
Computing and Informatics, Vol. 35, 2016, 586–614

DATA DE-DUPLICATION WITH ADAPTIVE
CHUNKING AND ACCELERATED MODIFICATION
IDENTIFYING

Xingjun Zhang, Guofeng Zhu

Department of Computer Science and Technology
Xi’an Jiaotong University, Xi’an, 710049, China
e-mail: xjzhang@mail.xjtu.edu.cn, startzgf168@126.com

Endong Wang

Inspur(Beijing) Electronic Information Industry Co. Ltd.
100085, Beijing, China
e-mail: wed@inspur.com

Scott Fowler

Department of Science and Technology
Linköping University, Campus Norrköping, SE-601 74, Sweden
e-mail: scott.fowler@liu.se

Xiaoshe Dong

Department of Computer Science and Technology
Xi’an Jiaotong University, Xi’an, 710049, China
e-mail: xsdong@mail.xjtu.edu.cn

Abstract. The data de-duplication system not only pursues the high de-duplication
rate, which refers to the aggregate reduction in storage requirements gained from
de-duplication, but also the de-duplication speed. To solve the problem of random
parameter-setting brought by Content Defined Chunking (CDC), a self-adaptive
data chunking algorithm is proposed. The algorithm improves the de-duplication
rate by conducting pre-processing de-duplication to the samples of the classified files

Data De-Duplication Acceleration by FastCDC Algorithm 587

and then selecting the appropriate algorithm parameters. Meanwhile, FastCDC,
a kind of content-based fast data chunking algorithm, is adopted to solve the
problem of low de-duplication speed of CDC. By introducing de-duplication fac-
tor and acceleration factor, FastCDC can significantly boost de-duplication speed
while not sacrificing the de-duplication rate through adjusting these two parame-
ters. The experimental results demonstrate that our proposed method can improve
the de-duplication rate by about 5 %, while FastCDC can obtain the increase of
de-duplication speed by 50 % to 200 % only at the expense of less than 3 % de-
duplication rate loss.

Keywords: Data de-duplication, self-adaptive, FastCDC

1 INTRODUCTION

The big data [1, 2] have the following features: volume, variety, value and velocity.
The dataset is so huge that it is impossible to acquire, monitor, manage or handle
within tolerable time by adopting common software tool. Therefore, searching for
the way to manage and store these huge data is a problem that needs to be addressed.

The common solutions mainly include distributed storage (Hadoop), NoSQL
data base (Cassandra), data compression technique and the latest data de-dup tech-
nology, in which all these methods used together for distributed storage and man-
agement in order to reduce the data volume. The current popular way to achieve
distributed storage and management is to apply the MapReduce [3]. MapReduce
breaks the task down into many tasks, all of which are tackled by several proces-
sors, and all the processing results are eventually integrated into a final result. The
most distinctive feature of MapReduce is that it can improve the parallel processing
ability of the system so as to handle big data more effectively. In terms of reducing
data volume, it is chiefly achieved by data compression technique and data de-dup
technology through eliminating the redundant data. Data de-dup technology gen-
erally includes file-oriented technique and chunk-oriented technique. The former,
also called single instance storage [4, 5, 6], checks whether the files are identical
according to their metadata and then stores the distinct ones. The later, including
Fixed-Sized Partitioning (FSP) [7], CDC [7, 8, 9, 10, 11], SW [12] and FingerDiff-
based technique [7], breaks the file into chunks, computes the hash of each chunk
and detects whether the hash exists in the hash table to judge whether the chunk
data are reduplicate and then stores the single chunk.

In the environment with a large amount of redundant data (i.e. E-mail system,
backup application and data migration), data de-dup technology is capable of ex-
tremely saving storage space and network bandwidth. However, a huge amount of
data results in a rapidly increasing need of storage space and the problem to manage
big data. Based on our previous work [14], in this paper, firstly, a new backup system
architecture based on data de-dup technology is proposed on the basis of MapReduce

588 X. Zhang, G. Zhu, E. Wang, S. Fowler, X. Dong

mechanism, to meet the needs that backup application imposes on storage system in
the big data era; secondly, two novel de-dup algorithms are put forward to quickly
identify redundant data and effectively eliminate redundance; thirdly, a reliability
mechanism of data and a scalability mechanism of system are presented to ensure
system reliability and scalability; lastly, according to the specific dataset, test and
analysis are conducted to the two novel de-dup algorithms.

2 BACKUP WITH DATA DE-DUPLICATION

2.1 System Architecture

Traditional backup system architecture based on data de-dup technology [13, 14, 15,
16, 19], mostly adopts C/S type, with the client generating backup data and forming
backup task, while the server is storing and managing the data. The de-duplication
methods during backup process can be classified into two types: one is on-line de-
dup, operating during the data storage process which saves network bandwidth and
storage space but occupies more CPU and spends more time on backup window.
The other is post-processing de-dup, adopting some leisure de-dup after storing
which does not occupy much CPU and spends less time on backup window but
needs extra storage space, resulting in greater usage of the network bandwidth.
However, no matter which method is adopted, backup data is generally stored and
managed collectively in the traditional system architecture. As the data volume
grows, the traditional system architecture cannot adapt to the big data application
environment from the perspectives of either system performance or scalability.

Therefore, based on the traditional de-dup system architecture this paper pre-
sents a new one by reference to MapReduce, employing the methods of distributed
storage and management. Figure 1 shows this system is composed of a backup
client and server as well as several storage nodes. The backup client is mainly
responsible for customizing backup tasks, recording their information, conducting
backup, breaking files down into chunks, computing chunks’ hash, etc. The backup
server is in charge of managing metadata and storage nodes. The metadata includes
the records of backup task ID, backup client host name, backup execution time,
the number of files and backup data size and de-dup file metadata containing de-
dup file ID, its number of chunks, and the hash sequence of each file. Storage
node management, responsible for the automatic distribution of storage nodes of
de-dup data, registers all storage nodes’ information and maintains a global hash
routing table. Storage nodes are responsible for de-dup detection and storage of
de-dup data. Each storage node maintains a local hash table for keeping a record of
the information of the corresponding chunk metadata (mainly including the hash,
location, chunk length, number of chunk citations, etc.). The local hash table is used
for querying and conducting the de-duplication detection to the hash value sent by
the backup client.

Data De-Duplication Acceleration by FastCDC Algorithm 589

Control flow

Data flow

Legend:

Backup Data

Backup Client

Chunking Hashing

Register Backup

Metadata

Backup

Process

Hash Index

S

t

o

r

a

g

e

N

o

d

e

Chunk Data

Hash Index

S

t

o

r

a

g

e

N

o

d

e

Chunk Data

Hash Index

S

t

o

r

a

g

e

N

o

d

e

Chunk Data

…

Backup Server

Metadata

Management

Backup Job Info

D

e

d

u

p

F

i

l

e

I

n

f

o

D

e

d

u

p

F

i

l

e

I

n

f

o

D

e

d

u

p

F

i

l

e

I

n

f

o

…

Storage Node

Management

Routing Table

Storage Node

Info

Files Files Files

…

Figure 1. System architecture

2.2 Data Organization

The metadata of backup tasks, de-dup files and chunks should be stored to realize
the functions of backup, plus do a restoration based on data de-dup in backup de-dup
system. The first type is stored both in backup client and server; the second is stored
in server and and the last is only stored in storage node. As Figure 2 shows, the
backup task information mainly includes the the backup task’s ID Tname, the cre-
ation time of backup task Btime, the backup client hostname Bclienthost, the backup
source files Bsrcpath and the number of files contained by current task Bfilenums.
De-dup file information records the metadata of de-dup file corresponding to the
relevant backup tasks including the number of chunks broken down from the de-dup
file, the chunk length and hash value. This information is stored by the Berkeley
database belonging to the key-value db with “key” referring to the de-dup file ID
BackupJobNum and “value” the de-dup file metadata. Chunk metadata, stored in
hash table, is scattered in a number of storage nodes, each of which maintains a local
hash table. Each table records the basic metadata of chunk corresponding to the
relevant local storage node and this metadata mainly includes hash (Hash1, Hash2,
etc.), chunk location Loc(C), chunk length Len and number of citations References.

590 X. Zhang, G. Zhu, E. Wang, S. Fowler, X. Dong

File1

BackupJob Num

File2 File3

…

FileK

Hashy Len Loc(Cy)

Hash1 Len Loc(C1)

Hash2 Len Loc(C2)

……

Hash Table

Hashx Len Loc(Cx)

Hash3 Len Loc(C3)

Hashz Len Loc(Cz)

……

Hash Table

Chunks

Cy C1 C2 Cn

…

Chunks

Cx C3 Cz Ct

…

Tname Btime Bclienthost Bsrcpath Bfilenums

Tname Btime Bclienthost Bsrcpath Bfilenums

……

BackupTaskDB

Hash1 Hash2 Hash3

…

Hashk

Hashx Hashy Hashz

…

HashN

Tname Btime Bclienthost Bsrcpath Bfilenums

……

……

Figure 2. Data organization

The hash table adopts the management of the secondary index structure to detect
quickly whether the hash is existent or not.

2.3 Process of Backup and Restoration

Since the de-dup of online source end is used, the backup data should be partitioned
and the hash of all the chunks in the backup client computed. Next the backup server
conducts the management of the backup and de-dup metadata. After completing
these tasks, the storage node carries out the de-dup detection. The backup client
only transmits chunk data whose hash value does not exist, which, therefore, can
save network bandwidth and storage space simultaneously. Next the specific process
of backup and restoration will be introduced in detail.

2.3.1 Backup

Figure 3 shows there are nine steps in the whole de-dup process: firstly, backup
client customizes a backup task, stores the record, and then sends it to backup
server; secondly, the server registers backup task and returns the result; thirdly,
the client starts to backup by breaking down file into chunks and computing hash
and then sends de-dup file metadata FileInfo as well as the corresponding hash

Data De-Duplication Acceleration by FastCDC Algorithm 591

Backup Client Backup Server

Storage Node

Customize

Backup Task

Register Backup

Task

Backup Files

Chunking&Hashing

Send Fileinfo &

Hash Sequence

Record

Dedupfile Metadata

Send and Route

Hash Sequence

Search

Hash Table

Send

ChunkData Sequence

Update Hash Table&

Store ChunkData

Backup

Task

FileInfo&

HashSeq

…

…

exists?

N

ChunkData

Seq

…

HashSeq

ChunkData

Seq

Dedup Proxy

1

2

3

4

5

6

7

8

Figure 3. Backup process

sequence HashSeq to the server; fourthly, the server records de-dup file metadata
and then based on the hash routing table sends the corresponding hash sequence
to the relevant storage node; meanwhile, after having received the hash sequence,
the storage node conducts the de-dup detection to it by searching hash table and
returns the detection result to the server; afterwards, on the basis of the returned
result, the server forms a new sequence for hashes (Hash Seq) that do not exist and
return them to the client; after that, based on the received hash sequence, the client
sends the corresponding chunk data ChunkData Seq to the server; then the de-dup
proxy inquires the hash routing table and sends the chunk to the corresponding
storage node; lastly, the storage node updates the local hash table and stores the
chunk data.

2.3.2 Restoration

The restoration process is the inverse process of the backup. The former can be
obtained based on the latter: the client user selects the particular backup task
required to be restored and then sends the request to the server. The server inquires
the de-dup file information based on the records of the backup tasks and then attains
the corresponding chunk information and hash sequence by referring to the de-dup
file information. After that, on the basis of the hash routing table, the chunk is read
from the corresponding storage node, which is returned to the client.

592 X. Zhang, G. Zhu, E. Wang, S. Fowler, X. Dong

3 OPTIMIZATION WITH ADAPTIVE CHUNKING
AND FAST MODIFICATION IDENTIFYING

The data de-dup technology [18] is thought to include the technique of the identical
and similar data detection and coding. Since the identical data detection is the
research focus of this paper, the similar data detection and the coding technique
will not be discussed.

The identical data detection technique can be classified into three types: the
file-oriented de-dup, the chunk-oriented FSP, variable length de-dup, and the byte-
oriented de-dup. The first type conducts de-dup to the whole file by comparing
the metadata of files and only stores the single instance from many identical files
which will be automatically mapped into the single instance by pointer. The merit
of this de-dup type lies in its high de-dup speed, which is suitable in the application
environment with large number of small and repeated files, such as file system and
e-mail system. The third type, that is, the byte-oriented de-dup, with its high de-
dup rate but low speed, conducts de-dup by comparing the bytes. Particularly, as
the data volume grows, its scalability and applicability become terrible. The type
can possess not only satisfactory de-dup rate but also high speed. Therefore, this
de-dup type is widely employed in various systems.

The chunk-oriented de-dup [7] includes FSP, CDC, FingerDiff-based variable
length and Sliding-window Chunking.

FSP [7, 18] breaks file stream down into chunks with a fixed size, computes the
chunk hash and then by searching the hash table for the de-dup detection; only the
chunks whose hashes don’t exist are stored by the storage node.

CDC [7, 18] works with a fixed-size window sliding on the file stream by byte
and the weak hash in the window continuously computed; meanwhile, the weak hash
is detected as to whether meets the predefined conditions; if yes, record the offset
in the file stream and set a breakpoint for it; if not, continue the window sliding.
When the two breakpoints are found, take the data between the two points to form
a chunk, compute its strong hash, conduct the de-dup detection to it and then only
store the chunks whose hashes don’t exist as well as update the hash table.

FingerDiff-based de-dup [7, 18] is an improvement on the basis of CDC for
solving the metadata expansion. The backup file stream is firstly partitioned by
CDC and then the chunks are combined into a big chunk according to the preset
number of chunks; after that, the chunk hash is computed and then experiences the
de-dup detection to see whether the chunks are reduplicate or not; if reduplicate,
delete the reduplicate chunks and if not, break down the big chunk into smaller
ones until the smallest single chunk is found and then store it with the rest remain
combined.

SW de-dup technology [7, 18] incorporates the merits of FSP and CDC. The
main idea is similar to that of CDC, that is to say, a fixed-size window slides on
the file stream by byte and with every single sliding, for data in the window its
checksum is computed by rsync and then the first matching detection is conducted;
if it is matching, adopt the strict SHA-1 Hash function to compute its fingerprint

Data De-Duplication Acceleration by FastCDC Algorithm 593

and then another de-dup detection is conducted and if it is reduplicate this time,
after recording it, the sliding window skips the reduplicate chunks and moves on
while at the same time the partitioned chunks and the fragment chunks arising
before reduplicate chunks should be recorded and stored; if it is not matching, then
the window continues sliding and when it is still mismatching after a window-length
sliding, computes the checksum and hash value of the data in the window and then
stores the chunk.

The advantage of FSP is high de-dup speed, while the disadvantage is its sensi-
tivity to the modified data (in other words, it cannot effectively detect the redundant
data once the data are modified), hence its low de-dup rate. Meanwhile, a large num-
ber of metadata will be generated if the data are broken down into smaller chunks.
However, CDC can effectively find the redundant data from the modified data and
so can get the high de-dup rate, but its disadvantage is low de-dup speed due to
its computations of hash frequently in the process of sliding window and it may
also generate a large quantity of metadata. The advantage of FingerDiff-based tech-
nique is high de-dup rate and it also decreases the metadata dramatically; however,
it is too complex to accomplish besides its low de-dup speed. The advantage of
sliding-window chunking is high de-dup rate because it breaks down files into fixed
size which can be easily managed, so it is suitable for fine-grained matching [9].
However, it is too complex with low de-dup speed and tends to generate fragments
during the de-dup process.

CDC is the most widely used algorithm in the de-dup system. The TTTD algo-
rithm introduced in [30] is an improvement and optimization over CDC algorithm.
It restricts the range of chunk length by setting two thresholds and increases the
probability of boundary point matching by setting two divisors, both of which aim
at increasing the de-dup rate and decreasing the network transmission consumption.
However, corresponding algorithm is adopted according to different environment; for
example, TTTD is adopted to obtain higher de-dup rate in the environment with
large number of modified files and while SIS or FSP is adopted to get faster de-dup
speed in the environment with large number of identical files but few modified files.
In order to have the TTTD algorithm further improved from the perspectives of
de-dup speed and rate, a novel self-adaptive CDC algorithm to improve the de-dup
rate and a novel FastCDC algorithm to accelerate the de-dup speed based on the
TTTD is proposed.

3.1 Adaptive Chunking

There is a preset condition in CDC [30] used to define the chunk breakpoint of file.
Given a sequence S = s1, s2, . . . , sn, with h representing a fingerprint function and
l a window length, there is a D-match at k if, for some pre-determined r < D,

h(W) mod D = r (1)

594 X. Zhang, G. Zhu, E. Wang, S. Fowler, X. Dong

where W = sk−l+1, sk−l+2, . . . , sk is the subsequence of length l preceding the position
k in S. All chunk boundaries that meet the above condition will be found when the
window slides on the S sequence by byte. The value of residue r plays no role in
our analysis and we use the value D− 1 in our algorithm for consistency. However,
the value of D determines the chunk length indirectly. The bigger D is, the lower
the matching probability is and the longer the average chunk will be; and when
the above conditions are opposite, the results are opposite too. Meanwhile, the
de-dup rate is determined by the matching situation in condition 1. It is not true
that the smaller or bigger D is better. We must find an appropriate value of D
in correspondence with different file types and content to gain a high de-dup rate.
However, it is still a challenge to find the proper value of D with the uncertain data
in the backup process.

Backup

Job File

Set

HashTable

Chunks

Update

Store

Lookup

Chunking

&Hashing

Detecting

Deduplication

Chunking

&Hashing

Detecting

Count

Dup-Chunk

Select

Optimum

B-matching

Condition Set

Pre-processing

Dedup

Select One

Sampling

Figure 4. Self-adaptive CDC

Based on the above analysis, a novel self-adaptive CDC algorithm is proposed to
select the proper value of D to increase the de-dup rate. As Figure 4 shows, firstly,
the backup job file set is classified by file type and then stratified sampling according
to file length is conducted among files with the same type. After that, the sampling
file set which is used to determine the value of D through pre-de-duplication is
formed. While doing the pre-de-duplication, the real de-dup is not conducted, since
only the number of redundant chunks and the total number of chunks is recorded
to compute the pre-de-duplication rate. The specific process of pre-de-duplication
is shown as follows: firstly, the B-matching condition set which is the collection
of D on different file types is preset based on a lot of practical process; secondly,
the B-matching conditions are selected successively to conduct the chunking and
computing of hash on sampling file set; thirdly, the de-dup detection is carried out
and the numbers of dup-chunks and total chunks are recorded respectively; finally,
the formula, pre-de-duplication rate = (the number of dup-chunks)/(total number

Data De-Duplication Acceleration by FastCDC Algorithm 595

of chunks), is computed and the optimum D whose corresponding pre-de-duplication
rate is the highest is selected as the final breakpoint condition value.

The de-dup rate is improved through the pre-processing de-dup which self-
adaptively adjusts the parameter of the algorithm to adapt to the unpredictable
data. The effectiveness of the algorithm will be verified by experiment in the last
section of this paper.

3.2 Accelerated Modification Identifying

The appearance of the modified files is not usual during the backup process whether
it is full backup, incremental backup or differential backup. Under this circumstance,
if CDC, SW or FingerDiff-based techniques are still used for de-dup detection to the
whole files, the de-dup process is not only inefficient but also clumsy. Meanwhile,
even if a file is modified, it is only part of it, and how to rapidly detect the modified
part is the key to increase the algorithm performance. Therefore, the novel de-dup
algorithm, FastCDC, is proposed to solve the above problem.

Figure 5 shows the main idea of FastCDC:

1. the file stream is broken down into variable-length chunks by CDC and the
position of last breakpoint (lbp) after blocking is recorded simultaneously;

2. a fixed-size chunk is partitioned from the lbp and the fixed-size position is
recorded at the same time;

3. starting from the last fp, sliding window continues to conduct the file-breaking
by CDC;

4. according to this procedure, every variable-length chunk is followed by a fixed-
size chunk and if length of the final file is shorter than the fixed length then the
rest is integrated into a chunk and the whole process is over.

This algorithm is capable of rapidly identifying the modified part in the file
and guaranteeing fast de-dup detection to all the files. Altogether there are three
locations where the parts of files are modified: in the variable-length chunks, fixed-
size chunks or the breakpoint window. If the data in the breakpoint window have not
been modified, then the modified data are either in variable-length chunks or in fixed-
size chunks. The first situation only affects the variable-length chunk in question
while the second situation affects both the fixed-size chunk in question and the later
variable-length chunks; if the data in breakpoint window have been modified, by
controlling the size of the chunks, at most three chunks are affected. However, in
view of the probability, data in the breakpoint only occupy quite a small part of the
whole file, so the average probability for its modifying is quite small. The key to
this algorithm is how to set fixed-size, the acceleration factor. Generally speaking,
if the fixed size is bigger, the de-dup speed will be higher; on the contrary, if the
fixed-size is too small, though the de-dup rate is higher, the de-dup speed will be
decreased. Actually, in the real test, high de-dup speed will absolutely result in low

596 X. Zhang, G. Zhu, E. Wang, S. Fowler, X. Dong

… Files…

fixed-size

fixed-size

…

MinChunkSize

MaxChunkSize

Is

breakpoint?

Slide window

N

Y

Search Hash

Table

Is exist?

Update Hash

Table

Store hash and

chunk

N

Y

Fingerprint

Fingerprint

Fingerprint

Tiger Hash

Fingerprint

Tiger Hash

Figure 5. FastCDC

de-dup rate, which, however, is contradiction to the original intention of the data
de-dup system. Therefore, further optimization is needed to alleviate this problem.

Figure 6. Optimization of FastCDC

The main idea of the above algorithm is to break file down into chunks through
the CDC breakpoint. The chunk before the breakpoint is a variable-length chunk
while the one after the breakpoint is fixed-size chunk. It is found that data modifica-
tion in fixed-size chunk will affect the later variable-length chunk. Since the number
of the fixed-size chunks is larger, the probability for its modification is larger and
then there are more chunks that will be affected, the result of which is that the
amount of detected redundant data is smaller. Therefore, in order to improve the
de-dup rate and reduce the weight occupied by fixed-size chunks, the variable-length
chunks can be increased. Figure 6 shows, firstly partition two variable-length chunks
successively and then partition a fixed-size chunk (cdc1 and cdc2 are variable-length
chunks and cdc2 is one that is identified and partitioned completely based on its con-
tent, fixed-size1 is a fixed-size chunk). Since the number of successive variable-length
chunks determines the de-dup rate, we call this number de-dup factor. High de-dup

Data De-Duplication Acceleration by FastCDC Algorithm 597

speed and rate are possible by setting a proper de-dup factor. The next experiment
part will test and analyze this algorithm and the traditional CDC algorithm.

3.3 FastCDC Theoretical Analysis

There are several important parameters in FastCDC, including sliding interval [Min-
ChunkSize,MaxChunkSize] (MinChunkSize indicates the minimum chunk length,
and the MaxChunkSize represents the maximum chunk length), de-dup factor
VChunksNum which is the number of continuous variable-length chunks and fixed-
size acceleration factor which represents length of fixed-size chunk. The chunk break-
point condition is defined as Equation (1).

For the randomness of RabinHash, the distribution of chunk breakpoint will be
theoretically random. Therefore, the average expected chunk length of CDC is:

E Len V ar = D + MinChunkSize (2)

Considering the fixed-size chunk, the average expected chunk length of FastCDC
is:

E Len =
VChunksNum

VChunksNum + 1
∗ E Len Var +

1

VChunksNum + 1
∗ fixed-size (3)

According to the above analysis, the average number of sliding window based
on the CDC algorithm is:

PCDC =
Length

E Len Var
∗D (4)

The average number of sliding window using FastCDC algorithm is:

PFastCDC =
Length

E Len
∗ VChunksNum

VChunksNum + 1
∗D (5)

Compared with CDC, the performance of FastCDC is improved by:

1− PFastCDC

PCDC

=
fixed-size

VChunksNum ∗ E Len Var
(6)

According to the Equation (2) and (6), there are four main variables influ-
encing the performance of FastCDC, including fixed-size, VChunksNum, D and
MinChunkSize. Fixed-Size, which is acceleration factor, influences the de-dup speed
of FastCDC, and the bigger the value of acceleration factor is, the faster the de-dup
speed of FastCDC will be. VChunksNum, namely de-dup factor, determines the
de-dup rate of FastCDC and the bigger the value of de-dup factor is, the higher
the de-dup rate of FastCDC will be. Based on Equation (6), the conclusion can
be drawn as follows: with the VChunksNum, D and MinChunkSize unchanged, the
bigger the acceleration factor is, the faster the de-dup speed of FastCDC will be.

598 X. Zhang, G. Zhu, E. Wang, S. Fowler, X. Dong

The algorithm will turn into CDC when the de-dup factor is set to infinity, and it
will become FSP if the acceleration factor is set big enough or the de-dup factor is
set to zero. Therefore, we can adjust the performance of FastCDC algorithm to meet
different requirements by setting different de-dup factor and acceleration factor.

4 SYSTEM SCALABILITY ANALYSIS

Compared with the traditional system architecture, the proposed architecture di-
vides the backup task with enormous data into smaller ones and then assigns these
smaller tasks to many storage nodes through a set of mapping mechanism. The
backup server is indeed a de-dup agent and the actual de-dup detection and chunk
storage processes are conducted at every storage node. In this way, the capability of
the server can be lessened and also the parallel processing capability of the system
can be improved. However, with the data volume increasing, the server’s capability
and the storage nodes’ storage capacity will gradually turn into the bottleneck of
the system. Therefore, it is extremely urgent to find the way of ensuring system
scalability.

The two typical research findings on scalability of de-dup system are:

1. [27] presented a scheme taking advantage of the locality feature of the backup
data stream. With the proposed method, the system is capable of conducting
de-dup detection rapidly in the big data environment by introducing an index
buffer and adopting Bloom filter technique.

2. [28] also proposed to exploit potential locality of data and use sampling tech-
niques, that is, divide the backup data stream into relatively large chunks and
then conduct de-dup detection according to the sparse index established by
sampling in advance.

Since the sparse index is smaller compared to the whole index table, it can be placed
in RAM, which, to a certain degree, solves the problem of memory capacity lim-
itation and disk bottleneck. However, the above two solutions are all applied in
central system and cannot be easily extended to the distributed system architec-
ture. Therefore, a novel scalability mechanism is needed in distributed system. In
the post-processing de-dup system proposed in [15], the detection and update of
fingerprints are dispersed in a cluster. A two-phase de-dup detection technique is
adopted to further improve the system scalability.

As presented in Figure 1, the backup client backs up data to the server and the
actual data are stored in multiple storage nodes. Backup client mainly conducts the
backup pre-process, that is, generates the backup task, segments files and computes
hashes. The server is responsible for managing backup data as well as the other
more important job which divides a complex de-dup detection task into multiple
smaller ones and then assigns them to different storage nodes tactically. How to
assign them is a key problem in assuring system scalability. Firstly, the information
of all the storage nodes, including IP address, port number and so on, is recorded

Data De-Duplication Acceleration by FastCDC Algorithm 599

in a hash routing table by backup server; secondly, a set of mapping rules about
how to map hashes to storage nodes are built; after that, a new hash routing table
should be created when a storage node is added and both the original storage nodes’
information and the new one’s are registered. Now, the backup server can conduct
mapping based on the new hash routing table when a new de-dup task needs to
be processed. If the restoration process is requested, the backup server will firstly
find the corresponding hash routing table according to the create date of requested
backup task and then read the data from the corresponding storage nodes. By using
this mechanism, we can expand storage nodes dynamically, which improves not only
the parallelism of the system but also the de-dup speed and thus adapts to the big
data application environment.

5 SYSTEM RELIABILITY ANALYSIS

The implementation of data de-dup technique leads to a single instance shared by
multiple files [7]. With large amount of redundancy eliminated, the loss of one
datum or several key data chunks may have severe impact on all files involved, mak-
ing them inaccessible. How to ensure the reliability of de-duplicated data is one
of the key research problems for de-dup technique. To solve this problem, some
researchers [7, 22, 23] introduced redundant replication technology into de-dup sys-
tem, thus having improved system availability through replicating key data chunks
tactically. Others [7, 24, 25] proposed the use of erasure coding technology, that
is, increase the availability of de-dup system by adding redundant data. The two
techniques mentioned above, both essentially introduce redundant data to improve
the system’s reliability, but with different technical characteristics and scope of ap-
plication [7]. In our system, we proposed a scheme which improves system reliability
without impairing de-dup rate. Key data chunks, for which duplicates are created
and distributed to multiple storage nodes, are identified on the basis of reference
number.

As presented in Figure 7, two types of table exist in our availability scheme. The
one named Hash Routing Table is kept on the backup server, recording the matching
relationship between hash values and storage nodes. The other kind of table exists
in each storage node, called metadata index table, recording the metadata of each
data chunk in a key-value database. The metadata mainly contain information like
hash value, chunk length, storage location, reference number, etc. According to
Figure 7, the reliability assurance scheme is realized as follows:

1. The backup client generates a sequence of hash values, and sends them to the
backup server.

2. For each hash value received, the backup server queries hash routing table, gets
the corresponding storage node to which the data chunk represented by the hash
value is sent, and then triggers the storage node service process. In the hash
table, HV represents the range of first byte of the hash values; SN indicates
information about the storage nodes, such as IP address, port number, etc.

600 X. Zhang, G. Zhu, E. Wang, S. Fowler, X. Dong

Figure 7. Reliability mechanism

3. Hashes received are sent to corresponding storage nodes according to hash rout-
ing map. For example, (Ha,Hb,Hc, . . . , Hn1) → SN1, (Hx,Hy, . . . , Hn2) →
SN2, . . . , (Hs,Ht, . . . , Hnk) → SNk. For a hash value that does not exist, the
storage node should not only update metadata index table, but also store the
corresponding chunk.

4. When the hash value received is detected as already existing, the duplicate hash
value should also be mapped to a storage node with reference to hash routing
table. The corresponding storage node will not store the data chunk again;
instead it updates the reference number for this hash value in its metadata
index table and sends the number to backup server.

5. When the backup server found the corresponding reference number of a hash
value to be a multiple of a predetermined threshold (take 7 as an example),
it will reselect a byte in the hash as the mapping condition. The reselecting
formula is references/7. That is, when the reference number reaches 7, choose
the second byte of the hash value as the re-mapping condition. Assuming H
is the hash value to be considered, the first byte of its value is Hb, and then
according to the mapping relationship listed in step c, the content of this hash
value is stored in SN1. When the reference number reaches 7, the server selects
its second byte as re-mapping condition. If its second byte is Hx, the server will
send a copy of data chunk to SN2.

6. If the reference number of a hash value (still take H as an example) continues
to increase and meet the condition of adding duplicates, the server will again
calculate references/7 to determine which byte will be used. When the reference

Data De-Duplication Acceleration by FastCDC Algorithm 601

number of H reaches 14, the server takes the third byte of H as the mapping
condition and sends a duplicate to the corresponding storage node. In order
to maintain de-dup rate at an appropriate level, we define that the number of
duplicates of a single chunk should not exceed 4.

Using the availability assurance mechanism described above, when a data chunk
on a storage node was lost or went wrong, the backup server would automatically
find its copies according to the first four bytes of its hash value, and restored it
with the right content. Compared with other redundant replication technology, the
above scheme gets the following advantages:

1. There is no need to manage redundant copies with extra metadata, thus avail-
ability is assured with the least implication on de-dup rate.

2. It is flexible and easy to implement, and could restore key missing data chunks
in an efficient way.

6 PERFORMANCE EVALUATIONS

6.1 Experimental Environment

We used 4 PCs in our testing environment, with one of them used as backup
client and server simultaneously and the rest as storage nodes. The hardware
and software environment of all PCs are roughly the same, with the details as
follows: Windows XP, Pentium(R) Dual-Core CPU E5500 @ 2.80 GHz, RAM 4 GB
(Sharetronic/Kingston DDR3 1 333 MHz), 500 GB/7 200 RPM and Cache 16 MB.

6.2 Dataset

We select four file types, including text file type, picture file type, audio file type and
rar file type, to test the algorithms’ performance. The selected files mainly come
from daily data in our lab (project meetings, daily e-mail and papers, etc.). The
pictures and music are from several websites (Baidu, Sogou and Google, etc.). The
details are shown in Table 1. Doc and ppt type have a large amount of modified
data, pdf and audio file type have a small quantity of modified data, while jpg and
gif file type have almost no modified data.

The daily email data in testing dataset I were rearranged according to their
corresponding date of month. Data of fifteen months from January 2012 to March
2013 are obtained; the data size is 3 GB, the number of files totals 1 132 and the file
types include jpg, pdf, ppt, doc, zip, wmv, etc., the details are shown in Table 2.

602 X. Zhang, G. Zhu, E. Wang, S. Fowler, X. Dong

File Type Number Size Sources of Data

doc 1 960 1.87 GB Project documents and e-mail attachments

pdf 1 915 2.42 GB Downloaded papers from project team members

ppt 176 768 MB Project documents and Baidu Library

jpg, gif 2 817 1.56 GB Google and Baidu pictures

mp3, wma 271 1.12 GB Baidu and Sogou music

rar 10 5.44 GB Compressing files containing doc, ppt, jpg and mp3

total 7 149 13.2 GB Daily data in lab and website

Table 1. Dataset I

Data Set Number Size/MB Month Data Set Number Size/MB Month

1 123 224 2 012.1 9 677 1 730 2012.9

2 195 424 2 012.2 10 741 1 956 2012.10

3 269 593 2 012.3 11 773 2 130 2012.11

4 323 728 2 012.4 12 828 2 284 2012.12

5 390 939 2 012.5 13 929 2 570 2013.1

6 454 1 137 2 012.6 14 1 045 2 816 2013.2

7 532 1 341 2 012.7 15 1 132 3 072 2013.3

8 600 1 536 2 012.8

Table 2. Dataset II

6.3 Experimental Results Analysis

6.3.1 Self-Adaptive CDC Performance

To verify the effectiveness of self-adaptive CDC, we select different Ds in the de-dup
process to test the above dataset in the de-dup process. The r is set to D − 1
according to the previous assumption since it has no effect on the de-dup rate. The
result is shown as follows.

As shown in Figure 8, the X axis represents the values of D and r, and Y axis
indicates the de-dup rate (de-dup rate), equaling to (source data size−de-duplicated
data size)/source data size.

According to the test results, CDC will get different de-dup rates when we
select different Ds for any file type. For ppt, doc and rar type with a large number
of modified data, to obtain a higher de-dup rate, we should select a proper value
for D, neither too smaller nor too bigger. For instance, both ppt and doc types
can attain the highest de-dup rate when the D equals to 517. While for audio, pdf
and pictures file types which have no modified data or the data of which are not
easy to be modified, the D value mainly affects the chunk length, that is, the bigger
D is, the longer chunk will be, and the smaller D is, the shorter chunk will be.
However, the D value can not be set too large for it will decrease the probability of
breakpoint condition matching and then increase the number of times to compute
hash. Therefore, only by using the self-adaptive CDC can we set the appropriate D
for different file types.

Data De-Duplication Acceleration by FastCDC Algorithm 603

CDC de-dup rate

85.40%

85.60%

85.80%

86.00%

86.20%

86.40%

86.60%

86.80%

87.00%

87.20%

[

2

1

6

,

2

1

5

]

[

3

7

1

,

3

7

0

]

[

4

0

7

,

4

0

6

]

[

5

1

7

,

5

1

6

]

[

2

1

3

7

,

2

1

3

6

]

[

4

0

9

6

,

4

0

9

5

]

[D,r]

D

e

-

d

u

p

r

a

t

e

CDC de-dup rate

44.00%

45.00%

46.00%

47.00%

48.00%

49.00%

50.00%

51.00%

52.00%

53.00%

54.00%

[

2

1

6

,

2

1

5

]

[

3

7

1

,

3

7

0

]

[

4

0

7

,

4

0

6

]

[

5

1

7

,

5

1

6

]

[

2

1

3

7

,

2

1

3

6

]

[

4

0

9

6

,

4

0

9

5

]

[D,r]

D

e

-

d

u

p

r

a

t

e

CDC de-dup rate

69.50%

70.00%

70.50%

71.00%

71.50%

72.00%

72.50%

73.00%

[

2

1

6

,

2

1

5

]

[

3

7

1

,

3

7

0

]

[

4

0

7

,

4

0

6

]

[

5

1

7

,

5

1

6

]

[

2

1

3

7

,

2

1

3

6

]

[

4

0

9

6

,

4

0

9

5

]

[D,r]

D

e

-

d

u

p

r

a

t

e

CDC de-dup rate

78.50%

79.00%

79.50%

80.00%

80.50%

81.00%

81.50%

[

2

1

6

,

2

1

5

]

[

3

7

1

,

3

7

0

]

[

4

0

7

,

4

0

6

]

[

5

1

7

,

5

1

6

]

[

2

1

3

7

,

2

1

3

6

]

[

4

0

9

6

,

4

0

9

5

]

[D,r]

D

e

-

d

u

p

r

a

t

e

604 X. Zhang, G. Zhu, E. Wang, S. Fowler, X. Dong

CDC de-dup rate

17.00%

17.20%

17.40%

17.60%

17.80%

18.00%

18.20%

18.40%

18.60%

[

2

1

6

,

2

1

5

]

[

3

7

1

,

3

7

0

]

[

4

0

7

,

4

0

6

]

[

5

1

7

,

5

1

6

]

[

2

1

3

7

,

2

1

3

6

]

[

4

0

9

6

,

4

0

9

5

]

[D,r]

D

e

-

d

u

p

r

a

t

e

CDC de-dup rate

87.80%

88.00%

88.20%

88.40%

88.60%

88.80%

89.00%

89.20%

[

2

1

6

,

2

1

5

]

[

3

7

1

,

3

7

0

]

[

4

0

7

,

4

0

6

]

[

5

1

7

,

5

1

6

]

[

2

1

3

7

,

2

1

3

6

]

[

4

0

9

6

,

4

0

9

5

]

[D,r]

D

e

-

d

u

p

r

a

t

e

Figure 8. Performance evaluation on different file types

De-dup rate testing

64%

65%

66%

67%

68%

69%

70%

71%

72%

73%

CDC Self-adaptive

CDC

D

e

-

d

u

p

r

a

t

e

Figure 9. Testing on self-adaptive CDC and CDC

Data De-Duplication Acceleration by FastCDC Algorithm 605

Next we use both the traditional CDC and the self-adaptive CDC respectively to
test the whole dataset. The testing results are shown in Figure 9: X axis represents
the two algorithms and Y axis indicates the de-dup rate. From the diagram, we can
conclude that in comparison with traditional CDC, self-adaptive CDC can increase
the de-dup rate by about 5 percent since D is determined dynamically according to
different file types.

6.3.2 FastCDC Effectiveness

We use FastCDC and CDC to test the above dataset respectively as well as set
different de-dup factors and acceleration factors. Testing results are shown as fol-
lows (Figures 10–15). In the figures, X axis indicates the de-dup factor, for which
number 1 to 6 represents the number of continuous variable-length chunks. The
horizontal line stands for the CDC algorithm. Y axis represents the de-dup rate and
the de-dup speed respectively corresponding to the de-dup factors and acceleration
factors of FastCDC. The de-dup rate is defined as above, and the de-dup speed
equals to (source data size)/(backup window), the unit of which is MB/S.

74.00%

76.00%

78.00%

80.00%

82.00%

84.00%

86.00%

88.00%

1 2 3 4 5 6

de-dup factor

d

e

-

d

u

p

r

a

t

e

4KB 8KB 16KB

32KB CDC

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6

de-dup factor

d

e

-

d

u

p

s

p

e

e

d

(

M

B

/

S

)

4KB 8KB 16KB

32KB CDC

Figure 10. Testing on doc file type

As the testing result shows, for FastCDC algorithm, with the de-dup factor
increasing, the de-dup rate will increase correspondingly, but the de-dup speed de-
creases; and with the acceleration factor increasing, the de-dup speed will increase
correspondingly, but the de-dup rate decreases. Further analyzing the above test

606 X. Zhang, G. Zhu, E. Wang, S. Fowler, X. Dong

46.00%

46.50%

47.00%

47.50%

48.00%

48.50%

49.00%

49.50%

50.00%

50.50%

51.00%

1 2 3 4 5 6

de-dup factor

d

e

-

d

u

p

r

a

t

e

4KB 8KB 16KB

32KB CDC

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6

de-dup factor

d

e

-

d

u

p

s

p

e

e

d

(

M

B

/

S

)

4KB 8KB 16KB

32KB CDC

Figure 11. Testing on pdf file type

results, we conclude that all of the above 6 file types will attain an increase on
de-dup speed ranging from 50 % to 200 % when the de-dup factor is 1, but the de-
dup rate of them will be impaired to different degrees (the doc file type’s de-dup
rate decreases by 4 %–8 %, the pdf decreases by about 3 %, the ppt decreases by
15 %–29 %, the picture is seldom affected but increases a little, the audio decreases
by 6 %–8 % and the rar decreases by 15 %–40 % which has the biggest impact).
However, if the value of de-dup factors is not smaller than 2, the impairment on
de-dup rate will be not greater than 5 % by FastCDC, but the de-dup rate will
increase substantially ranging from 50 % to 200 %. Therefore, for the file types
that have a larger number of modification data, for instance, doc and ppt, etc., the
de-dup speed will increase significantly by setting larger de-dup factor and accel-
eration factor (the de-dup factor is set to 6 and the acceleration factor to 32 KB)
under the premise of minimal impairment of de-dup rate; while for the file types
with a small number of modification data, for instance, mp3 and pdf, etc., the
de-dup speed will increase greatly at the expense of small impairment of de-dup
rate by setting a small de-dup factor and a big acceleration factor (the de-dup fac-
tor is set to 3 and the acceleration factor to 32 KB). However, for the file type
with no modified data, not only the de-dup rate can be increased but also the
de-dup speed by setting the smallest de-dup factor and the largest acceleration fac-
tor.

Data De-Duplication Acceleration by FastCDC Algorithm 607

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

1 2 3 4 5 6

de-dup factor

d

e

-

d

u

p

r

a

t

e

4KB 8KB 16KB

32KB CDC

0

5

10

15

20

25

30

1 2 3 4 5 6

de-dup factor

d

e

-

d

u

p

s

p

e

e

d

(

M

B

/

S

)

4KB 8KB 16KB

32KB CDC

Figure 12. Testing on ppt file type

79.60%

79.80%

80.00%

80.20%

80.40%

80.60%

80.80%

1 2 3 4 5 6

de-dup factor

d

e

-

d

u

p

r

a

t

e

4KB 8KB 16KB

32KB CDC

0

2

4

6

8

10

12

14

1 2 3 4 5 6

de-dup factor

d

e

-

d

u

p

s

p

e

e

d

(

M

B

/

S

)

4KB 8KB 16KB

32KB CDC

Figure 13. Testing on picture file type

608 X. Zhang, G. Zhu, E. Wang, S. Fowler, X. Dong

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%

1 2 3 4 5 6

de-dup factor

d

e

-

d

u

p

r

a

t

e

4KB 8KB 16KB

32KB CDC

0

5

10

15

20

25

1 2 3 4 5 6

de-dup factor

d

e

-

d

u

p

s

p

e

e

d

(

M

B

/

S

)

4KB 8KB 16KB

32KB CDC

Figure 14. Testing on audio file type

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 2 3 4 5 6

de-dup factor

d

e

-

d

u

p

r

a

t

e

4KB 8KB 16KB

32KB CDC

0

5

10

15

20

25

30

1 2 3 4 5 6

de-dup factor

d

e

-

d

u

p

s

p

e

e

d

(

M

B

/

S

)

4KB 8KB 16KB

32KB CDC

Figure 15. Testing on rar file type

Data De-Duplication Acceleration by FastCDC Algorithm 609

The algorithm will turn into CDC when the de-dup factor is set to infinity,
and it will become FSP if the acceleration factor is set big enough. Therefore,
the FastCDC algorithm combines the advantages of FSP and CDC. It cannot only
conduct de-dup detection rapidly for a new file, but also efficiently identify the
modified parts of the modified files. Compared with SIS and FSP, both of which are
suitable to application environment with no or little modification, CDC is suitable
for the application environment with large number of modified data. FastCDC can
be employed to both of the above environments effectively.

6.3.3 Performance Comparison of De-Duplication Algorithms

SIS, FSP, CDC and FastCDC are adopted to conduct full backup to the data in test-
ing dataset II for fifteen consecutive times according to their corresponding month
and the following testing results are acquired. In terms of the block-level oriented
de-dup algorithm, its expected chunk length is 8 KB. The de-dup factor of FastCDC
is set to 2 and the acceleration factor to 16 KB. The de-dup rate in Figure 16 a)
actually refers to accumulated de-dup rate, which is obtained through dividing the
total size of the present dataset to be backed up and the already backed up dataset
by the size of the present dataset after having been de-duplicated.

0

3

6

9

12

15

18

21

24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Backup Time

D

e

-

d

u

p

r

a

t

e

SIS FSP CDC FastCDC

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Backup Time

D

e

-

d

u

p

s

p

e

e

d

(

M

B

/

S

)

SIS FSP CDC FastCDC

a) b)

Figure 16. Performance testing on different de-duplication algorithms: a) De-dup rate,
b) De-dup speed

610 X. Zhang, G. Zhu, E. Wang, S. Fowler, X. Dong

Performance testing on different de-dup algorithms as the Figure 16 a) shows,
with the increase of the backup times, the de-dup rates of all the algorithms will
raise correspondingly, namely, the de-dup rate increases in proportion to the number
of backup times. However, the de-dup rate of block-level algorithm is far higher than
that of file-level algorithm. For instance, the de-dup rate of FSP CDC and FastCDC
after fifteen consecutive backups can basically achieve 20 : 1, while the de-dup rate
of SIS can only achieve 12 : 1. Moreover, after comparing CDC with FastCDC we
can find that the de-dup rates of the two are basically the same. From Figure 16 b)
we know that SIS boasts the highest de-dup rate, the highest of which is 66 MB/s
and the average is 57 MB/s or so. The de-dup rate of FSP ranks first among all the
block-level algorithms, with the highest being 40 MB/s and the average 32 MB/s or
so; the de-dup rate of FastCDC is located in the mediate place between FSP and
CDC, the highest approximating to 28 MB/s and the average 23 MB/s; while the de-
dup rate of CDC is the lowest, with the highest rate being 17 MB/s and the average
15 MB/s. Compared with CDC, FastCDC can acquire the increase of de-dup speed
by about 50 % at the expense of tiny de-dup rate loss.

7 CONCLUSIONS

This paper proposed a new de-dup technology-based system architecture to solve the
problem of data redundancy during the process of data backup. To solve the prob-
lems of parameter setting and low de-dup speed of CDC, the self-adaptive de-dup
algorithm and fast de-dup algorithm are proposed respectively. The experimental
results show that the improved self-adaptive CDC can improve the de-dup rate by
about 5 %, while FastCDC can obtain the increase of de-dup speed by 50 % to 200 %
only at the expense of less than 3 % de-dup rate loss.

Acknowledgements

This work was supported by the projects of the National Key Technology R & D Pro-
gram (Grant No. 2011BAH04B03, 2016YFB1000303) and the NSFC project (Grant
No. 61572394). Part of the work was supported by the Marie Curie IRSES Actions of
the European Union Seventh Framework Program (EU-FP7 Contract No. 318906).
The authors wish to thank Xueqin Jiang, Xiaoxia Jiang, Yueguang Zhu, JiaJia
Zhang and Huali Cui for useful discussions and help.

REFERENCES

[1] Beyer, M.: Gartner Says Solving “Big Data” Challenge Involves More Than Just
Managing Volumes of Data. Gartner. Available on: http://www.gartner.com/it/

page.jsp?id=1731916, Retrieved 13 July 2011.

[2] An Oracle White Paper in Enterprise Architecture-Information Architecture: An Ar-
chitect’s Guide to Big Data. August 2012.

Data De-Duplication Acceleration by FastCDC Algorithm 611

[3] Ghemawat, S.—Gobioff, H.—Leung, S.-T.: The Google File System.

[4] Bolosky, W. J.—Corbin, S.—Goebel, D.—Douceur, J. R.: Single Instance
Storage in Windows 2000. Proceedings of 4th USENIX Windows Systems Symposium
(WSS ’00), Vol. 4, 2000.

[5] Benson, M. L.—Shakib, D.A.: Single Instance Storage of Information. United
States Patent 08/678, 995.

[6] Single Instance Storage in Microsoft Windows Storage Server 2003 R2. Microsoft
Corp. Technical White Paper, published on May 2006.

[7] Bobbarjung, D.C.—Jagannathan, S.—Dubnicki, C.: Improving Duplicate
Elimination in Storage Systems. ACM Transactions on Storage (TOS), Vol. 2, 2006,
No. 4, pp. 424–448.

[8] Policroniades, P. I. C.: Alternatives for Detecting Redundancy in Storage Systems
Data. Proceedings of the USENIX Annual Technical Conference (ATEC ’04), 2004.

[9] Jain, N.—Dahlin, M.—Tewari, R.: TAPER: Tiered Approach for Eliminating
Redundancy in Replica Synchronization. 4th USENIX Conference on File and Stora-
Technologies (FAST 2005), 2005, pp. 281–294.

[10] Denehy, T. E.—Hsu, W.W.: Duplicate Management for Reference Data. IBM
Research Report, RJ 10305 (A0310-017), 2003.

[11] Kruus, E.—Ungureanu, C.—Dubnicki, C.: Bimodal Content Defined Chunking
for Backup Streams. Proceedings of the 8th USENIX Conference on File and Storage
Technologies (FAST ’10), 2010.

[12] Broder, A. Z.: Identifying and Filtering Near-Duplicate Documents. Proceedings of
the 11th Annual Symposium on Combinatorial Pattern Matching (COM ’00), London,
2000. Lecture Notes in Computer Science, Vol. 1848, 2000, pp. 1–10.

[13] Sun, G.-Z.—Dong, Y.—Chen, D.-W.—Wei, J.: Data Backup and Recovery
Based on Data De-Duplication. 2010 International Conference on Artificial Intelli-
gence and Computational Intelligence (AICI), 2010, pp. 379–382.

[14] Zhu, G.—Zhang, X.—Wang, L.—Zhu, Y.—Dong, X.: An Intelligent Data De-
Duplication Based Backup System. 2012 15th International Conference on Network-
Based Information Systems, 2012, pp. 771–776.

[15] Yang, T.—Feng, D.—Liu, J.—Wan, Y.: FBBM: A New Backup Method with
Data De-Duplication Capability. International Conference on Multimedia and Ubiq-
uitous Engineering (MUE 2008), 2008, pp. 30–35.

[16] Yang, T.—Feng, D.—Liu, J.—Wan, Y.—Niu, Z.—Ke, Y.: 3DNBS: A Data
De-Duplication Disk-Based Network Backup System. IEEE International Conference
on Networking, Architecture, and Storage (NAS 2009), 2009, pp. 287–294.

[17] Du, J.—Yu, H.—Zheng, W.: MassStore: A Low Bandwidth, High De-Duplication
Efficiency Network Backup System. 2012 International Conference on Systems and
Informatics (ICSAI), 2012, pp. 886–890.

[18] Ao, L.—Shu, J.-W.—Li, M.-Q.: Data De-Duplication Techniques. Journal of Soft-
ware, Vol. 21, No. 5, May 2010, pp. 916–929.

[19] He, Q.—Li, Z.—Zhang, X.: Data De-Duplication Techniques. 2010 Interna-
tional Conference on Future Information Technology and Management Engineering
(FITME), October 9–10, 2010, Vol. 1, pp. 430–433.

612 X. Zhang, G. Zhu, E. Wang, S. Fowler, X. Dong

[20] Quinlan, S.—Dorward, S.: Venti: A new Approach to Archival Storage. Proceed-
ings of the Conference on File and Storage Technologies (FAST ’02), 2002, pp. 89–101.

[21] Sengar, S. S.—Mishra, M.: A Parallel Architecture for In-Line Data De-
Duplication. 2012 Second International Conference on Advanced Computing and
Communication Technologies, 2012, pp. 399–403.

[22] Hagwat, D.—Pollack, K.—Long, D.D.E.—Schwarz, T.—Miller, E. L.—
Pâris, J. F.: Providing High Reliability in a Minimum Redundancy Archival Storage
System. Proceedings of the 14th International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS 2006), 2006,
pp. 413–421.

[23] Lawrence, L.—Kristal, Y.—Pollack, T.—Darrell, D.—Long, E.: Deep
Store: An Archival Storage System Architecture. Proceedings of the 21st International
Conference on Data Engineering (ICDE 2005), 2005, pp. 804–815.

[24] Han, B.—Keleher, P.: Implementation and Performance Evaluation of Fuzzy
File Block Matching. Proceedings of the 2007 USENIX Annual Technical Conference
(USENIX 2007), 2007, pp. 199–204.

[25] Peng, C.—Wang, S.—Jia, Z.: Provide High Reliability for Duplicate Storage
System with Erasure Code. Journal of Computer Research and Development, Vol. 48,
2011, pp. 1–6.

[26] Gu, Y.—Liu, C.—Sun, L.—Yan, B.—Wang, D.—Ju, D.: Reliability Provision
Mechanism for Large-Scale De-Duplication Storage Systems. Journal of Tsinghua
University (Science and Technology), 2010, Vol. 50, No. 5.

[27] Zhu, B.—Li, H.—Patterson, H.: Avoiding the Disk Bottleneck in the Data Do-
main De-Duplication File System. Proceedings of the 6th USENIX Conference on File
And Storage Technologies (FAST ’08), 2008.

[28] Lillibridge, M.—Eshghi, K.—Bhagwat, D.—Deolalikar, V.—Tre-
zise, G.—Camble, P.: Sparse Indexing: Large Scale, Inline De-Duplication Us-
ing Sampling and Locality. Proceedings of the 7th USENIX Conference on File and
Storage Technologies (FAST ’09), 2009, pp. 111–123.

[29] Yang, T.—Jiang, H.—Feng, D.—Niu, Z.—Ke, Z.—Wan, Y.: DEBAR: A Scal-
able High-Performance De-Duplication Storage System for Backup and Archiving.
2010 IEEE International Symposium on Parallel and Distributed Processing (IPDPS),
2010, pp. 1–12.

[30] Eshghi, K.—Tang, H.K.: A Framework for Analyzing and Improving Content-
Based Chunking Algorithms. Intelligent Enterprise Technologies Laboratory, HP Lab-
oratories Palo Alto, HPL-2005-30(R.1), 2005.

Data De-Duplication Acceleration by FastCDC Algorithm 613

Xingjun Zhang received his Ph.D. degree in computer archi-
tecture from Xi’an Jiaotong University, Xi’an, China, in 2003.
From 1999 to 2005, he was Lecturer, Associate Professor in the
Department of Computer Science and Technology of Xi’an Jiao-
tong University. From February 2006 to January 2009, he was
Research Fellow in the Department of Electronic Engineering of
Aston University, United Kingdom. He is currently Full Profes-
sor with the Department of Computer Science and Technology
of Xi’an Jiaotong University. His interests include high perfor-
mance computer architecture, computer network, storage system
and high performance computing.

Guofeng Zhu received his B.Sc. degree in computer science and
technology from Hainan University, Hainan, China, in 2010. He
received his M.Sc. degree in computer science and technology
from Xi’an Jiaotong University, Xi’an, China in 2013. He is
currently a researcher in IBM China Systems and Technology
Laboratory. His research interests include computer architecture
and storage system.

EndongWang received his B.Sc. and M.Sc. degrees from Tsing-
hua University in 1988 and 1991, respectively. He is now the
President of Inspur Group. His research interests include high
performance computing, computer architecture, parallel and dis-
tributed processing and microprocessor architecture.

614 X. Zhang, G. Zhu, E. Wang, S. Fowler, X. Dong

Scott Fowler received B.Sc. from Minot State University, USA
in 1998, M.Sc. from the University of North Dakota, USA in
2001 and Ph.D. from Wayne State University, USA in 2006, all
degrees in computer science. During 2006–2010, he was Re-
search Fellow in the Adaptive Communications Networks Re-
search Group at Aston University, UK and Sony Ericsson R & D
lab, UK, where the research focused on multiple services in
Next Generation Networks (NGNs) in both wireless and wired,
and the project team was composed of multi-disciplinary/multi-
institutional partners from industry and academia. Since 2010,

he has been Associate Professor at Linköping University, Sweden, and works with the Mo-
bile Telecommunication (MT) group. He has served on several IEEE conferences/work-
shops as TPC to Chair. His research has been funded and supported by European Union
Framework 7, Excellence Center at Linköping – Lund in Information Technology (EL-
LIIT), Ericsson and Ascom. His research interests include Quality of Service (QoS) support
over heterogeneous networks, computer networks (wired, wireless), energy management,
mobile computing, pervasive/ubiquitous, performance evaluation of networks and security.
In 2012 he was awarded Visiting Professorship from the France Scientific Council to the
University of Paris-Est Creteil (UPEC), France. He was a host for a Fulbright Specialist
from the USA in 2011. He is a member of IEEE and ACM.

Xiaoshe Dong received his B.Eng. degree in computer hardware from Xi’an Jiaotong
University, Xi’an, China, in 1985, and his M.Sc. and Ph.D. degrees in computer architec-
ture, both from Keio University, Tokyo, Japan, in 1996 and 1999, respectively. He was
Lecturer during the period 1987–1994 and Associate Professor during 1999–2003 in the
Department of Computer Science and Engineering of Xi’an Jiaotong University, where he
has been Full Professor with the Department of Computer Science and Engineering from
2003. His interests include high performance computer architecture and storage system.

