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Abstract. In the last decades, heuristic algorithms are widely used in solving
problems in different fields of science and engineering. Most of these methods are
inspired by natural phenomena, such as biological behaviours or physical principles.
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In this paper, a new optimization method based on the dynamic of sliding motion
along a frictionless inclined plane is introduced. In the proposed algorithm, a col-
lection of agents cooperate with each other and move toward better positions in
the search space by employing Newton’s second law and equations of motion. Our
method is compared with other popular optimization algorithms and the results on
23 standard benchmark functions show its effectiveness in most cases.

Keywords: Heuristic algorithm, inclined planes system optimization, Newton’s
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1 INTRODUCTION

With advance of science, solving complex optimization problems attracts more re-
search efforts. By increasing the dimensions of optimization problems, the search
space increases exponentially. This makes classical approaches incapable in solving
most of these problems. Over the last decades, new algorithms called heuristics have
been developed [1, 2, 3, 4] to find suitable solutions at a reasonable computational
cost. These algorithms have shown their effectiveness in solving many problems in
different fields of science such as logistics [5], bioinformatics [6], data mining [7],
chemical physics [8], electronics [9], etc.

It is hard (if not possible) to find a mathematical model for heuristic algorithms
search process [7]. Many optimization methods have been proposed in the litera-
ture [1, 2, 3, 4, 11, 12, 13, 14, 15, 16, 17, 18], but there is not a supreme method for
all optimization problems and some algorithms may achieve better results in some
specific cases. This encourages researchers to develop new optimization algorithms.

In this paper, a new optimization algorithm called Inclined Planes system Op-
timization (IPO), based on the dynamic of moving tiny balls on inclined planes is
proposed. The rest of this paper is organised as follows: Section 2 presents a brief
review on previous optimization methods in the literature. In Section 3 the de-
tails of proposed method is described. The experimental and comparison results on
23 well-known benchmark functions are presented in Section 4. Finally, Section 5
draws our conclusion and future works.

2 A BRIEF REVIEW ON HEURISTIC ALGORITHMS

A heuristic algorithm is the way for finding an adequate and quick solution to
a problem without detailed knowledge about the problem [19].

Heuristic algorithms are usually inspired by nature and its physical or biological
processes. A large number of heuristic algorithms were presented in the last decades.
The most popular and famous of these algorithms are Genetic Algorithm (GA),
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Simulated Annealing (SA), Harmony Search (HS), Artificial Immune System (AIS),
Ant Colony Optimization (ACO), and Particle Swarm Optimization (PSO).

GA is formed from the laws of natural selection and genetics based on the Dar-
win’s theory of evolution [22]. SA is designed by using of the process of annealing
in metallurgy [13]. HS is an algorithm mimicking musician’s behaviours in impro-
visation process [14]. AIS is inspired by biological immune systems [12]. ACO is
simulated from the foraging behaviour of real ants when they search for food [3].
PSO simulates the social behaviour in flock of birds in migration [2].

Population-based methods are inspired by the dynamics of social interactions
between individuals. In this procedure, each particle tries to move toward the best
position by using its own previous experience and guidance of its neighbour parti-
cles [23]. Sharing information in population-based algorithms is a common politics,
so each individual shares its information with others in order to guide the swarm to
its goal (optimum position). This cooperation between particles is known as swarm
intelligence, which has significant improvement effect on results of algorithms [3].

This paper investigates a design for a new heuristic algorithm to address various
optimization problems. In the next section, our method will be explained in details.

3 INCLINED PLANES SYSTEM OPTIMIZATION (IPO)

In this section the proposed optimization algorithm is explained in details. This
section is divided into two subsections: at first, the basic concepts and important
explanations are presented for minimization problems. Then, its l-best and g-best
versions are introduced for the best compromise between exploration and exploita-
tion.

3.1 Principles of IPO

The proposed IPO algorithm is inspired by the dynamic of sliding motion along
frictionless inclined surfaces. In IPO, some tiny balls search the problem space to
find near optimal (here, minimum) solutions. These tiny balls in IPO are agents
of the algorithm (like particles in PSO or ants in ACO). The main idea of IPO is
to assign heights to these tiny balls, regarding to their fitnesses. These heights are
employed to estimate the potential energy of each ball that should be transformed
to kinetic energy by achieving appropriate acceleration. In fact, balls would like to
lose their potential energy and to get the reference point(s), which is (are) equal to
the minimum solution(s). Hence, balls accelerate and search the problem space for
better solutions, iteratively (see Figure 1).

Each ball has three specifications: position, height, and angles made with other
balls. The position of each ball is a feasible solution for the problem, and heights of
balls are determined using a fitness function. To estimate an inclined plane on which
the ball is located, angles are calculated by crossing straight lines from center of ball
to centers of other balls. For a minimization problem, angles that emerge between
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Figure 1. An example of problem search space with three balls and estimated inclined
planes

these straight lines and the horizontal line are employed to find the direction and
amount of acceleration of each ball. Consider a system with N balls. We define the
position of the ith ball as the following equation:

~xi = (x1i , . . . , x
d
i , . . . , x

n
i ), for i = 1, 2, . . . , N (1)

and
xmin
j ≤ xj ≤ xmax

j , 1 ≤ j ≤ n (2)

where xdi represents the position of ith ball in the dth dimension in an n dimensional
space. The goal is to determine the location of global minima of objective function
f(~x) defined on the problem space. At the specific time t, angle between the ith ball
and jth ball in dimension d, i.e. φd

ij, is calculated as follows:

φd
ij(t) =

(
tan−1

(
fj(t)− fi(t)
xdi (t)− xdj (t)

))
for d = 1, . . . , n and i, j = 1, 2, . . . , N, i 6= j

(3)

where fi(t) is the value of fitness function (height) for the ith ball in time t. For
reducing computational complexity in IPO, the acceleration of each ball in each
dimension, is calculated separately from other dimensions. According to our experi-
ments, calculating the acceleration in each dimension separately also leads to better
results. Whilst each ball tends to move toward lower heights on each plane, acceler-
ation is evaluated only for balls with lower heights (fitnesses). These accelerations
on various planes are added up to obtain the total acceleration of the ball. It is
known from the Newton’s second law:

Σ~F = m · ~a. (4)

Hence, the acceleration of a moving object on a frictionless inclined plane is calcu-
lated as follows:

a = g · sin(φ) (5)
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where g is constant value of gravitational acceleration, and φ is the angle with respect
to horizontal surface. In the proposed IPO algorithm, the amount and direction of
acceleration for the ith ball at time (iteration) t and in dimension d is calculated as
follows:

adi (t) =
N∑
j=1

U (fj(t)− fi(t)) · sin
(
φd
ij(t)

)
(6)

where U(·) is the Unit Step function:

U(w) =

{
1 w > 0,
0 w ≤ 0.

(7)

In Equation (6), constant g is omitted for reducing the computational costs. IPO
uses the law of motion with constant acceleration for updating positions of balls:

xdi (t+ 1) = k1 · rand1 · adi (t) ·∆t2 + k2 · rand2 · vdi (t) ·∆t+ xdi (t) (8)

where rand1 and rand2 are two random weights with uniform distribution in the
interval [0, 1] to give stochastic characteristic to our algorithm, and vdi (t) is the
velocity of ball i in dimension d, at time t. For controlling the search process of
algorithm, two essential constants named k1 and k2 are used. These constants can
be functions of time (iteration): k1 should be decreased and k2 should be increased
from their initial values. These two parameters balance the trade-off between the
exploration and exploitation of the algorithm. Additional descriptions about these
parameters are presented in the next subsection. vdi (t) is calculated as follows:

vdi (t) =
xdbest(t)− xdi (t)

∆t
(9)

where xbest is the ball with lowest height, i.e. fitness, among other balls in all iter-
ations till current iteration. In fact, Equations (8) and (9) are adopted from the
dynamic of motion with constant acceleration in classical mechanics:

~x =
1

2
~a · t2 + ~v0 · t+ ~x0 (10)

and

~v =
∆~x

∆t
. (11)

In calculating initial velocity in Equation (9), xbest is used in numerator. This change
is applied to the initial velocity because in any iteration, balls have a tendency to
reach to the best individual location in society.

The pseudo code of IPO algorithm is illustrated in Algorithm 1 and its flowchart
is shown in Figure 2.

Algorithm 1 and above mentioned equations show that how the proposed algo-
rithm is related to the mechanical frictionless movements. But for mathematical
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Figure 2. Flowchart of Inclined Planes system Optimization (IPO) algorithm

Algorithm 1 Pseudo code for Inclined Planes system Optimization (IPO) algorithm

Generate randomized population, k1, k2, and other parameters
repeat

Evaluate the fitness (height) of each ball
Calculate angle, acceleration, and the velocity of each ball (Equations (3), (6),

and (9)).
Update the position of each ball (Equation (8)).
Evaluate k1 and k2
Return particles that went out of problem boundaries into problem boundaries

until Meeting the stopping criteria

calculations and coding the algorithm, this is not necessary to impose these compu-
tational costs to IPO. Referring to Equation (5), only sin(φ) have to be measured
and it can be calculated from the Figure 1 without necessity to value of tan(φ), by
this equation:

sin(φd
ij) =

fitj(t)− fiti(t)
R(bi, bj)

(12)

where R(bi, bj) is the Euclidean distance of ith and jth ball in dimension d. Indeed,
only a simple division is needed to evaluate the sin(φ) after computing R(bi, bj).
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It should be mentioned that in both IPO and PSO the optimization is performed
by agents’ movement in the search space; however, the movement strategies are
different. Some important differences are as follows:

• PSO stores best visited positions by each particle for updating the velocity,
but in IPO only the current positions of the agents play an important role in
updating the positions.

• The search mechanisms of these algorithms are different. PSO simulates the
social behaviour of birds and IPO utilizes the dynamic rules of sliding motion
along a frictionless inclined plane.

• In PSO, updating is performed without considering the distance between so-
lutions while in IPO the acceleration is reversely proportional to the distance
between the agents.

• In PSO, updating is performed without considering quality of the solutions and
the fitness values are not important in updating procedure. While in IPO, the
acceleration is proportional to the fitness value and so the agents see the search
space around themselves in the influence of their fitnesses.

• In PSO the direction of an agent is calculated using only two of the best positions,
pbest and gbest. But in IPO, the direction of agent is calculated based on the
overall interactions among all other agents placed below it.

3.2 Exploration and Exploitation in IPO

Exploration and exploitation are two essential concepts that cause optimization al-
gorithms to efficiently search the problem space without being captured in the local
optimums. Exploration reinforces algorithm to search the whole range of problem
space by searching new places (like mutation operator in GA), while exploitation
causes algorithm to search good places locally to find better positions (like selec-
tion operator in GA). For reaching the optimum solution, a good trade-off between
exploration and exploitation is needed.

Usually, an appropriate schedule for good compromise is using exploration in
earlier steps and with the lapse of time, exploitation operator will be subsequently
used more, while the power of exploration will be reduced [11, 24].

In above mentioned IPO, the angle and acceleration of each ball is calculated
regarding all other agents. This version of IPO is called global-best IPO (like gbest
version of PSO). In global-best IPO, the balance of exploration and exploitation is
made by controlling the values of k1 and k2. Equation (8) clearly shows that higher
values of k1 and lower values of k2 cause greater accelerations. This leads to greater
mobility of agents. It means that global searching or exploration occurs with larger
values of k1 and lower measures of k2. On the contrary, if the values of k1 and k2
become smaller and larger, respectively, exploitation is emphasized. Because, in this
case, the mobility of balls is limited and a local search scheme or exploration has
happened.
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In fact, if the acceleration is calculated only by considering the best ball, all other
agents have to trace a specific direction towards the best ball. Since the acceleration
of each ball is estimated regarding all the balls below it, the agent direction is formed
based on the overall interactions by all other agents, placed below of it.

In next Section (Experimental and Comparative Results) an appropriate setting
up of k1 and k2 for having a good trade-off between exploration and exploitation
is proposed for global-best IPO. Another effort for more confident balance of ex-
ploration and exploitation is to introduce another version of IPO, called local-best
IPO. In the local-best IPO, a neighbourhood is defined for each ball and all related
calculations to angle and acceleration for this ball is executed regarding the balls in
its neighbourhood. This leads to a local search for each agent and global search for
the whole population of balls.

4 EXPERIMENTAL AND COMPARATIVE RESULTS

To show the effectiveness and the power of IPO algorithm, it is evaluated on mini-
mizing 23 well-known benchmark functions [25]. Three examples of these benchmark
functions (f2, f9, and f14) are presented in Equations (13), (14), and (15), respec-
tively. Graphs of these functions in two dimensions are also illustrated in Figure 3.

f2(x) =
30∑
i=1

|xi|+
30∏
i=1

|xi| (13)

−10 ≤ xi ≤ 10

min(f2) = f2(0, . . . , 0) = 0

f9(x) =
30∑
i=1

[
xi

2 − 10 cos (2πxi) + 10
]

(14)

−5.12 ≤ xi ≤ 5.12

min(f9) = f9(0, . . . , 0) = 0

f14(x) =

[
1

500
+

25∑
j=1

1

j +
∑2

i=1 (xi − aij)6

]−1

(15)

−65.536 ≤ xi ≤ 65.536

min (f14) = f14 (−32,−32) ≈ 1

(aij) =

(
−32 −16 0 16 32 −32 . . . 0 16 32
−32 −32 −32 −32 −32 −16 . . . 32 32 32

)
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a)

b)

For comparison, the results of two other algorithms are provided: Particle Swarm
Optimization (PSO) as a swarm intelligence technique, and Genetic Algorithm (GA)
as an evolutionary one. This section illustrates and discusses the results obtained by
these three algorithms. Also, comparisons of computational costs of three algorithms
are reported.

The problem setup is provided in the next subsection.

4.1 Problem Setup

In this subsection, the problem and software setup used to generate results are
explained.
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c)

Figure 3. Graphs of benchmark functions in two dimensions: a) f2, b) f9, and c) f14

For applying different algorithms to minimization benchmark functions, Math-
works R© MATLAB R2011a [26] on a PC with 2.0 GHz (two cores) CPU and 1 GB
memory is used. For all test functions, in all algorithms, number of population is
set to 50, number of dimensions is set to 30 (except for functions with fixed num-
ber of dimensions), and default number of iterations is set to 1 000 for f1 to f13
and 500 for f14 to f23. Each algorithm runs until reaching the mentioned num-
ber of iterations and there is no time limitation. More information about specific
setup of functions (i.e. boundaries, etc.) is available in [25]. All algorithms are
initialized by random population. The results are obtained by independent run-
ning each algorithm for 30 times, for each function, and reporting the average of
results.

Genetic Algorithm toolbox of Mathworks R© MATLAB is used here with its de-
fault values except number of generations, population size, and boundaries of func-
tion. The initial population used for Genetic Algorithm is generated by an external
function, which is also used for generating the initial population of IPO and PSO.

Different schedules may be adopted for control parameters (k1(t) and k2(t)) for
IPO. In our experiments these are defined as functions of time (t), as follows:

k1(t) =
c1

1 + exp ((t− shift1) · scale1)
, (16)

k2(t) =
c2

1 + exp (−(t− shift2) · scale2)
, (17)

where c1, c2, shift1, shift2, scale1, and scale2 are constants, experimentally deter-
mined for each function as follows: different combinations of constants with re-
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gard to the structure of function were tested and later the best items were fine
tuned. Figure 4 illustrates an example diagram for k1(t) and k2(t) for 1 000 itera-
tions.
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Figure 4. Control functions (k1 and k2) of IPO search process with c1 = c2 = 1, shift1 =
shift2 = 500, and scale1 = scale2 = 0.02

For PSO, the velocity boundaries are equal to 0.2 of distance between function
boundaries, i.e.:

~vmax = 0.2 · (~xmax − ~xmin) = −~vmin (18)

where ~vmax and ~vmin are vectors of maximum and minimum velocity, respectively,
and ~xmax and ~xmin are vectors of maximum and minimum boundaries of fitness
function, respectively.

To improve the search process of PSO, the inertia weight (w) is decreased from
0.9 to 0.2 linearly with iteration number. Also, c1 and c2, in PSO are adapted
with time from 0 to 2, just like k1 and k2. It means that in the first iterations
the exploration is considered and in the final iterations exploitation is empha-
sized.

IPO, PSO, and GA are evaluated on three sets of benchmark functions which
are discussed in the next subsections.
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4.2 Unimodal Functions

Functions f1 to f7 are unimodal functions. While there are specific methods de-
signed for optimizing these functions, in these cases, we are more interested in the
convergence rate of algorithm. The average of final best fitnesses obtained by GA,
PSO, and IPO over 30 runs are presented in Table 1.

Function GA PSO IPO

F1 468.94 3.72× 10−10 2.64× 10−20

F2 0.31 2.00 2.32× 10−16

F3 1.50× 104 348.77 1.25× 10−4

F4 63.33 2.73 2.99× 10−3

F5 952.36 167.42 29.93

F6 5 175.20 0 0

F7 0.90 2.05× 10−2 1.27× 10−2

Table 1. The average of final best fitnesses for 30 runs of minimizing benchmark functions 1
to 7, number of iterations = 1 000

Table 1 shows that IPO generates better results than GA and PSO in all cases,
which means that the IPO is more effective and powerful than GA and PSO in
unimodal functions. To compare their relative performance against the number of
iterations, Figure 5 is presented. This figure presents the optimization process of
function f4 for three algorithms, from which we can conclude the higher convergence
rate of IPO than GA and PSO.

4.3 Multimodal Functions with Many Local Minima

In multimodal functions with many local minima (f8 to f13), the number of local
minima exponentially increases by increasing the function dimensions. Hence, these
functions are the most difficult to optimize. In multimodal functions with many
local minima, final results that show the ability of algorithm in escaping from local
minima are more important. Table 2 shows the obtained results by GA, PSO, and
IPO over 30 runs in minimizing f8 to f13. These values are the same as Table 1.

Function GA PSO IPO

F8 −9 406.14 −9 102.19 −10 403.51

F9 10.42 44.45 3.59

F10 5.86 6.16× 10−6 0.74

F11 63.85 9.93× 10−5 7.47× 10−3

F12 31.96 3.46× 10−3 6.22× 10−2

F13 8.31 3.66× 10−3 2.93× 10−3

Table 2. The average of final best fitnesses for 30 runs of minimizing benchmark functions
8 to 13, number of iterations = 1 000
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Figure 5. Performance of GA, PSO, and IPO on function f4. Values of 0.72, 2.76, 72.47,
188.51, 0.04, and 0.82 are used for c1, c2, shift1, shift2, scale1, and scale2 constants
in IPO algorithm, respectively

From Table 2 we can see that IPO outperforms GA for all functions, also it
could be seen that IPO obtains better results than PSO on f8, f9, and f13. This
shows that performance of the proposed IPO could be favorable when compared to
other evolutionary and swarm intelligence based methods.

Figure 6 visualizes the process of optimization by three algorithms for f13. In
this figure the ability of IPO in escaping from trapping in local minima and its high
convergence rate can be seen.

4.4 Multimodal Functions with Only a Few Local Minima

Functions f14 to f23 have small dimensions and only a few local minima. Table 3
displays the results of GA, PSO, and IPO in optimizing these functions. These
results are as same as Tables 1 and 2.

For this type of functions, results generated by IPO are better or similar to other
algorithms. Figure 7 shows the performance of three algorithms in optimization
of f15.

This figure shows that IPO also has a high convergence rate in optimizing mul-
timodal low dimensional functions.
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Figure 6. Performance of GA, PSO, and IPO on function f13. Values of 0.45, 2.61, 475.55,
602.85, 0.04, and 0.05 are used for c1, c2, shift1, shift2, scale1, and scale2 constants
in IPO algorithm, respectively

4.5 Comparative Results for Local-IPO and Lbest PSO

Regarding Subsection 3.2, IPO has the capability of confident balance between lo-
cal and global search by introducing the local-IPO (like lbest PSO). In local-IPO,
the calculation of angle and acceleration is executed only for a pre-specified neigh-
bourhood and with respect to the best ball in this area of the search space. This
idea could lead to a good local search and refining the final solutions. To show the
performance of local-best IPO, comparative results with lbest PSO are presented in
Table 4.

In this Table, the obtained overall best fitness for 30 runs of local-IPO and lbest
PSO on the first two functions of each function-group functions are reported. The
results of Table 4 show that in all cases the performances of the proposed IPO are
better than or comparable to lbest PSO.

5 CONCLUSION AND FUTURE WORKS

Increase in the number of dimensions of scientific problems attracts more efforts
for finding new solutions. In this paper, a new heuristic algorithm, called Inclined
Planes system Optimization (IPO) is introduced. IPO is based on the dynamics of
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Function GA PSO IPO

F14 4.12 0.9980 0.9980

F15 2.44× 10−3 1.23× 10−3 4.33× 10−4

F16 −1.0316 −1.0316 −1.0316

F17 0.3979 0.3979 0.3979

F18 3.90 3.00 3.00

F19 −3.8628 −3.8628 −3.8628

F20 −3.2744 −3.2683 −3.2881

F21 −5.2121 −6.0637 −9.8164

F22 −6.8356 −8.1109 −10.0513

F23 −4.6898 −9.7793 −10.0254

Table 3. The average of final best fitnesses for 30 runs of minimizing benchmark func-
tions 14 to 23, number of iterations = 500
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Figure 7. Performance of GA, PSO, and IPO on function f15. Values of 0.2, 0.38, 1.27,
332.67, 0.01, and 0.01 are used for c1, c2, shift1, shift2, scale1, and scale2 constants
in IPO algorithm, respectively

Algorithm f2 f4 f8 f9 f14 f15
local-IPO 1.08× 10−20 1.29× 10−6 −11 498.59 6.11 0.9980 4.07× 10−4

lbest-PSO 9.01 17.93 −5 812.85 158.20 0.9980 6.48× 10−4

Table 4. Results for 30 runs of minimizing some of the benchmark functions for local-IPO
and lbest PSO
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sliding motion along a frictionless inclined plane. In the proposed method, Newton’s
second law and estimated inclined planes are used to evaluate the acceleration of
particles towards better positions in problem search space.

In order to show the effectiveness of our algorithm, we compared its performance
over 23 benchmark functions with GA and PSO. The results have shown that IPO
is quite effective in optimizing these benchmark functions.

Although IPO has shown that it can be so powerful in solving optimization
problems, with a considerable scalability and convergence rate, it is still in its infancy
and can be improved by further research and development efforts. In this article,
convergence of IPO has not proven theoretically, and this can be done as future
works. Also, the performances of the proposed method against practical engineering
problems (e.g. pattern recognition, and image processing) are important topics for
future research.
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