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Abstract. UML-B is a graphical formal modelling notation which is based on UML
and relies on Event-B and its verification tools. In this paper, we propose annealing
and introduce subtyping rules as well-known refactoring rules which can improve
and assist the derivation of object-oriented design from an abstract specification
written in UML-B. We prove that the proposed annealing rules are behavior pre-
serving. We also demonstrate the applicability and effectiveness of our refactoring
rules by applying them on two UML-B specifications.
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1 INTRODUCTION

UML-B [1] is a graphical formal modelling notation which is based on Event-B [2]
for its underlying semantics and is closely integrated with the Event-B verification
tools [3]. The graphical modelling environment of UML-B allows development of
a formal model through the use of visual objects at the abstraction level. The sup-
porting tools ensure the model is verifiable and thus accurate [4]. On the other hand,
UML-B supports object-oriented modelling concepts and has some resemblance with
UML [5].

Object-orientation is perceived differently by different authors. The object
paradigm, in the sense of object-oriented programming, provides principles like sub-
typing, inheritance and polymorphism [6]. Class instantiation, class inheritance,
polymorphism, and generic class parameters (or templates) as four object-oriented
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architectural constructs [7], that are almost universal, underpin the paradigm and
provide modularity and reuse capabilities. Object-oriented formal specification lan-
guages such as Object-Z, UML-B and VDM++ share these core features with their
programming language counterparts. However, the way they are utilized to capture
requirements associated with a problem domain is often quite different from the
way in which they are used to implement a specific solution to a problem. The
result is that an object-oriented specification does not usually directly resemble, in
a structural sense, the design of the desired implementation.

To bridge this gap between specification and implementation, specification refac-
toring rules have been proposed. These rules allow the structure of specification to
be incrementally transformed to represent a design [8]. Refactoring is a technique
which has long been used by programmers to improve the structure of their code once
it got unreadable. More generally, refactoring is an important notion with regard to
improving an existing code respecting flexibility, maintainability and reusability [9].
Although Fowler coined the word refactoring as a general term for frequently oc-
curring clean-up operations on programs [10], he also proposes to use this term for
the process of remodelling object-oriented software to improve an existing design
whilst preserving its behavior [10]. Therefore, a recent trend is to apply the con-
cepts of refactoring to higher levels of abstraction. Consequently, model refactoring
is emerging as a desirable means to improve design models using behavior preserv-
ing transformations. Applying refactoring as early as possible during the software
life cycle can improve the quality of design and reduce the complexity and cost in
successive development phases [11].

Rules for refactoring have been well documented [12] and formalized [13] at the
programming language level; however, we propose the use of more general rules,
similar to refactoring rules presented by Fowler [10], to apply at the UML-B specifi-
cation level in order to introduce a design rather than improve an existing one. More
precisely, we are going to extend the process of modifying an UML-B specification to
introduce design elements (this process has already been known as refinement in the
literature) by the notion of refactoring, which Fowler describes as the application of
simple rules for the improvement of the design of existing code [10].

In summary, as two main differences to Fowler’s approach,

• our rules apply to abstract specifications and are utilized to moving from an ab-
stract specification to an object-oriented design without the need to consider
irrelevant details at the programming language level, and

• the motivation of our rules is primarily to introduce designs rather than improve
existing ones [14].

Nevertheless, formal specification refactoring rules have one important similarity
with the Fowler’s: they must be equivalence transformations in terms of behavioral
interpretation [14]. As Fowler puts it, all these refactorings should not change
externally visible behavior of a program.
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There are two major aspects a process of turning functional specifications into
well-structured object-oriented software must encompass. First, at a high level,
a purely functional specification must be reorganized and refined to create a rea-
sonable object-oriented design. Second, at a lower level, the object-oriented design
must be further refined to object-oriented code [7]. The focus of this paper is on
the first aspect. Deriving object-oriented designs from object-oriented formal speci-
fications using a sequence of step-wise structural transformations that are behavior
preserving has clear benefits: constructed designs conform to the specification, and
the design process is clearly documented as a sequence of tractable and repeatable
steps [15]. Besides these benefits, we follow one more contribution: If the program
code is refactored, however, the specifications need also to be changed. This can be
facilitated by specification refactoring rules which allow such changes to be made
systematically along with the changes to the code [16].

A number of approaches have been so far presented to derive designs from
UML-B specifications. Said et al. [12] described class and state machine refine-
ment in UML-B. Said [17] completed the previous approach [12] by introducing
refinement of context diagrams and machines in package diagrams. Although rules
given by Said [12, 17] are appropriate for deriving designs from UML-B specifica-
tions, they have not been introduced as refactoring rules. More precisely, rules given
by Said [12, 17] do not support the decomposition of one class into classes in one
step (called annealing) and the introduction of subtyping hierarchy in UML-B speci-
fications while annealing and introduce subtyping are well-known refactoring rules in
other object-oriented formal specification languages, such as Object-Z (as annealing
and introduce inheritance rules) and VDM++ (as annealing and subtyping rules).

In this paper, we propose annealing and introduce subtyping rules which fa-
cilitate introducing structure in the process of moving from specification towards
design. We have concentrated on these two particular refactoring rules because an-
nealing adds structure (but no redundancy) to a specification by splitting a class
into two classes (aiming for more fine-grained classes); also, introduce subtyping
establishes a relationship between classes that have many features in common (with
the aim of increasing reusability). Having these two rules in place, when combined
with non-structural refactoring steps, our approach becomes a powerful method for
incremental introduction of specification-based structural design in UML-B. More-
over, since the rules are behavior-preserving, this process ensures that any software
design produced will be correct with respect to the original specification.

The paper is organized as follows: In Section 2, we review UML-B and related
work done to introduce refactoring rules for object-oriented specification languages.
Section 3 gives our refactoring rules for UML-B specifications. In Section 4, we
prove that all four styles of annealing (i.e. shared-event annealing, shared-attribute
annealing, annealing as association and annealing as subtyping) are behavior pre-
serving. Section 5 is devoted to the evaluation of our method. The main part of this
section shows the applicability of the proposed rules by employing them to intro-
duce design elements into two abstract functional specifications written in UML-B.
Section 6 concludes the paper and gives some directions for future work.
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2 PRELIMINARIES

In this section, we first present a brief description of UML-B. Then, we review some
related work performed to introduce refactoring rules for object-oriented specifica-
tion languages.

2.1 UML-B

Four interlinked diagram types (package, context, class and state machine) are pro-
vided in UML-B. As in UML, package diagrams provide a structure of the model,
but also cater for the concept of refinement. The diagram shows the refines re-
lationships between machines, the extends relationships between contexts and the
Sees relationships from machines to contexts [18].

UML-B mirrors the Event-B approach where static data (sets and constants)
are modelled in a separate package called a context. The context diagram is sim-
ilar to a class diagram but has only constant data (the static part of the model)
represented by ClassTypes, Attributes and Associations. Axioms (given properties
about the constants) and Theorems (assertions requiring proof) may be attached
to the ClassTypes. ClassTypes define carrier sets or constant subsets of other
ClassTypes.

The behavioral parts (variables and events) are modelled in a class diagram
which is used to describe the machine. Classes represent subsets of the ClassTypes
introduced in the context. Associations and attributes of the class are similar to
those in the context but represent variables instead of constants. An attribute defines
a data value of an instance of a class. An association is a special case of an attribute
that defines a relationship between two classes [12]. Classes may own events that
modify the variables. Event parameters can be added to an event providing local
variables to be used in the transition’s guards and actions. These parameters can
be used to model inputs and outputs. Class events implicitly utilize a parameter to
non-deterministically select the affected instance of the class [18].

At last, state machines may be used to model behavior. Transitions represent
events with implicit behavior associated with the change of state. The event can
only occur when the instance is in the source state and, when it fires, the instance
changes to the target state. Hence state machines model class variables similar to
attributes. Additional guards and actions can be attached to the transition in the
property view [18].

2.2 Related Work

Said et al. [12] proposed rules for refinement of classes and state machines. In
case of refinement of classes, a refined class may drop some of attributes of its
abstract class, and a refined class may introduce new attributes (or variables). In
case of refinement of state machines, the structure of a refined state machine is
an elaboration of the structure of its abstraction machine either by replacing each



Refactoring Rules for UML-B 415

transition by one or more transitions or by elaborating an abstract state by a nested
state machine. In addition, there are two methods for moving a class event in
a refinement:

1. move to a refined class as a transition of a state machine and

2. move to a new class in a refinement either as a class event or a transition in
a state machine.

Rules given by Said [17] support refinement of machines, classes, state machines
and context diagrams. Refinement rules for machine include composition, decom-
position with shared event approach, and machine refinement via refining its class
diagram. Rules for class diagram include machine variable, event and invariant re-
finements (according to Event-B refinement rules for these notions), class and state
machine refinements, adding new classes and dropping abstract classes. Class re-
finement rules include adding new attributes and associations to a refined class,
dropping abstract attributes and associations, refinement of class events and invari-
ants and also state machine refinement.

Rules for refinement of state machines [17] include state elaboration (an ab-
stract state may be elaborated by nested state machines), transition elaboration
(a transition may be replaced by one or more transitions), flattening state machine
(removing nested state machines from the structure of a machine) and state grouping
(adding new structure or state to a state machine and nesting some of its states in
the new structure). Refinement rules for context diagrams [17] include adding new
attributes and associations to extended ClassTypes and also adding new ClassTypes
to the refinement.

There is some work which introduces refactoring rules in other specification lan-
guages. Lano and Goldsack [19, 20, 21] propose annealing (for decomposing classes)
in VDM++. Moreover, they present formal definitions of refinement, subtyping, and
subclassing. However, the problem of invariant distribution in the decomposition
process is the focus of their work, and a complete approach to specification-based
object-oriented design has not been developed.

McComb and Smith [8] present a minimal set of refactoring rules, namely in-
troduce generic parameters, introduce inheritance and introduce polymorphism and
show that the combination of these three rules with compositional class refine-
ment [22] and annealing [7, 15] yields a complete method for design in Object-Z.
The annealing rule allows for the decomposition of one class into two, effectively
partitioning its data and functionality. They propose the annealing rule by consid-
ering one class, called framing class, holding a reference to an object of the other
class, called component class. It is the responsibility of the framing class to invoke
operations upon and manage the state of the component class [7].

Introduce inheritance rule offers the means to build an inheritance hierarchy
from existing classes [8]. This rule is most effectively applied to link together classes
that contain common features in order to maximize the potential for reuse, but the
classes need not share any features at all [14]. Finally, Lu and Zhu [23] propose
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a set of more fine-grained refactoring rules than what was presented by McComb
and Smith [7, 8, 14, 22].

3 REFACTORING RULES FOR UML-B

In this section, our refactoring rules for UML-B specifications are introduced. At
first, annealing is proposed in four styles, and then, the introduce subtyping rule is
presented to reuse data constructs and operations in classes.

3.1 Annealing

Annealing rule allows decomposition of one class into two or more classes by parti-
tioning its data and functionality [7]. It is similar in intention to the Fowler’s Extract
Class refactoring [10], which performs the same function at the programming lan-
guage level. With Fowler’s extract class refactoring, when we have one class doing
a function that should be done by two, we should create a new class and move the
relevant fields and methods from the old class into the new one [10].

Investigating the related work, we have found that there are two ways to propose
annealing rule: by using either multiple inheritance or association. In the annealing
as association style, one of the new classes must hold a reference to the other one
(or other ones) while in the annealing as multiple inheritance style, one of the new
classes must inherit the other one (or other ones).

Also, there are two ways to decompose a machine in UML-B similar to what we
have in Event-B [24]: shared variable decomposition (called A-style decomposition)
and shared event decomposition (called B-style decomposition). In A-style decom-
position, a machine is decomposed into arbitrary number of sub-machines based
on a shared variable in that machine. Those variables accessed by events of dis-
tinct sub-machines are called shared variables. In B-style decomposition, a machine
is decomposed into arbitrary number of sub-machines based on a shared event in
that machine. Those events shared in two or more sub-machines are called shared
events. In order to decompose machines in UML-B, one should consider those state
machines which do not exist in machines in Event-B. Thus, state machine refine-
ment techniques, i.e., state grouping and flattening, are defined in UML-B in order
to define machine decomposition [17].

Since a class in UML-B has events and attributes similar to those in a machine,
in the following subsections, we present annealing in four styles, called annealing
as association, annealing as subtyping, shared-event annealing and shared-attribute
annealing.

3.1.1 Annealing as Association

As we said earlier, in annealing as association, one of the new classes must hold
a reference to the other one (or other ones); hence, we must use the notion of object
in the class diagram. Using this style, a class will be decomposed into two or more
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new classes. Figure 1 shows annealing of class A to two new classes B1 and B2.
In this figure, class A is decomposed into classes B1 and B2 such that B1 holds
a reference to (is associated with) B2, and hence, B1 has an attribute which is an
object of class B2. Also, attribute attribute of class A is considered as an attribute
of class B2. Events event1 and event2 are partitioned over classes B1 and B2.

Figure 1. Annealing as association of class A to classes B1 and B2

The following sequence must be followed for annealing class C to classes C1, . . . ,
Cn with association style; suppose that class Cn holds references to classes C1, . . . ,
Cn−1:

1. A new machine (refinement machine) which refines the existing machine (ab-
stract machine), whose class diagram contains class C, is introduced in the
package diagram.

2. Classes C1, . . . , Cn are introduced in the class diagram of the refinement machine
defined in the previous step.

3. Attributes in the form of objects of classes C1, . . . , Cn−1 are considered in class
Cn so that they are equivalent to associations from Cn to C1, . . . , Cn−1. Also,
surjective, injective, total and functional values of these associations must be
determined according to semantics of C1, . . . , Cn.

4. The events of class C are first partitioned over C1, . . . , Cn−1 in the class diagram
based on the semantics which are considered for C1, . . . , Cn−1. Although all of
the events of C are considered in class Cn, it may be needed to change the
specification of these events to promotion in order to make them equivalent
with their counterparts in C. For instance, if event e in C is considered in C1

based on event partitioning and attribute a whose type is C1 is considered in
Cn according to step 3, event e should be also considered in C and its body is
in the form of promotion (i.e., a.e).

5. The attributes of class C are partitioned over C1, . . . , Cn in the class diagram
based on event partitioning and also semantics which are considered for C1, . . . ,
Cn. It should be noted that it is possible to remove some of the attributes of C
because attribute removing from a class is a valid refinement in UML-B.
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6. The invariants and state machines of class C are distributed according to events
and attributes partitioning in the class diagram. State machine grouping and
flattening techniques must be used here in order to decompose state machines
among C1, . . . , Cn. For attributes a1, . . . , am, an invariant based on P(a1, . . . ,
am) is copied to Ci (i: 1..n) if and only if Ci contains all a1, . . . , am.

7. The associations of class C are distributed over C1, . . . , Cn based on the seman-
tics of C, C1, . . . , Cn.

8. Predicates that say each attribute or association of class C is considered in one of
classes C1, . . . , Cn are regarded as gluing invariants in the refinement machine.

9. A new context is introduced in the package diagram that extends the context
seen by the abstract machine. The refinement machine sees this new con-
text. The ClassType of C is considered as ClassType of class Cn. Also, a new
ClassType is considered for each class Ci (i: 1..n− 1) in the context diagram of
this new context.

3.1.2 Annealing as Subtyping

We consider annealing as subtyping in order to decompose a class in the class dia-
gram into two or more classes where one of them is the super type of the rest. The
following sequence must be followed for annealing class C to classes C1, . . . , Cn with
subtyping style; suppose that class Cn is the subtype of classes C1, . . . , Cn−1:

1. A new machine (refinement machine) which refines the existing machine (ab-
stract machine), the class diagram of which contains class C, is introduced in
the package diagram.

2. Classes C1, . . . , Cn are introduced in the class diagram of the refinement machine
defined in the previous step.

3. SuperType connections from Cn to classes C1, . . . , Cn−1 are considered in the
class diagram.

4. Events of class C are first partitioned over C1, . . . , Cn in the class diagram based
on the semantics of C1, . . . , Cn. Event decomposition may be needed; however,
it should be a valid refinement.

5. Attributes of class C are partitioned over C1, . . . , Cn in the class diagram based
on event partitioning and the semantics of C1, . . . , Cn.

6. Invariants and state machines of class C are distributed according to events and
attributes partitioning in the class diagram. Invariant distribution of annealing
as subtyping is the same as that of annealing as association.

7. The associations of class C are distributed over C1, . . . , Cn based on the seman-
tics of C, C1, . . . , Cn.

8. Gluing invariants are devised in the same way as those of annealing as associa-
tion.
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9. A new context is added into the package diagram in the same way as that of
annealing as association.

3.1.3 Shared-Attribute Annealing

For better understanding of annealing with shared-attribute style, we first give a sam-
ple of this style of annealing. In Figure 2, class A has events e1 to e4 and attributes
a1 to a3. The solid lines show which attributes are used by an event. Class A
is decomposed into two new classes B1 and B2 based on shared attribute a2. At-
tributes like a2 that are accessed by events of distinct sub-classes (i.e. B1 and B2)
are called shared attributes. Attributes a2 1 and a2 2 have the same properties as
attribute a2. In other words, we rename attribute a2 to a2 1 and a2 2 because we
cannot have attributes with the same name in different classes in UML-B tool [19].
Events e2 and e3 must be distributed over B1 and B2. Thus, we consider part of e2
which relates to a2 as event e2 1 of B2 and also, part of e3 which relates to a2 as
event e3 1 of B1. The following sequence corresponds to shared-attribute annealing
of class C to classes C1, . . . , Cn:

1. A new machine (refinement machine) which refines the existing machine (ab-
stract machine), the class diagram of which contains class C, is introduced in
the package diagram.

2. Classes C1, . . . , Cn are introduced in the class diagram of the refinement machine
defined in the previous step.

3. Events of class C are partitioned over C1, . . . , Cn.

4. Attributes of C are distributed according to event partitioning. A shared at-
tribute sa is renamed to sa i in each class Ci (i: 1..n) which should have sa.

5. Invariants of C are distributed over C1, . . . , Cn. Invariant distribution of shared
attribute annealing is the same as that of annealing as association. It should be
noted that shared attribute renaming must be performed.

6. State machines of C are distributed according to event partitioning and also by
applying state grouping and flattening techniques.

7. Parts of events are built in C1, . . . , Cn. If e1 is an event of Ci (i: 1..n) that
modifies a shared attribute sa i, then an event is built from e1 in each sub-class
Cj (j: 1..n) where sa j is accessed (sa i and sa j have been obtained from a same
attribute sa).

8. Predicates that say each attribute or association of class C, except the shared
attribute, is considered in one of classes C1, . . . , Cn are regarded as gluing
invariants in the refinement machine. For shared attribute sa, predicates that
say sa i in each class Ci (i: 1..n) are identical to sa in class C are also considered
as gluing invariants in the refinement machine.

9. A new context is introduced in the package diagram that extends context seen by
the abstract machine. The context diagram of the new context contains a new
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ClassType for each class Ci (i: 1..n). Also, the refinement machine sees the new
context.

e 4e 3

a 3a 2_2

e 2_1e 2e 1

a 1

a 2

e 3_1

a 2_1

Class B1

a 1

Class B2

Class A

a 3

e 1 e 2 e 4e 3

Figure 2. Shared attribute annealing of class A to classes B1 and B2

3.1.4 Shared-Event Annealing

For better understanding of annealing with shared-event style, we first give a sample
of this style of annealing: Figure 3 shows annealing of class A based on shared
event e2. In order to perform this type of annealing, event e2 must be decomposed
into e2 1 and e2 2. Event e2 1 is part of event e2 that relates to a1, and event e2 2
is part of event e2 which relates to a2. The following sequence must be regarded for
shared-event annealing of class C to classes C1, . . . , Cn:

1. A new machine (refinement machine) which refines the existing machine (ab-
stract machine), the class diagram of which contains class C, is introduced in
the package diagram.

2. Classes C1, . . . , Cn are introduced in the class diagram of the refinement machine
defined in the previous step.

3. Attributes of C are partitioned over C1, . . . , Cn.

4. Events of C are distributed over C1, . . . , Cn according to attribute partitioning.
Also, the shared event must be split in order to be regarded in classes which
should have this event.

5. Invariants and state machines of C are distributed similar to what was done in
annealing as association.

6. Predicates that say each attribute or association of class C is considered in one of
classes C1, . . . , Cn are regarded as gluing invariants in the refinement machine.
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7. A new context is added into the package diagram in the same way as that of
shared-attribute annealing.

Class A

e 4e 3e 2e 1

a 3a 2

Class B1

e 4e 3e 2_2e 1

a 3a 2a 1

e 2_1

a 1

Class B2

Figure 3. Shared event annealing of class A to classes B1 and B2

3.2 Introduce Subtyping

We propose introduce subtyping to reuse data constructs and operations in classes.
This rule offers a means to build a subtyping hierarchy from existing classes. It is
similar to the Fowler’s Extract Hierarchy refactoring rule, which creates a hierarchy
of classes in which each subclass represents a special case [10]. Introduce subtyping
rule creates a subtyping relationship between any two classes in the specification,
as long as the addition of the relationship does not result in a circular dependency.
This rule not only adds subtyping relationship, but also hides (using existential
quantifier) every feature of the supertype in order to preserve the meaning of the
specification.

In order to introduce subtyping relationship between two existing classes C1

and C2 when C2 is semantically a subtype of C1 (by semantically, we mean that the
subtyping relationship does not exist in the diagram; however, the specifier can infer
this relationship between C1 and C2 by referring to their meanings, and thus, he/she
can create subtyping relationship between the classes using the introduce subtyping
rule), we must first define a new machine (refinement machine) which refines the
existing machine (abstract machine) the class diagram of which contains classes C1

and C2. Classes C1 and C2 are introduced in the class diagram of the refinement
machine as refined classes which have the same attributes, associations, events and
invariants as those existing in the class diagram of the abstract machine. Next, we
draw a supertype connection from C2 to C1 and then hide all inherited features of C1

in C2. Also, the refinement machine sees the context seen by the abstract machine.
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To reuse features of the supertype, the designer must make further changes to the
subtype to unhide, and perhaps rename, the features inherited from the supertype.

4 PROOF SKETCH

The following theorem demonstrates that the annealing rule is behavior preserving.

Theorem 1 (Behavior Preserving). For a given UML-B class diagram umlbs, let
umlbd be a UML-B class diagram obtained after applying annealing on umlbs. Then,
we have U2B (umlbs) REF U2B (umlbd), where U2B (s) denotes the Event-B
specification generated from UML-B specification s using U2B [25]. In addition,
REF is used as the refinement notation.

To prove this theorem, we use the notion of refinement in Event-B [26] because
proof obligations for UML-B specifications are done using Event-B prover in Rodin.
Also, automatic conversion of UML-B specifications to Event-B specifications is
available considering U2B. Therefore, we first convert UML-B class diagrams be-
fore/after applying annealing to Event-B specifications using U2B translation rules.
After checking consistency of machines [27] in the Event-B specifications, we use
Event-B refinement rules to prove that the Event-B specification, which is the trans-
lation of the class diagram after applying the refactoring rule, is a valid refinement
of the Event-B specification, which is the translation of the class diagram before
applying the refactoring rule.

As a limitation of our work, we do not consider state machines in our proofs
since we have only concentrated on class diagrams and context diagrams in this
paper. In all of the class diagrams, we use the following conventions:

1. C CT denotes the ClassType of class C. Similarly, Ci CT denotes the ClassType
of class Ci.

2. C Attributes, C Events and C Invariants denote the attributes, events and in-
variants of class C, respectively. Similarly, Ci Attributes, Ci Events and Ci In-
variants denote the attributes, events and invariants of class Ci, respectively.

3. Ci Associations denotes the associations of class Ci.

4. type (Attribute a) returns the type of attribute a, and GetAssEnd (Attribute
a) returns the name of the class at the end of association a.

For simplicity, we assume that the class diagram before applying this rule is in
a machine (called M) that has only one class named C, and also it has only one
ClassType named C CT; considering other classes in the class diagram does not
affect our proof. Figure 4 shows the mentioned class diagram. The next subsection
presents the translation of UML-B class diagrams before/after applying annealing
rules to Event-B specifications using U2B translation rules.
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Figure 4. The class diagram considered before applying annealing

4.1 Translation to Event-B

Figure 5 shows Machine M obtained from the translation of the class diagram in
Figure 4 using U2B translation rules.

Figure 5. Machine M

Now, suppose that we want to anneal class C represented above to classes C1,
. . . , Cn using annealing as association. Also, suppose that Cn holds references to
C1, . . . , Cn−1. If CD is the class diagram obtained after applying this style of
annealing, Machine MAA in Figure 6 is resulted from the translation of CD using
U2B translation rules.

Similarly, suppose that we want to anneal class C to classes C1, . . . , Cn (Cn

is a subtype of classes C1, . . . , Cn−1) using annealing as subtyping. Machine MAS

in Figure 7 is obtained from the translation of the class diagram after annealing
as subtyping using U2B translation rules. Finally, Machines MSAA and MSEA in
Figures 8 and 9 are resulted from the translation of the class diagram after shared-
attribute annealing and shared-event annealing using U2B translation rules.



424 M. Najafi, H. Haghighi, T. Zohdi Nasab

Figure 6. Machine MAA

4.2 Proof in Event-B

In this subsection, we prove that the Event-B specification corresponding to the
class diagram after applying the refactoring rule is a valid refinement of the Event-B
specification corresponding to the class diagram before applying the refactoring rule.

Figure 7. Machine MAS
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Figure 8. Machine MSAA

4.2.1 Proof for Annealing as Association

Lemmas 1 to 3 below demonstrate that MAA is a valid refinement of M.

Lemma 1 (Attribute Refinement). Attributes in MAA are valid refinements of at-
tributes in M.

Figure 9. Machine MSEA
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Proof. MAA dropped abstract variable C of machine M, kept C Attributes in C1,
. . . , Cn, and introduced new variables. All of the mentioned changes are valid
refinements in Event-B; it should be noted that new variables (Ci Attributes except
that associations from Cn to Ci (i: 1..n − 1)) refine abstract variables (C Attri-
butes). 2

Lemma 2 (Event Refinement). Events in MAA are valid refinements of events
in M.

Proof. As we said in the steps of annealing as association, Cn has all events of C
but in different specifications (i.e. promotion); therefore we can conclude that these
events refine corresponding events in machine M. On the other hand, all of the events
of C are distributed in C1, . . . , Cn−1; hence, these events refine their corresponding
events in machine M. So, action simulation proof obligations of Event-B [27] are
proved. Suppose that event e exists in class C. So, it exists in machine M, class Cn

and also one of the classes C1, . . . , Cn−1. Using U2B translation rules to translate
the class diagram obtained after applying annealing as association results in one
event e in machine MAA which is equivalent to the conjunction of e in class Cn and
the instance of the same event existing in one of classes C1, . . . , Cn−1. Due to the
fact that the mentioned two events refine each other, we conclude that event e in
machine MAA refines event e in machine M, too. Thus, if correct initializations of
variables are performed in INITIALIZATION, we can conclude from all of the above
statements that these refinements are valid in Event-B. 2

Lemma 3 (Invariant Preservation). Invariants are preserved and properly devised
to relate MAA and M.

Proof. Events in machine MAA preserve invariants of C1, . . . , Cn which are invari-
ants of C itself. Also, since new variables (Ci Attributes except that associations
from Cn to Ci (i: 1..n − 1)) are refinements of abstract variables (C Attributes),
and events in M hold invariants related to abstract variables, we conclude that the
events in MAA hold invariants related to attributes of classes as well. Furthermore,
new invariants are introduced due to the new ClassTypes and associations: con-
sidering the steps of annealing as association, attributes of each association (i.e.
surjective, injective, total and functional) are determined based on C, C1, . . . , Cn

semantics. We assume that correct initialization of these variables is performed, and
also correct ClassTypes are considered for classes. Thus, the events hold these new
invariants. Finally, we provided gluing invariants to relate MAA and M in the steps
of annealing as association. More precisely, predicates that say each attribute of
class C is considered in one of classes C1, . . . , Cn are regarded as gluing invariants;
see last line of invariants of MAA. 2

4.2.2 Proof for Annealing as Subtyping

Lemmas 4 to 6 below demonstrate that MAS is a valid refinement of M.
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Lemma 4 (Attribute Refinement). Attributes in MAS are valid refinements of at-
tributes in M.

Proof. MAS dropped abstract variable C of machine M, kept C Attributes in C1,
. . . , Cn and introduced new variables. These changes are valid refinements in Event-
B; it should be noted that new variables (Ci Attributes) refine abstract variables
(C Attributes). 2

Lemma 5 (Event Refinement). Events of MAS are valid refinements of those in M.

Proof. Events of MAS are the same as events of M considering the steps of annealing
as subtyping. So, action simulation proof obligations of Event-B [16] are proved. 2

Lemma 6 (Invariant Preservation). Invariants are preserved and properly devised
to relate MAS and M.

Proof. Events in MAS preserve invariants of C1, . . . , Cn which are invariants of C
itself considering that events of MAS are the same as events of M. Furthermore,
some new invariants are introduced in MAS. Assuming that correct initializations
of variables are performed in INITIALISATION, and also correct ClassTypes are
considered for classes, we can conclude that the new invariants are preserved in
events of MAS. Finally, we provided gluing invariants to relate MAS and M in the
steps of annealing as sub-typing. More precisely, predicates that say each attribute
of class C is considered in one of classes C1, . . . , Cn are regarded as gluing invariants;
see last line of invariants of MAS. 2

4.2.3 Proof for Shared-Attribute Annealing

Lemmas 7 to 9 below demonstrate that MSAA (as the machine after applying the
shared-attribute annealing rule) is a valid refinement of M (as the original machine).

Lemma 7 (Attribute Refinement). Attributes in MSAA are valid refinements of at-
tributes in M.

Proof. MSAA dropped abstract variable C of machine M and kept C Attributes in
C1, . . . , Cn, in a way that the shared attribute of the original class is copied and
renamed in the decomposed classes. Other attributes of M are distributed in the
decomposed classes without any changes. All of the mentioned changes are valid
refinements in Event-B; it should be noted that new variables (Ci Attributes) refine
abstract variables (C Attributes). 2

Lemma 8 (Event Refinement). Events of MSAA are valid refinements of those in M.

Proof. Events of MSAA are partitioned over C1, . . . , Cn. For the event that modifies
the shared attribute, the parallel composition of events obtained from decomposition
of the corresponding original event refines the original event. According to the
decomposition rule proposed by Abrial in [28], this is a valid refinement in Event-B.

2
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Lemma 9 (Invariant Preservation). Invariants are preserved and properly devised
to relate MSAA and M.

Proof. Since we distribute invariants in the same manner as in the annealing as
association rule, the argument for invariant preservation is straightforward (we have
already proved that annealing as association is behavior preserving). Events in
MSAA preserve invariants of C1, . . . , Cn which are invariants of C itself. Also, since
new variables (Ci Attributes) are refinements of abstract variables (C Attributes),
and events in M hold invariants related to the abstract variables, we conclude that
the events in MSAA hold invariants related to attributes of classes as well. Further-
more, new invariants are introduced due to the new ClassTypes for each class Ci
(i: 1..n): considering the steps of shared-attribute annealing, variables of each class
are distributed based on event partitioning. We assume that correct initialization of
these variables is performed, and also, correct ClassTypes are considered for classes.
Thus, the events hold these new invariants. Finally, we provided gluing invariants
to relate MSAA and M in the steps of shared-attribute annealing. More precisely,
predicates that say each attribute or association of class C is considered in one of
classes C1, . . . , Cn, and also for the shared attribute sa, predicates that say sa i in
each class Ci (i: 1..n) are identical to sa in class C are regarded as gluing invariants
in the refinement machine. 2

4.2.4 Proof for Shared-Event Annealing

Lemmas 10 to 12 below demonstrate that MSEA (as the machine after applying the
shared-event annealing rule) is a valid refinement of M (as the original machine).

Lemma 10 (Attribute Refinement). Attributes in MSEA are valid refinements of
attributes in M.

Proof. MSEA dropped abstract variable C of machine M, kept C Attributes in C1,
. . . , Cn, and introduced some new variables. These changes are valid refinements
in Event-B; it should be noted that new variables (Ci Attributes) refine abstract
variables (C Attributes). In other words, attributes do not change; they are just
distributed in classes C1, . . . , Cn. 2

Lemma 11 (Event Refinement). Events of MSEA are valid refinements of those
in M.

Proof. All of the events of C except the shared one are partitioned in C1, . . . ,
Cn; hence, these events refine their corresponding events in machine M. The shared
event is decomposed into two events, and its partition depends on the partition of
the variables. When the decomposition occurs, parameters are shared between the
decomposed events. The guard of a decomposed event inherits the guard on the
composed event according to the variable partition [29]. According to the shared-
event decomposition rule proposed by Silva and Butler [29], and since we decompose
an event based on attributes used in that event, we have a valid refinement in
Event-B. 2
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Lemma 12 (Invariant Preservation). Invariants are preserved and properly devised
to relate MSEA and M.

Proof. Since we distribute invariants in the same manner as in the annealing as
association rule, the argument for invariant preservation is straightforward. Consid-
ering that events of MSEA are the same as events of M, except the shared event which
is decomposed, we can conclude that events in MSEA preserve invariants of C1, . . . ,
Cn which are invariants of C itself. Furthermore, for new invariants introduced in
MSEA, assuming that correct initializations of variables are performed in INITIALI-
SATION, and also, correct ClassTypes are considered for classes, it can be asserted
that the new invariants are preserved in events of MSEA. Finally, we provided gluing
invariants to relate MSEA and M in the steps of shared-event annealing. 2

5 EVALUATION

In the first two subsections, we apply our refactoring rules and rules given by
Said [12, 17] to introduce design elements into two abstract functional specifica-
tions written in UML-B. We have used two different specifications in order to show
the applicability of all rules proposed in the paper. In the third subsection, we
compare our work with the most related work.

5.1 Case Study 1: Mass Transit Railway System

We evaluate our refactoring rules through applying them on an adapted study of
the Mass Transit Railway System [30]: we do not consider context diagrams and
state machines in this case study. The mass transit railway network consists of
a set of stations. To travel on the network, a passenger inserts a ticket into a station
entrance barrier and, provided that the ticket is valid for entry, access to the network
is given. The ticket is returned to the passenger after passing through the barrier.
When the destination station is reached, the passenger inserts the same ticket into
the station exit barrier, and at this time, provided that the ticket is valid for the
trip just completed, exit is permitted. Again, after passing through the barrier,
the ticket is returned to the passenger. Also, passengers can purchase several types
of tickets. Figure 10 shows the abstract functional specification of this case study
written in UML-B.

The mass transit railway specified in Figure 10 consists of a set of stations and
a set of tickets. The event startTrip models the effect of inserting a ticket (t) into the
entrance barrier of a station (s) at the system level. Also, the operation finishTrip
models the effect of inserting a ticket (t) into the exit barrier of a station (s). Finally,
the operation reIssueTicket enables a ticket to be reissued.

Class Ticket has two attributes: value denotes the current value of the ticket,
and entryPoint is a set that is either empty or contains the identity of one station
which the ticket is inserted to its barrier. Also, this class has three events: enter-
Station models what happens when a ticket is inserted into a station entrance barrier
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Figure 10. Mass transit railway system specification

and given access to the network, reissue enables a ticket to be reissued according
to the ticket type (single-trip ticket, multi-trip ticket and season ticket which are
determined based on value). Event exitStation models what happens when a ticket
is inserted into a station exit barrier.

This specification is adequate to describe the core functionality of the sys-
tem, but does not represent an appropriate object-oriented design. A good object-
oriented design, and even, a better structured specification would identify stations
as separate objects in the system and encapsulate their functionality. Also, one
could encapsulate common features of ticket types via a specific class, and thus,
reduce the clear redundancy. In the following subsections, we achieve this goal via
the step-wise application of behavior preserving rules introduced in this section.

5.1.1 The First Two Steps: Annealing as Association, Dropping Attribute
(stations) and Adding New Attribute (stationID)

We apply annealing as association to the class diagram in Figure 10. This rule
decomposes class MassTransitRailwaySystem into classes MassTransitRailwaySys-
tem and Station; see Figure 11. Class Station models the stations of the mass
transit railway system, and class MassTransitRailwaySystem models entering and
exiting of passengers from stations. Also, we drop attribute stations: P N and add
new attribute stationID: N to class Station. The new attribute models the station
number.

Now, we show changes needed to be applied to event startTrip after applying
the mentioned rules. Specification of startTrip defined in Figure 11 is as follows:

startTrip
status ordinary
any t, s
where t in tickets
then t.enterStation (s)
end
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Figure 11. The first two steps of the mass transit railway system design process

Specification of event startTrip after applying the mentioned rules becomes as
follows (see item 2 in the sequence of annealing as association in Subsection 3.1.1):

startTrip
status ordinary
any t, s
where t in tickets
then t.enterStation (s.stationID)
end

5.1.2 The Third Step: Annealing as Subtyping

Figure 12 shows the class diagram after applying annealing as subtyping to the
class diagram in Figure 11. This rule decomposes class Ticket into classes Base-
Ticket and SingleTripTicket. Class BaseTicket captures the features common to
tickets, and class SingleTripTicket permits only a single trip and only on the day
the ticket is purchased. We decompose event reIssue into events reIssueST and
reIssue and also event exitStation into events exitStationST and exitStation. In
fact, events reIssueST and exitStationST model reissuing the ticket and exiting the
station for this type of ticket, respectively; these decompositions are valid refine-
ments.

5.1.3 The Final Two Steps: Annealing as Subtyping

We apply annealing as subtyping to the class diagram in Figure 12 in order to
decompose class BaseTicket into classes BaseTicket and MultiTripTicket. Class
BaseTicket still captures the features common to tickets, and class MultiTripTicket
models validity for any number of trips provided that the current value of the ticket
remains greater than zero. Also, we decompose event reIssue into events reIssueMT
and reIssue. Similarly, event exitStation is decomposed into events exitStationMT
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Figure 12. The third step of the mass transit railway system design process

and exitStation. Events reIssueMT and exitStationMT model reissuing the ticket
and exiting the station for this type of ticket, respectively.

Next, we apply annealing as subtyping to the resulting class diagram again. This
rule decomposes class BaseTicket into classes BaseTicket and SeasonTicket. Class
BaseTicket captures the features common to tickets, and class SeasonTicket models
validity for either a week, a month or a year; see Figure 13.

The resulting specification represents an improvement, in terms of design, over
the original specification shown in Figure 10. This is evidenced by the reduction of
redundancy through encapsulating the concept of a station inside a separate class.
In addition, the design decision to introduce BaseTicket to capture the features
common to the tickets is a step toward subtyping concept.

Figure 13. The final two steps of the mass transit railway system design process
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5.2 Case Study 2: Daycare Center

Figure 14 shows the abstract functional specification of the daycare center case study
modelled in UML-B as a class diagram. Classes DaycareContext and Examiner
model examining kids in a daycare center. Examiners (Doctors and Nurses) and
kids are modelled using natural numbers. A set of kids is modelled using the power
set notation. For each examining activity, three major sub activities should be
performed as follows:

1. Giving the kids exam (ExamineKid)

2. Giving the parent’s billing information (GenerateBill)

3. Sending the report to the kid’s parents (CreateReport).

Figure 14. Daycare center specification

Figure 15. Steps 1–2 of the daycare center system design process

Now we use shared-event annealing, annealing as association, add attribute, an-
nealing as subtyping and introduce subtyping in order to introduce design elements
into this class diagram.
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5.2.1 Steps 1-2: Shared-Event Annealing and Adding New Attribute
(Nurse on Duty)

We apply shared-event annealing on CreateReport in the class diagram in Figure 14
(Doctor writes part of the report, and Nurse writes the rest of it). This rule de-
composes class Examiner into classes Doctor and Nurse; see Figure 15. Part of the
event CreateReport related to writing the report by Doctor is considered as event
CreateReport Doctor in class Doctor, and its part related to writing the report by
Nurse is considered as event CreateReport Nurse in class Nurse. Also, we add new
attribute Nurse on Duty to class DaycareContext.

5.2.2 Steps 3-6: Dropping Attribute (Kids), Annealing as Association
and Adding New Attributes

Figure 16 shows the class diagram after dropping attribute (Kids) and annealing as
association. The second rule decomposes DaycareContext into classes DaycareCon-
text and Kid. Class Kid models kids. Also, we introduce new attributes KName
and KAge into class Kid; these new attributes capture name and age of kid.

Figure 16. Steps 3–6 of the daycare center system design process

5.2.3 Steps 7-9: Adding New Attributes (exam fee, dKid and nKid)

We add new attributes exam fee and dKid to class Doctor. We also add new at-
tribute nKid to class Nurse (Figure 17).

5.2.4 Steps 10-12: Annealing as Subtyping and Adding New Attributes
(EName and SSN)

Figure 18 shows the class diagram after applying annealing as subtyping and adding
new attributes. Annealing as subtyping decomposes class Doctor into classes Doctor
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Figure 17. Steps 7–9 of the daycare center system design process

and Employee. Employee models employees in the context (Here, we only focus on
doctors and nurses working in a daycare center). We also add new attributes SSN
and EName to class Employee that capture social security number and name of
employee.

Figure 18. Steps 10–12 of the daycare center system design process
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5.2.5 The Final Step: Introduce Subtyping

We apply Introduce Subtyping on the class diagram in Figure 18 to create a sub-
typing relationship between Employee and Nurse; see Figure 19.

Figure 19. The final step of the daycare center system design process

In this case study, we used some of the rules presented in Section 3. Introduce
subtyping is most effectively applied to link together classes that contain common
features in order to maximize the potential for reuse; for this purpose, the Employee
class is created as a superclass for Nurse and Doctor. In addition, by applying
annealing as association and adding new attributes, the kid class is introduced for
the purpose of achieving single responsibility that is one of the basic principles of
object-oriented design. Through these transformations, we see how the classes reflect
their intended purpose, object-oriented design principles are met more, and the final
design becomes closer to the implementation.

5.3 Comparison with Related Work

To compare our rules, i.e., annealing and introduce subtyping, with their counterparts
in VDM++ and Object-Z, we first consider the following criteria:

• CA: Covered styles of annealing

• P: Has it been proved that the rules are behavior preserving?
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Table 1 shows the comparison for annealing (ANL abbreviates for annealing). As
demonstrated in the previous subsections, all 4 forms of the annealing rule proposed
in this paper are applicable for UML-B specifications.

Criterion UML-B Object-Z VDM++

ANL as association ANS as ANL as
ANL as subtyping association association

CA shared-event ANL ANL as
shared-attribute ANL multiple

inheritance

P Yes Yes No

Table 1. Comparison of annealing

In the previous subsections, we demonstrated the applicability of the proposed
rule for introduce subtyping in UML-B. However, this rule does not exist in
VDM++ [19]. Lano and Goldsack [19] only present formal definition of subtyping,
and they do not propose any introduce subtyping rule. In contrast, an introduce
subtyping rule which is similar to our rule has been added to Object-Z [14]. Mc-
Comb and Smith [14] proved this rule is behavior preserving in Object-Z, but we
did not show the behavior preserving proof of this rule in the current work.

6 CONCLUSION AND FUTURE WORK

In this paper, we introduced two refactoring rules, called annealing and introduce
subtyping, in order to introduce design elements into an abstract functional spec-
ification written in UML-B. We then proved that all proposed styles of annealing
are behavior preserving. Next, as two case studies, we introduced some steps of
the design process into abstract functional specifications of the mass transit railway
system and the daycare center system in UML-B.

As our future work, we are going to

1. provide refactoring rules for other diagrams in UML-B,

2. prove that introduce subtyping is behavior preserving,

3. extend our proofs to contain state machines.
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