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Abstract. Conventional utilization-based power model is effective for measuring
the power consumption of physical machines. However, in virtualized environments
its accuracy cannot be guaranteed because of the recursive resource accessing among
multiple virtual machines. In this paper, we present a novel virtual machine schedul-
ing algorithm, which uses Performance-Monitor-Counter as heuristic information to
compensate the recursive power consumption. Theoretical analysis indicates that
the error of virtual machine power model can be quantitative bounded when us-
ing the proposed scheduling algorithm. Extensive experiments based on standard
benchmarks show that the error of virtual machine power measurements can be
significantly reduced comparing with the classic credit-based scheduling algorithm.
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1 INTRODUCTION

In cloud platforms [1], virtualization technology has emerged as a promising ap-
proach to reducing the energy consumption of high-performance data centers [2, 3].
From the perspective of cloud providers, virtualization technology provides the
mechanisms of server consolidation and virtual machine (VM) migration, which
can be used to enhance the capability of cloud platforms without increasing too
many IT devices [4]. Consequently, massive efforts have been taken to implement
energy management and optimization through various kinds of virtualization-based
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technologies [5, 6, 7]. However, the issue of how to efficiently and accurately measure
the power consumption on per-VM basis still remains opened.

As VM is the basic unit of scheduling and provision in virtualized environments,
knowing per-VM power consumption is the basic prerequisite to achieving the goal of
fine-grained power/energy management [8, 9, 10, 11, 12]. Furthermore, by exploring
the per-VM power usage, cloud providers can charge their clients with more flexible
pricing strategies instead of current fixed pricing schemes [13, 14, 15]. The direct
difficulty of measuring VM power consumption is that a VM cannot be connected
by hardware power meters. So, researchers have to resort to indirect approaches to
measuring the VM power consumption.

Power model technology is the most mentioned approach for VM power mea-
suring [9, 11, 13], which is often based on a simple assumption that the power
consumption of a VM is linear to its runtime resource utilization. However, plenty
of studies indicate that such utilization-based VM power models are insufficient
for implementing fine-grained power/energy management, and the difficulties are
summarized as follows:

• As the physical machine is multiplexed by VM hypervisor, multiple VMs will
compete for common physical devices. Therefore, VM scheduler’s decision will
have significant effects on the per-VM power consumption at runtime [8, 9, 11,
16].

• Many utilization-based power models has several coefficients, which are obtained
through empirical approaches and only suitable for certain kinds of underlying
resources. So they are difficult to be widely applied in heterogeneous distributed
systems [9, 12, 14].

• Recursive power consumption may be complicated when measuring per-VM
power. For example, I/O requests often involve encrypt and decrypt opera-
tions, which often consume a great deal of CPU power. Therefore, it is difficult
to distinguish the power spent on I/O operation from that spent on processor
[8, 10, 14].

To overcome the above difficulties, this work presents a novel VM schedul-
ing algorithm, which uses the Performance-Monitor-Counter (PMC) information
as heuristic to compensate the accuracy loss caused by recursive resource accessing.
As the proposed algorithm is based on relative PMC metrics empirical coefficients
are no longer needed in our VM power model, which makes the proposed approach
being independent of the underlying physical resources.

The rest of this paper is organized as follows: in Section 2, the related work is
summarized; in Section 3, we describe the problem formally and introduce the rela-
tive PMC-based power model; Section 4 presents the proposed heuristic scheduling
algorithm and the theoretical analysis; in Section 5, the experimental results and
evaluations are presented. Finally, Section 6 concludes the paper with a brief dis-
cussion of the future work.
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2 RELATED WORK

Early studies on measuring VM power are often implemented by extending a mon-
itoring adaptor between VM hypervisor and driver modules. For instance, Cherka-
sova et al. presented an approach to measuring the power consumption of virtual
CPU (vCPU), which can be considered as time slices of the physical CPU [16]. In
[8], Stoess et al. presented a two-layer power managing framework for measuring
and controlling the power consumption of virtualized devices. Both studies mainly
focused on measuring the overall power overheads of virtualization layer, none of
them can provide fine-grained VM power measuring mechanism.

To measure the power consumption on per-VM base, several VM metering tech-
niques have been proposed. For instance, Kansal et al. proposed a VM power me-
tering mechanism, namely Joule-meter, which uses software-based power models
to track per-VM power consumption [9]. In [10], Koller et al. investigated various
kinds of VM power modeling methodologies. By performing extensive experiments
on standard benchmarks, they concluded that application’s characteristics are of
significant importance when modeling VM power consumption. In [11], Bohra et al.
presented an empirical VM power model, called VMeter, which is based on an exper-
imental observation that the power consumption of different hardware components
is highly correlated with each other.

Recently, PMC-based power metering techniques have been extensively stud-
ied. In [17], Bircher et al. presented a comprehensive work on using PMCs to model
power consumption in non-virtualized machines. Their experimental results strongly
suggested that selecting suitable PMCs is of critical importance when building PMC-
based power models. In [14], Lim et al. proposed an empirical VM power model on
Intel Core-i7 platform. In this empirical model, PMCs are classified into three classes
and the correlation between these counters are obtained through extensive tests on
various benchmarks. In [13], Bertran et al. conducted massive experiments to in-
vestigate the effectiveness and accuracy of PMC-based power modeling technique in
both virtualized and non-virtualized environments. Their experiments demonstrated
that PMC-based power models are more accurate and stable than utilization-based
power models.

3 PROBLEM DESCRIPTION

In non-virtualized machine, the power model is typically formulated as

P (t) = Pstatic + kcpuUcpu(t) + kramUram(t) + kdiskUdisk(t) + kioUio(t), (1)

where Pstatic is the fixed power consumption as long as the machine is switched on, Uj

is the dynamic utilization of component j, kj is the dynamic power coefficient which
is often obtained by empirical approaches. For the convenience of representation,
we note the power consuming components as set J = {CPU, RAM, Disk, I/O} in
the following sections.
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When a machine is virtualized, its power model can be rewritten as

P (t) = Pstatic +
M∑
i=1

P vm
i (t), (2)

where P vm
i is the dynamic power consumption of VMi, M is the number of active

VMs on this machine. As a VM cannot be connected by hardware power meters, its
actual power consumption P vm

i should be measured in an indirect way. The most
mentioned per-VM power model is as following

P vm
i (t) =

Pstatic

M
+Ri

∑
j∈J

[kjUj(t)], (3)

where Ri is the processor utilization proportion that VM scheduler allocated to
VMi. The VM power model shown in Equation (3) assumes that the static power
consumption is equally shared by all VMs, and the dynamic power consumption
is strictly proportional to Ri, which is decided when creating the VM and obeyed
by VM scheduler during its execution. To keep the power model in Equation (3)
accurate, VM scheduler must satisfy the following condition.∣∣∣∣∣Ui(t1, t2)

Ri

− Uj(t1, t2)

Rj

∣∣∣∣∣ = 0, ∀i, j ∈ {1, 2, . . . ,M}, (4)

where Ui(t1, t2) is the actual utilization consumed by VMi during the time period
[t1, t2]. The Equation (4) implies that VM scheduler must keep the actual utilization
Ui(t1, t2) strictly consistent with its promise Ri for all active VMs. Unfortunately,
none of the current VM schedulers can satisfy this condition, because runtime char-
acteristics of applications have significant effects on the actual utilization. For in-
stance, considering VMi is data-intensive and VMj is computation-intensive, then
it tends to be Ui(t1, t2)/Ri < Uj(t1, t2)/Rj. Therefore, the more general form of
Equation (4) should be as follows:∣∣∣∣∣Ui(t1, t2)

Ri

− Uj(t1, t2)

Rj

∣∣∣∣∣ < ω, ∀i, j ∈ {1, 2, . . . ,M} (5)

It is clear that the accuracy of utilization-based power model depends on the
parameter ω. The bigger value of ω will result in less accuracy. That is

err% =

∣∣∣∣∣P vm
actual − P vm

measured

P vm
actual

∣∣∣∣∣× 100 % ∝ ψ (6)

So, parameter ω can be considered as the upper bound of err% when using
Equation (3) to model VM power consumption. To the best of our knowledge, ex-
isting VM power models can only provide empirical evaluation in term of accuracy,
which means none of them can provide quantitative bounds of measuring error.
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Therefore, the objective of this work is to find an approach that cannot only quan-
titatively evaluate ω, but also reduce it so as to improve the accuracy of VM power
measurements.

4 RELATIVE PMC BASED VM SCHEDULING ALGORITHM

4.1 VM Power Model Based on Relative PMC

In this work, we use PMCs facility to log power-consuming events. Typically, these
PMCs can be categorized into many classes according to their relationship to specific
components, such as CPU, GPU, chipset, RAM, I/O controller and disk. In a virtu-
alized machine, PMC events are firstly propagated between hardware components,
and then they can be logged or profiled on per-VM base through VM Hypervisor
or other utilities at a virtual layer. The framework of PMC-based power modeling
methodology in this work is shown in Figure 1.
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Figure 1. Framework of PMC-based power modeling

As mentioned before, there is only a subset of PMC events that are representative
for modeling the device power consumption. In this work, we select {uOps, Halt,
LLC, TLB, DMA, FSB, Interrupt} as the PMC candidates. Here, uOps is the
counter of executed micro-operations; Halt is the counter of cycles in which clock
gating is active; LLC is the counter of cache missing that occurs at the last-level
cache; TLB is the counter of data missing that occurs in the Translation-Lookaside-
Buffer; DMA is the counter of transactions that originated in an I/O device whose
destination is system main memory; FSB is the counter of accessing to Front-Side-
Bus; Interrupt is the count of interrupts received by CPU. The detailed descriptions
of each PMC can be seen in [18]. To figure out the co-relation between PMCs and
power consumption, a series of tests are performed by using various benchmarks on
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four different kinds of servers. The summary of the results are shown as follows:
Pcpu ∝ uOps− Halt2

Pram ∝ LLC + TLB + FSB
Pdisk ∝ Interrupt +DMA3

PIO ∝ Interrupt +DMA

(7)

Based on the above summary, it is clear that the power consumption of compo-
nents may be co-relative to two or three kinds of PMC events. It is noteworthy that
we do not impose any empirical coefficients in Equation (7), which is of significant
importance for architecture-independence. For the convenience of representation,
we give the following notations:

Ecpu(t1, t2) = uOpst1→t2 − Halt2t1→t2

Eram(t1, t2) = LLCt1→t2 + TLBt1→t2 + FSBt1→t2

Edisk(t1, t2) = Interruptt1→t2 +DMA3
t1→t2

EIO(t1, t2) = Interruptt1→t2 +DMAt1→t2

(8)

where Ej(t1, t2) are the PMC events related to component j(j ∈ J) in duration
[t1, t2]. If we define the power model of VMk as

P vm
k (t1, t2) =

∑
j∈J

P vm
k,j (t1, t2), (9)

where P vm
k,j (t1, t2) is the power consumption of component j. Then for a given

machine running multiple VMs, the dynamic power consumption of each VM is
linear to their relative PMC. That is

P vm
k,j (t1, t2) ∝

Ek
j (t1, t2)

Ej(t1, t2)
, ∀j ∈ J, (10)

where Ek
j (t1, t2) is the part of Ej(t1, t2) triggered by VMk.

As shown in Equation (10), we use relative PMC (also called PMC ratio) to
describe VM power model instead of absolute PMC accounts. It is well-known that
mapping the absolute PMC accounts to power consumption is a notoriously difficult
work, which requires not only comprehensive architecture knowledge but also long
training time to obtaining sufficient accurate model [10, 14, 17]. However, by using
the relative PMC, we can overcome these difficulties in a simple manner. It is
noteworthy that the validity of Equation (10) relies on an assumption that all the
workloads on a machine are executed on VMs. This assumption is acceptable for
most modern virtualized servers in cloud datacenters.

4.2 Algorithm Implementation

As mentioned before, classical VM schedulers (i.e. Xen scheduler [19]) mainly
focus on fairness in term of processor utilization. This strategy tends to underesti-
mate VM’s recursive operation, which consequently results in fact that the recursive
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PMC-RPC Algorithm Implementation

1: if VMi is newly created or migrated then
2: Hi := Ri;Li := 1;
3: end if
4: for all active VMi do
5: Wi := Li−Hi

Ri
;

6: end for
7: while processor is available do
8: sort <VM1,VM2,. . .,VMm > in ascending order of Hi, and the results are stored as

<VMk1,VMk2,. . .,VMkm >;
9: assign processor to VMk1 and set its utilization ratio as Lk1 −Hk1;

10: for all un-scheduled VMkn do

11: Hkn := Hkn +
Lk1
−Hk1
Rk1

·Rkn ;

12: Lkn := Lkn +
∑

j∈J−{cpu}E
kn
j

/∑
j∈J−{cpu}Ej ;

13: end for
14: Hk1 := 0;

15: Lk1 := Lk1 +
∑

j∈{cpu}E
k1
j

/∑
j∈{cpu}Ej ;

16: end while

power consumption is often ignored when building VM power model. As a result,
many existing VM power management framework have to use other mechanisms to
measure the non-processor power consumption. For instance, the VM power me-
tering system proposed in [8] has to resort to VM driver to measure disk power
consumption. To take into recursive power consumption, we design a heuristic VM
scheduling algorithm, namely PMC-based Scheduling with Recursive Power Com-
pensation (PMC-RPC), which is based on classical credit scheduling strategy and
uses both the relative PMC account and utilization ratio as heuristic.

In PMC-RPC algorithm, each VMi is associated with a credit value Hi and its
initial value is set as the utilization ratio Ri. Li is an accumulator that records
the relative PMC of VMi, and its initial value is 1. According to the algorithm
implementation, a VM with lowest Hi has the highest scheduling priority. After
each scheduling, the credit value of scheduled VM will be proportional shared by
other VMs (as shown in step 11).

In each scheduling, all VMs will be sorted in ascending order of Hi, which is
used as heuristic of recursive power consumption. More specifically, when a VM is
scheduled, Li will accumulate CPU-related PMC events (as shown in step 15). So, if
the scheduled VM is computation-intensive, the increased Li value will result in more
utilization ratio Li −Hi in its next scheduling. On the other side, if the scheduled
VM is data-intensive, the PMC-RPC algorithm will reduce its utilization ratio in
its future scheduling. As to other un-scheduled VMs, their non-processor PMC
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events will be continually accumulated to Li as shown in step 12. So, PMC-RPC
algorithm not only uses the PMCs information to compensate the recursive power
consumption, it also dynamically adjusts the priority of waiting VMs in a fairness
manner.

There are two cases that need to be discussed here:

1. If the un-scheduled VM is in waiting queue, it will not trigger any PMC event.
So its Li keeps unchanged.

2. If it is performing recursive operation (i.e. DMA, disk access or other I/O oper-
ation), the increased Li will delay its future scheduling according to PMC-RPC
implementation, and its future processor utilization ratio will be increased so as
to compensate such delaying.

4.3 Algorithm Analysis and Discussion

In this section, we firstly present the accuracy that the PMC-RPC algorithm can
provide.

Theorem 1. When using PMC-RPC algorithm, for any VMi and VMj in any time
period [t1, t2], they are satisfying

ω ≤
maxt∈[t1,t2] {Hi(t), Hi(t)}

min {Ri, Rj}
. (11)

Proof. Assume that the PMC-RPC algorithm has been executed k times during
time interval [t1, t2]. Accordingly, the scheduling sequence during [t1, t2] can be noted
as < VMq1,VMq2, . . . ,VMqk >. For any VMi, its Hi(t)(t ∈ [t1, t2]) can be noted as
Hi(n)(n ∈ [1, 2, . . . , k]). According to the PMC-RPC algorithm, for any VMi, Hi(k)
after the kth iteration is formulated as

Hi(k) =
k−1∑
n=1

(
Lqn(n)−Hqn(n)

Rqn

Ri

)
+Hi(1)− Ui(t1, t2), (12)

where qn is the index of the VM being scheduled in the nth iteration during [t1, t2].
So

Ui(t1, t2)

Ri

=
Hi(1)−Hi(k)

Ri

+
k−1∑
n=1

Lqn(n)−Hqn(n)

Rqn

. (13)

Therefore, we have∣∣∣∣∣Ui(t1, t2)

Ri

− Uj(t1, t2)

Rj

∣∣∣∣∣ =

∣∣∣∣∣Hi(1)−Hi(k)

Ri

− Hj(1)−Hj(k)

Rj

∣∣∣∣∣
≤
∣∣∣∣∣Hi(1)−Hi(k)

Ri

∣∣∣∣∣+
∣∣∣∣∣Hj(1)−Hj(k)

Rj

∣∣∣∣∣
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≤
maxn∈{1...k}{Hi(n)}

Ri

+
maxn∈{1...k}{Hj(n)}

Rj

(14)

≤
maxn∈{1...k}{Hi(n), Hj(n)}

min{Ri, Rj}

=
maxt∈[t1,t2]{Hi(t), Hj(t)}

min{Ri, Rj}
.

2

According to Theorem 1, it is clear that the error of utilization-based VM power
model is bounded when using PMC-RPC algorithm. Such an error-bound is related
to utilization ratio Ri and scheduling rank Hi(t) of VMs. Based on the conclusion of
Theorem 1, we can easily obtain the following theorem about PMC-RPC algorithm.

Theorem 2. If R1 = R2 = . . . = Rn, then the overall error bound of per-VM power
measurements can be minimized when using PMC-RPC algorithm.

Proof. Due to
∑
Ri = 1, it is clear that ∀i, j min{Ri, Rj} will be reduced if R1 =

R2 = . . . = Rn. By Theorem 1 and Equation (6), the proof is completed. 2

Theorem 2 indicates that if all VMs are configured to equally share processor
capability, PMC-RPC algorithm can improve the accuracy of per-VM power mea-
surements. This feature is especially useful for those virtualized platforms, which
use fair allocation strategy for VM provision and consolidation.

Next, we present the scheduling strategy of PMC-RPC algorithm by following
analysis.

Theorem 3. In PMC-RPC algorithm, if VMi is scheduled, it must satisfying

min

{
1

Ri

· E
i
J(t1, t2)

EJ(t1, t2)

}
,

where [t1, t2] is the time interval between two successive scheduling of VMi.

Proof. According to the PMC-RPC algorithm, we have the following recursive
formula:

Li(k) = Li(k − 1) +
Ei

J−{cpu}(k − 1)

EJ−{cpu}(k − 1)
, (15)

where Li(k) is the relative PMC account at the kth scheduling, Ei
J−{cpu}(k−1) is the

non-processor PMC account triggered by VMi between the (k − 1)th and kth, and
EJ−{cpu}(k− 1) is the total non-processor PMC account of the sever. By recursively
deducting Equation (15), we can obtain

Li(k) = Li(1) +
k−1∑
n=1

Ei
J−{cpu}(n)

EJ−{cpu}(n)
, (16)
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where Li(1) is the relative PMC account of VMi at time t1. As VMi has the processor
before time t1, Li(1) is the processor-related relative PMC value of VMi during its
last execution. That is

Li(1) =
Ei
{cpu}(1)

E{cpu}(1)
. (17)

By Equation (17), we can rewrite Equation (16) as

Li(k) =
Ei
{cpu}(1)

E{cpu}(1)
+

k−1∑
n=1

Ei
J−{cpu}(n)

EJ−{cpu}(n)
=

k−1∑
n=1

Ei
J(n)

EJ(n)
. (18)

As VMi is not scheduled during [t1, t2), then Ui(t1, t2) = 0 and Ri(1) = 0. By
Equation (17) and Equation (18), it has

Li(k)−Hi(k) =
k−1∑
n=1

Ei
J(n)

EJ(n)
−

k−1∑
n=1

Lqn(n)−Hqn(n)

Rqn

Ri. (19)

Dividing both sides with Ri, we further have

Li(k)−Hi(k)

Ri

=
1

Ri

k−1∑
n=1

Ei
J(n)

EJ(n)
−

k−1∑
n=1

Lqn(n)−Hqn(n)

Rqn

. (20)

As < VMq1 , V Mq2 , . . . , V Mqk > is the scheduling sequence that happened during
[t1, t2), so at time t2,

∑k−1
n=1 (Lqn(n)−Hqn(n)) /Rqn is identical for all VMs. There-

fore, the scheduling strategy of PMC-RPC algorithm can be noted as

min

{
1

Ri

k−1∑
n=1

Ei
J(n)

EJ(n)

}
. (21)

The Equation (21) can be rewritten in time manner, which is shown in the
original theorem. 2

Theorem 4. If R1 = R2 = . . . = Rn, then the scheduling strategy of PMC-RPC
algorithm is Recent Lowest Power First.

Proof. According to Theorem 3, Ei
J(t1, t2)/EJ(t1, t2) is the most recent relative

PMC of VMi. As shown in Equation (10), the power consumption of VMi will be
linear to Ei

J(t1, t2)/EJ(t1, t2), so the VM with the recently lowest power consumption
will be selected by PMC-RPC algorithm. 2

5 PERFORMANCE EVALUATION IN EXPERIMENTS

5.1 Experimental Settings

In our experiments, two kinds of platforms are used with aiming to comparing the
performance on different architectures. The first platform is Intel Xeon E5606 server
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machine with four 2.13 GHz cores, 8 M LLC cache, 16 G memory, and 2.0 T SATA
hard disk. The second platform is Pentium D830 desktop-PC, with of two 3.0 GHz
cores, 2 M LLC cache, 2 G memory, and 160 G IDE hard disk. In both platforms, the
VM hypervisor is Xen version 4.1.2 [21] and operation system is Linux with kernel
version 2.6.2. In the experiments, we use Oprofile [20] to log and statistic PMC
events, and the original reports produced by Oprofile are categorized for individual
VMs.

Five benchmarks are used as basic workloads, including bzip2 [22], mcf [22],
TPC-W [23], Cachebench [24], and IOZone [25]. In these benchmarks, bzip2 and mcf
come from SPECcpu2006 benchmark suite; TPC-W is a representative benchmark
for testing the performance of web servers; Cachebench is designed for measuring the
performance of cache subsystem; IOZone is a file system benchmark that generates
variety of file system operations.

5.2 Comparison of Experimental Performance

To investigate the accuracy of VM power measurements, we need to obtain the
power baseline of each benchmark at first. Therefore, five benchmarks are executed
on two platforms one by one. As the benchmark is the only VM on the platform, the
actual power consumption of each benchmark can be approximately estimated as
the baseline power consumption, which is calculated by Equation (3) with M = 1.
Since the power consumptions of individual VMs will dynamically change during
their runtime period, we sample the CPU’s utilization in each second for measuring
the VM’s power consumption, and the statistical results of each benchmark are
shown in Figure 2.
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Figure 2. Power baseline of experimental benchmarks
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In the following experiments, multiple VMs will be executed concurrently, and
the error of VM power measurements are calculated by Equation (6). We use the
above baseline (shown in Figure 2) to approximate the actual power consumption.
It is noteworthy that VM power consumption can be measured by Equation (3)
or Equation (10). If using Equation (3), VM power is measured by conventional
utilization-based model (UM); if using Equation (10), it is measured by relative PMC
model proposed in this paper. Our experiments will test both power models and
compare them. As to VM scheduling algorithm, we compare PMC-RPC algorithm
with the Xen’s default VM scheduling algorithm [19], which uses utilization ratio as
scheduling strategy (URS). Therefore, the experimental results can be categorized
into following groups:

• URS + UM: using Xen’s default scheduler and utilization-based power model.

• URS + rPMC: using Xen’s default scheduler and relative PMC based power
model.

• PMC-RPC + UM: using PMC-RPC algorithm and utilization-based power
model.

• PMC-RPC + rPMC: using PMC-RPC algorithm and relative PMC based
power model.

In the experiments, we set all VMs equally sharing processor capabilities, that is
R1 = R2 = R3 = R4 = R5 = 20 %. According to Theorem 2, such fairness allocation
strategy will lower down the error bound of power measurements when using PMC-
RPC algorithm. The experiments are categorized as four groups, each using one
of the above four combinations as VM scheduling policy and power consumption
model. In each experimental group, the experiment is conducted two times on
different platforms and the results are compared with the baseline results (as shown
in Figure 2) to calculate the error of power consumption. The experimental results
are shown in Figures 3 to 6.

It is clear that the most distinguishing result is that the error of VM power
measurements exhibits highly co-relationship with the characteristics of benchmarks.
For example, those cpu-intensive benchmarks (bzip2 and mcf) have very lower error
in all cases, while the disk or I/O intensive benchmarks (TPC-W and IOZone)
are difficult to be accurately measured when using URS + UM technique. It is
because those VMs are often blocked by VM hypervisor when performing massive
I/O operations, however the URS + UM technique cannot take such recursive power
into account. When using rPMC model, all the power consumption of physical
components will be accounted. So, it can significantly reduce the error for those
disk and I/O intensive benchmarks. For instance, the error of TPC-W is reduced
from 11.9 % to 5.4 %, and the improvement on IOZone is more significant.

The other experimental result is that the error on desktop platform is higher
than that on server platform in most cases. Two exceptions happen on mcf and
IOZone benchmarks. For the mcf, we notice that it is mostly the cpu-intensive in all
benchmarks, while IOZone is the most disk-intensive benchmark. When running the
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benchmarks on desktop platform, only two VMs can be concurrently executed. So,
the utilization of individual devices (i.e. cpu, ram, disk, I/O) is highly imbalanced
when running mcf and IOZone. As mentioned before, UM based technique has to
account the overall power consumption into the current VMs, which make its error
very high. While on the server platform, there are four cores which allow four VMs
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Figure 5. PMC-RPC + UM

concurrently running at most. Therefore, this significantly balances the measuring
error when using UM power model. While using rPMC model, this increased error
can be reduced by about 25 % for mcf benchmark and 30 % for IOZone benchmark.

A most interesting result happens on the IOZone benchmark running on the
server platform, when we use PMC-RPC scheduling algorithm and utilization-based
measuring model. Its error is dramatically reduced from 12.11 % to 2.14 %. To
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figure out the reason, we check the intermediate data collected during experiments.
The data show that the IOZone benchmark requires almost no processor during all
its execution. So, UM based technique results in very high error, which is especially
worse on server platform. Although rPMC model can reduce part of error, the
disk-related PMC events fail to accurately measure the actual power consumption
when the disk is in overload working state. When using the combination of PMC-
RPC + UM (shown in Figure 5), as the PMC-RPC algorithm tends to select the
VM with least power consumption at recent duration (as shown in Theorem 3 and
Theorem 4), the IOZone benchmark is frequently scheduled and allocated with a very
small processor utilization ratio. Such a scheduling decision is very effective for
those disk or I/O intensive workloads. On the other side, UM model can accurately
measure the power consumption of disk device. So, we obtain the most accurate
power measurements in this case.

By the above experimental results and analysis, we draw the following conclu-
sions:

1. Conventional utilization-based power model is only suitable for pure computa-
tion-intensive workloads (i.e. bzip2), because the VM scheduler can strictly obey
its scheduling principle only in this case;

2. The proposed PMC-base power model is effective to reduce the error of power
consumption measurements, because it enables to mitigate the negative effects
caused by recursive power consumption especially for data-intensive workloads;

3. By combing the PMC-RPC algorithm with PMC-based power model, we cannot
only reduce the power measuring error caused by conventional scheduler but also
mitigate the negative effects of data-intensive workloads on power measuring.

6 CONCLUSIONS AND FUTURE WORKS

In this work, we take efforts on the issue of VM power measuring technology. By
introducing the concept of relative PMC power model, a novel VM scheduling al-
gorithm called PMC-RPC is proposed, which uses relative PMC information to
compensate the recursive power consumption aiming to improve the accuracy of
power measurements. Theoretical analysis indicates that the algorithm can provide
quantitative error bound for VM power measuring. The experimental results ob-
tained from various benchmarks show that the practical error of power measuring
can be significantly reduced when using PMC-RPC algorithm. In the future, we plan
to enhance the PMC-RPC algorithm with QoS-aware capability, because plenty of
non-trivial applications have required cloud platforms providing better QoS perfor-
mance, especially those user-oriented QoS measurements including price, security,
reliability and etc.
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