy Generation by Rule Induction. Computing and
Informatics, Vol. 32, 2013, No. 5, pp. 1055–1078.

[27] Śnieżyński, B.: Comparison of Reinforcement and Supervised Learning Methods in
Farmer-Pest Problem with Delayed Rewards. In: Badica, C., Nguyen, N. T., Brezo-
van, M. (Eds.): Computational Collective Intelligence. Lecture Notes in Computer
Science, Springer Berlin/Heidelberg, Vol. 8083, 2013, pp. 399–408, doi:10.1007/978-
3-642-40495-5 40.

[28] Śnieżyński, B.: Agent-Based Adaptation System for Service-Oriented Architectures
Using Supervised Learning. Procedia Computer Science, Vol. 29, 2014, pp. 1057–1067

[29] Sun, Z.—Han, L.—Huang. W.—Wang, X.—Zeng, X.—Wang, M.—Yan, H.:
Recommender Systems Based on Social Networks. Journal of Systems and Software,
Vol. 99, 2015, pp. 109–119, doi:10.1016/j.jss.2014.09.019.

[30] Tripathy, A.—Patra, A.—Mohan, S.—Mahapatra, R.: Designing a Col-
laborative Filtering Recommender on the Single Chip Cloud Computer. Proceed-
ings of the International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC), Salt Lake City, UT, USA, 2012, pp. 838–847, doi:
10.1109/SC.Companion.2012.118.

[31] Tuyls, K.—Weiss, G.: Multiagent Learning: Basics, Challenges, and Prospects.
AI Magazine, Vol. 33, 2012, No. 3, pp. 41–52.

1026 P. Nawrocki, B. Śnieżyński, J. Czyżewski

[32] Sensoy, M.—Vasconcelos, W. W.—Norman, T. J.—Sycara, K.: Reasoning
Support for Flexible Task Resourcing. Expert Systems with Applications, Vol. 39,
2012, No. 2, pp. 1998–2010, doi:10.1016/j.eswa.2011.08.041.

[33] Witten, I. H.—Frank, E.: Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

[34] Zhang, L.—Tiwana, B.—Qian, Z.—Wang, Z.—Dick, R. P.—Mao, Z. M.—
Yang, L.: Accurate Online Power Estimation and Automatic Battery Behav-
ior Based Power Model Generation for Smartphones. Proceedings of the 8th

IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and
System Synthesis (CODES/ISSS), ACM, New York, NY, USA, pp. 105–114, doi:
10.1145/1878961.1878982.

Piotr Nawrocki is Assistant Professor in the Department of
Computer Science at the AGH University of Science and Tech-
nology, Poland. His research interests include distributed sys-
tems, computer networks, mobile systems, service-oriented ar-
chitectures and mobile cloud computing. He received his Ph.D.
degree in computer science from AGH University of Science and
Technology in Krakow, Poland.

Bart lomiej �Snie_zy�nski received his Ph.D. degree in computer
science in 2004 from AGH University of Science and Technology
in Krakow, Poland. In 2004 he worked as Postdoctoral Fellow
under the supervision of Professor R. S. Michalski at the Machine
Learning and Inference Laboratory, George Mason University,
Fairfax, VA, USA. Currently, he is Assistant Professor in the
Department of Computer Science at AGH. His research interests
include machine learning, multi-agent systems, and knowledge
engineering.

Jakub Czy_zewski is computer science graduate student at the
AGH University of Science and Technology in Krakow, Poland.
His fields of interests include web technologies, machine learning
and cloud computing.

