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Abstract. The localization of object parts in the component-based object detec-
tion is among the main tasks to solve. This paper presents several improvements
of the proposed local image descriptor based on Gabor wavelets. Including these
descriptors in the desired application is an ambitious challenge if we take into ac-
count the high number of parameters. Determining of parameters can be very hard
because of their infinite definition range. Defining the filters is done in two stages:
a theoretical consideration narrows the domain and the cardinality of parameters;
this is followed by adequate experiments to select the most characteristic descriptor
for a target image patch. The descriptor is created from a given number of 2D
Gabor filters chosen by the GentleBoost learning algorithm. Comparing the pro-
posed descriptor to those found in the state of the art, we can conclude that the
selected filters are adaptable to any target object. In contrast to this, the majority
of filter-based descriptors have fixed values for the parameters that do not allow
to be ductile to the given object. Parameters fine-tuning allows the descriptor to
be general, and discriminative at the same time. The effect of the following ex-
periments has been analyzed during the investigation: elimination of redundancy
between the weak classifiers, using the LoG interest points in the detection process.
Finally, we propose an acceleration algorithm in order to deter- mine the response
map faster. By means of the descriptor, the response map is created, which ac-
curately localizes the target object part and can easily be integrated in almost all
detection systems.

Keywords: Local descriptor, 2D Gabor wavelets, fine-tuning parameters, response
map, GentleBoost, part-based object model, acceleration algorithm, LoG interest
points, mutual information
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1 INTRODUCTION

In the area of object detection, the term feature is the image patch which differs
from its neighboring pixels and captures a visual attention. In pattern recognition,
features may be pixels, edges, corners, intensity regions or texture changes that
describe only a part of an image; these are so-called local image features. The
descriptor can also refer to the whole image using the information from all of its
pixels; these are the global features. The part-based object model, which uses local
features, has the advantage of handling occlusions or small deformations of the
object.

The descriptor must not be very specific, but not too general either. Local
image descriptors are numerical representations of object parts. They are usually
computed in previously detected interest points. The aim of this is to shorten the
computation time, but it also assumes that the set of interest points has not missed
the target object part. Otherwise, if the interest point detection was left out, an
exhaustive search would have to be used over the image. It would be ideal if detected
features semantically corresponded to the object parts.

2 STATE OF THE ART

The most widespread local descriptors in the specialized literature are the following:
intensity-based descriptors, scale-invariant descriptors, local binary patterns and
filter-based descriptors [1]. The simplest descriptor uses the intensity values of
pixels. In this case, the measure of similarity is the cross-correlation between two
image patches. A disadvantage of this descriptor is a high dimensionality, which
can be reduced, for example, with the PCA method. Another way to reduce the
dimensionality of image patches is to use the so-called ‘bag of words’ [2].

The best-known histogram-based descriptor is HOG [3]. The histogram of gradi-
ents is computed in a dense grid, with a given step for each image. The descriptor is
a histogram of 8 directions and it is also weighted by a Gaussian envelope in a pixel
region. The descriptor contains 128 values: 16 histograms with 8 bins computed in
a so-called pixel block. The SIFT (Scale Invariant Feature Transform) introduced by
Lowe [4] is based on the HOG descriptor. This method has two parts: the interest
point detector and the descriptor that is applied on the detected interest points for
a single scale and orientation. These are determined by the properties of the interest
points. Here, the necessity of dimensionality reduction appears as well, which is why
the PCA-SIFT was introduced [5].

In the state of the art, several authors have used the Gabor wavelets as feature
descriptors [10].

Wiscott et al. [6] or Tamminen and Lampinen [7] define a fixed jet form of
a given number of Gabor filters without any connection to the descriptor and the
target image patch. Vukadinovic and Pantic [8] define 48 filters that are optimized
for surrounding interest points. They determine the descriptor for several well-
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defined facial points. Shen and Bai [9] use the mutual information theory integrated
in the AdaBoost algorithm as an optimized Gabor wavelet selection.

Our proposal is to use Gabor filter-based descriptors as local image descriptors.
The selection of filters with GentleBoost is optimized in order to find the most
appropriate filter for the target image patch.

The paper is organized as follows: the first section is a general presentation of
the local descriptors; the second section describes the state of the art of local de-
scriptors; in the third section, the Gabor filters are defined and the parameter space
is reduced by using certain theoretical relations, while the fourth section experimen-
tally determines the most appropriate descriptors for a given image patch. Finally,
the fifth section presents the results of the experiments. The obtained descriptor is
upgraded based on several improvements brought in this paper.

3 THEORETICAL STUDY

Filter-based descriptors extract certain components of the image. If the whole family
of orthogonal filters is applied, a reconstructible decomposition of the images is
obtained. This means that the image can be represented by its wavelet coefficients
obtained from the decomposition. In this paper, the goal is not a decomposition or
complete reconstruction, but to determine the most adequate set of filters for the
analysed object part. The aim is to find the set of adequate filters that best represent
the image or the target image patch. We chose the Gabor function as a filter
descriptor. It has been neurophysiologically proven that the working principles
of the visual receptive field of mammals may best be compared to Gabor filter
responses. The 2D Gabor wavelets do not represent an orthonormal basis, but in
some conditions, the image reconstruction is possible [11].

One possibility to characterize the neighborhood of a given pixel is to compute
the filter responses of the image patch. The more different the applied filters are,
the better accuracy of the descriptor is obtained.

The response of the filter is actually the wavelet coefficient, which may be ob-
tained by convolving the image I(x, y) with the Gabor filter g(x, y) in a given point
(x0, y0)

C(x0, y0) =

∫∫
I(x0, y0)g(x0 − x, y0 − y) dx dy. (1)

This coefficient describes the neighborhood of the (x0, y0) image point, according to
the Gabor function:

g(x, y) =
1

k
e
−π

[
(x−x0)

2
r

α2
+

(y−y0)
2
r

β2

]
· ej[ξ0(x−x0)+ν0(y−y0)+P ], (2)

where r means the rotation of the envelope surface with the θ0 angle in trigonometric
direction defined by

(x− x0)r = (x− x0) cos θ0 + (y − y0) sin θ0,

(y − y0)r = − (x− x0) sin θ0 + (y − y0) cos θ0.
(3)
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The 2D Gabor function is a plane wave modulated by a Gaussian envelope. Thus
the 2D Gabor filter is determined in a high dimensional space depending on 9 dif-
ferent parameters, namely: 1/k the amplitude of the Gaussian envelope, (α, β) the
standard deviations in both directions of the plane, the rotation angle θ0 of the
Gaussian, (x0, y0) the maximum point of the Gaussian, (ξ0, ν0) the spatial frequency
of the sinusoidal wave, and it is the phase of the wave.

In order to reduce the high dimensionality of parameters, theoretical relations
must be found between the parameters. The easiest way to limit the parameter
domain is in transforming it into the frequency domain. The spatial frequencies
(ξ0, ν0) are expressed in polar coordinates because these measures are much more
intuitive. Thus F0 is the frequency, respectively ω0 is the direction of the sinusoidal
wave

F0 =
√
ξ20 + ν20 ,

ω0 = arctan
ν0
ξ0
.

(4)

An interesting property of Gabor filters is the pure real form of their Fourier
transform (if x0 = y0 = 0 and P = 0, it means that the envelope is centered on the
origin of the coordinate system, respectively the wave starts in the same point)

G(ξ, ν) = exp
(
−π
(
α2 (ξ − ξ0)2r + β2 (ν − ν0)2r

))
. (5)

From the half-magnitude response in the frequency domain, two interesting re-
lations can be deduced [12]

λ =

√
π

ln 2
α

2bw − 1

2bw + 1
, (6)

θ0 = 2 arctan

(
λ

β
·
√

ln 2

π

)
. (7)

The first formula (6) is a relation between the central frequency λ = 1
F0

and the
bandwidth bw, which indicates the number of useful wavelengths taken into con-
sideration. The second formula (7) is the connection of the central frequency F0

and the width of the frequency domain covered, indicating the minimal number of
directions taken into account. The bandwidth is defined in terms of half-magnitude
responses as the log2 difference of minimum and maximum frequencies. Usually, it
is measured in octaves.

bw = log2

Fmax
Fmin

(8)

In order to limit the domain of parameters, we have accepted neurophysiological
assumptions gained from the experiments [12]:
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• the orientation θ0 of the Gaussian envelope (the minor axis α orientation) and
the wave orientation are almost equal ω0 = θ0;

• the biological orientation sensitivity is 10◦ − 40◦; as a consequence, we consider
L = 12 discrete orientations with a step of 15◦ . The orientations are θl = l · θ0
where θ0 = π

L
and l ∈ {0, 1, . . . L− 1};

• the aspect ratio of the filter S = β
α

is between [1, 2], and thus, the envelope
is mostly elliptical; notice that the direction of the plane wave is equal to the
minor axis of the Gaussian;

• the biological half-magnitude frequency bandwidth is between 1 and 1.5, which
is why we limit the bandwidth to a distinct range [1, 2].

The central frequency of the family of filters is usually between F0 ∈ [Fmin, 0.5].
The Fmax < 0.5 pixel/cycle is a consequence of the Nyquist sampling theorem. The
minimum frequency has to be deduced from the dimension of the analyzed image
patch. Let us take the patch dimension to be denoted by 2R, this determines the
used part of the infinity Gabor filter. The neglected part represents an intrinsic
evaluation error ε.

The error is the ratio between the volume of the part used and the whole integral

ε = 1−

∫ R
−R

∫ R
−R exp

(
−2π x

2+y2

β2

)
dx dy∫∞

−∞

∫∞
−∞ exp

(
−2π x

2+y2

β2

)
dx dy

. (9)

Based on the definition of the error, we have deduced a useful relation between the
maximum wavelength and the finite dimension of the filter

λ

R
<

π√
− ln 2 · ln ε

· 1

S
· 2bw − 1

2bw + 1
. (10)

From relation (10) we can deduce the maximum of the usable wavelength λmax, hence
the minimum frequency Fmin. Commonly the frequencies are chosen in geometric
progression taking 2–3 frequencies in an octave. It is well known that every patch
has a fundamental frequency in each direction; accordingly, we consider that several
frequencies form the interval [Fmin, Fmax]. Taken the above into consideration, the
9-dimensional space could be reduced to 4 dimensions (λ, θ, bw, S). With a different
set of parameters and by varying the values of λ and θ, we can cover the frequency
space in several ways (Figure 1).

We have proposed a descriptor that describes the patch computing the Gabor
filter on its central point. For a given patch, we may define a huge number of Gabor
filters with different parameters. In order to use only a few of them, the most
representative have to be chosen. The GentleBoost algorithm is applied with this
purpose in mind. The cyclic process selects the best weak classifier which minimizes
the least weighted square error of the classification.
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Figure 1. Covering the frequency domain with partial lapped filters

The weak classifier is defined as the difference of object probability and non-
object probability. Its value represents the confidence value of the decision. A weak
classifier can be implemented with a simple regression stump with 3 parameters
(a, b, θ).

ŷ = a · (x > θ) + b =

{
a+ b, if x > θ

b, otherwise
(11)

After the selection of the weak classifier, we finally get the strong classifier

signH(x) = sign

(
T∑
t=1

ht(x)

)
. (12)

A fine-tuning of the parameters is done in the training process, where the Gentle-
Boost algorithm selects the filters based on positive and negative examples. The
performance of the selected filters is measured on a set of validation images. The
descriptor contains as many selected filters as needed to achieve the expected per-
formance.
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3.1 LoG Laplacian of Gaussian Detector

This detector has been invented by Lindeberg [16] and is used for blob-like fea-
ture detection. The operator is obtained by the second order derivative filter, the
Laplacian smoothed by a Gaussian. The analytical form of the 2D filter is

∇2G =
x2 + y2 − 2σ2

2πσ4
e(−x

2+y2)/2σ2

. (13)

It can be observed that this is a negative kernel. It has a strong negative peak in
the center and a positive ring surrounding it (Figure 2).

Figure 2. Bidimesional LoG filter

Modifying the scale variable σ, it searches for the maximum similarity of the
image region on which it is applied. It is a scale-invariant blob detector because it
detects the scale of the region by computing the scale space extrema of a certain
point. The LoG responses are therefore given in a descending order.

3.2 Mutual Information

Mutual information measures the mutual dependence of two random variables,
X and Y . It can be computed from the marginal probabilities p(x), p(y) of the
two variables and the joint probability p(x, y).

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log2

p(x, y)

p(x)p(y)
. (14)
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The mutual information can be expressed in terms of the marginal H(X), H(Y )
and conditional H(X, Y ) and/or joint entropies H(X|Y ), H(Y |X) as well:

I(X;Y ) = H(X)−H(X|Y )

= H(Y )−H(Y |X)

= H(X) +H(Y )−H(X, Y ).

The probabilities in the case of discrete variables can be computed by the number
of outcomes for a given value divided by the number of total samples in the training
set. These can be easily obtained by computing the 1D histogram and 2D histogram
of discrete values from the training set.

4 FINE-TUNING PARAMETERS

Due to biological and theoretical limitations, we have defined a number of 3 024
Gabor filters. The main idea is to choose the most appropriate ones for a given image
patch. To this end, we have used the supervised learning algorithm GentleBoost.
The training data set consists of 730 positive images and 2 000 negative ones. The
test database contains 160 positive and 500 negative images. The eyes are extracted
from the labeled face database, FERET [13]. The patches are cropped uniquely,
obtaining a 33 × 33 sub-image centered on the pupil. The negative images are
randomly acquired from the human face, except for the eye. This condition assures
the ability to discriminate from other facial features.

The experiments concentrate on studying one parameter at a time, restricting
the possible domain of parameter values. The problem is to choose from a huge
number of defined filters those, which are most corresponding to the target object.

The convolution response of a Gabor filter with an image is a complex number.
From a complex number, we may retrieve the amplitude, the argumentum, the real
part and the imaginary part. The first group of experiments concerns the efficiency
and effectiveness of these. In state of the art [6, 7, 9], the distribution of the module
and phase are combined.

Figure 3 presents the distribution of filter responses for positive images and
negative images. The mean value of the negative images is very close to the origin
of the coordinate system. If the mean of positives is distant from the (0, 0) point, it
shows that the filter will be a weak classifier with a good performance (Figure 3 a)).
If the mean value of positives is also (0, 0), then it cannot be used for classification
(Figure 3 b)). In our experiment, we have compared the classifiers based on the
amplitude of responses, basing the responses on the normal distribution. Measuring
the results on the validation set, it could be observed that the difference between
detections parameters of two classifiers was not significant.

Table 1 measures global detection error, false positive detection error and false
negative detection error for the two types of classifiers based on different informa-
tional values and using a given number of filters. Determining distribution param-



1382 Sz. Lefkovits

a)

b)

Figure 3. Separable and non-separable filter responses
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Amplitude Response

No. of cl. 4 8 12 16 20 24 28 32

ErD 10.68 3.43 1.88 1.42 0.97 0.76 0.56 0.36
ErFP 1.92 0.27 0.31 0.31 0.07 0.10 0.00 0.00
ErFN 20.28 6.89 3.60 2.64 1.96 1.48 1.18 0.75

Gaussian Response

No. of cl. 4 8 12 16 20 24 28 32

ErD 7.20 4.97 4.41 4.03 3.57 3.27 3.04 2.89
ErFP 3.14 2.02 2.11 1.90 1.75 1.50 1.35 1.33
ErFN 15.27 10.83 8.98 8.26 7.18 6.78 6.38 5.97

Table 1. Amplitude and normal distribution error rates of filter responses

eters complicates calculations, and because of that, we shall only use amplitude
values hereafter.

The aspect ratio defines the attenuation of the Gaussian envelope in both direc-
tions. Most of the authors [8, 14, 15] consider aspect ratio 1. In our experiments,
we have compared several values for the aspect: S ∈ {0.5, 0.75, 1, 1.2, 1.5, 1.8}. The
results clearly prove that S > 1. Intuitively, it would seem that the direction of
propagation of the plane wave is equal to the major axis of the Gaussian, meaning
that S < 1. But the result of the experiments was just contrariwise: an aspect
value greater than 1. It follows that for a value of 1.8 − 2, the attenuation of the
Gaussian envelope is twice as large in the propagation direction of the wave than it
is in the perpendicular direction. The best classification performances were obtained
for S = 1.8.

The bandwidth defines the number of useful wavelengths taken into considera-
tion. Considering the relation (6) for the interval [−α,+α], we get, as wavelengths,
1.3λ and 2.4λ for bw = 1 and bw = 2, respectively (Figure 4).

The goal in the detection process is to achieve a good detection rate; thus, the
number of misses must be almost 0. Detection error is determined by the training
and test samples from the image database used. At a given error rate, this factor can
be changed by modifying image weights. The false negative error rate needs to be as
small as possible with respect to the false positive rate. This ratio of positive image
weights/negative image weights can be modified in the learning phase by enhancing
positive image weights. The significance of this is to increase the importance of
positive images in the training set.

5 RESULTS AND IMPROVEMENTS OF THE EXPERIMENTS

The best descriptor obtained from the 3 024 predefined Gabor filters contains only
32 filters (Table 2), with its parameters presented in Table 3 and Figure 5. The
abbreviations in this table refer to detection error, false negative and false positive
detection error rates.
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a)

b)

Figure 4. Influence of bandwidth on the defined filter; a) bw = 1, λ/α = 1.3, b) bw = 2,
λ/α = 2.4

We can draw the following conclusion from the results obtained: the detection
error becomes sufficiently stable and has a high performance at the same time with
only 32 filters. If we analyze the selected filters, we may observe that the 8th and
the 15th filters are the same, and the 12th and the 26th are very similar. This fact
suggested to us that we should measure the amount of redundancy between filters.
The results of the measurements are shown in Table 4.

Since 7 pairs have mutual information greater than 0.3, the elimination of these
filters can presumably bring new improvements in the classifier. We have modified
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Figure 5. Descriptor performance
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No.
λ θ[◦] bw

of cl.

1. 18 15 1.5
2. 10 135 1.0
3. 4 90 2
4. 5 15 1.0
5. 14 0 1.5
6. 4 60 1.0
7. 11 60 1.5
8. 22 15 1.0
9. 6 150 1.0

10. 6 60 2.0
11. 4 120 2.0
12. 11 0 1.0
13. 4 165 1.0
14. 12 90 1.0
15. 22 15 1.0
16. 18 45 1.0

No.
λ θ[◦] bw

of cl.

17. 8 45 2.0
18. 11 120 1.0
19. 16 15 2.0
20. 6 165 1.0
21. 9 45 1.0
22. 8 60 1.0
23. 5 135 1.0
24. 22 15 2.0
25. 4 60 1.0
26. 10 0 1.0
27. 4 120 2.0
28. 5 30 1.0
29. 16 75 2.0
30. 9 135 1.0
31. 9 90 1.0
32. 22 30 1.0

Table 2. Descriptor parameters

No. of cl. 4 8 12 16 20 24 28 32

ErrD 12.00 5.42 3.56 2.64 2.02 1.92 2.05 1.71
ErrFP 1.42 0.94 1.10 1.10 0.79 0.79 0.79 0.31
ErrFN 22.10 9.70 5.90 4.10 3.20 3.00 3.25 3.05

Table 3. Descriptor performance

the GentleBoost algorithm in order to get rid of the classifiers which have a high
mutual information with the previously selected information. A similar algorithm
had been used in a face recognition system by Shen and Bai [9]. The parameters
of the resulting classifiers are illustrated in Table 5, and their performance in Ta-
ble 6. The measurements show that in the case of a small number of filters, the
elimination of redundancy does not bring a considerable improvement to perfor-
mance.

The descriptor created does not only act as a descriptor, but it is used as a clas-
sifier as well. Applying it for each point of the image (Figure 6 a)), we get the
response map (Figure 6 b)).

The positive values represent object detections, while the negative ones repre-
sent non-object detections. These values, computed with the GentleBoost learning
algorithm, represent not only a classification decision, but also a confidence value
regarding the decision made.

Figure 7 b) represents the confidence values around an object point. In order to
create the final detector, we must use not only the sign, but the effective value as
well, mostly for positive values. The oscillations that appear have to be eliminated
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No.
λ θ[◦] bw

of cl.

1. 18 15 1.5
2. 10 135 1.0
3. 4 90 2.0
4. 5 15 1.0
5. 14 0 1.5
6. 4 60 1.0
7. 11 60 1.5
8. 22 15 1.0
9. 6 150 1.0

10. 6 60 2.0
11. 4 120 2.0
12. 11 0 1.0
13. 4 165 1.0
14. 12 90 1.0
15. 22 0 2.0
16. 20 45 1.0

No.
λ θ[◦] bw

of cl.

17. 6 30 1.0
18. 22 30 1.5
19. 22 105 1.0
20. 5 105 1.0
21. 7 165 1.0
22. 14 15 1.5
23. 12 120 1.0
24. 8 60 1.0
25. 4 30 2.0
26. 10 60 1.0
27. 9 75 1.5
28. 6 120 1.0
29. 16 45 2.0
30. 4 15 1.0
31. 5 15 2.0
32. 5 0 1.0

Table 5. Irredundant descriptor parameters

No. of cl. 4 8 12 16 20 24 28 32

ErrD 12.00 5.42 3.56 2.74 2.48 2.00 1.94 1.69
ErrFP 1.42 0.94 1.10 1.10 0.94 0.63 0.79 0.63
ErrFN 22.10 9.70 5.90 4.30 3.95 3.30 3.05 2.70

Table 6. Irredundant descriptor performance

in order to use the obtained map as a patch or object detector. For this purpose,
mean filtering must be used so as to obtain a smooth surface 7 b), the peak of
which corresponds to the location of the target object part. The algorithm described
assumes the evaluation of these responses in every point of the image. The proposed
improvement consists of computing the responses only in a regular grid, omitting
lots of uninteresting points. This elimination imposes analysis of the responses in
the neighborhood of the object.

S=1.8
Relative Position −16 −14 −12 −10 −8 −6 −4 −2 0

Positive Horizontal −11.06 −8.77 −7.69 −6.85 −1.05 9.66 8.70 6.43 11.43
Positive Vertical −7.57 −5.39 −0.83 −0.56 1.60 2.41 8.35 13.98 11.43
False positive Horizontal −17.33 −15.54 −16.77 −8.40 −10.44 −4.10 −0.16 2.93 8.27
False positive Vertical −2.25 −0.95 −2.61 −6.84 −4.12 −1.28 4.20 5.31 8.27

Relative Position 0 2 4 6 8 10 12 14 16
Positive Horizontal 11.43 4.35 8.42 6.46 11.96 4.89 −0.26 −2.97 −10.16
Positive Vertical 11.43 1.13 −5.87 −11.11 −15.33 −17.37 −19.29 −16.58 −14.27
False positive Horizontal 8.27 5.77 4.01 7.09 2.29 −4.70 −6.03 −4.60 −3.38
False positive Vertical 8.27 5.41 −6.04 −11.88 −11.75 −14.06 −17.81 −15.69 −15.55

Table 7. Variation of classifier responses horizontally and vertically
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a)

b)

Figure 6. Response map in 2D; a) An example image, b) The corresponding descriptor

Figure 8 a) represents the variation of responses around the positive points hor-
izontally and vertically. Figure 8 b) stands for the same, but around a false positive
detection.

By comparing these charts, we can conclude the following:

• the response values for positive detections are high

• the area covered horizontally and vertically by positive responses is larger than
those of false positives

• the number of points which indicate a detection in a given direction is greater
than 10 pixels

• we define as interesting regions the image regions where the average value of
responses for 9 (3× 3) adjacent points is also positive
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a)

b)

Figure 7. Filtered response map

In order to create the response map we propose the following algorithm (Figure 9)
which scans the image 4 by 4 pixels. The steps of the algorithm are:

• for the positive responses the average value of the 9 surrounding points is eval-
uated

• if this region is an interesting region, then the neighboring 16 points are com-
puted too

• if this is not an interesting region, then the responses of the intermediate points
are not computed by the descriptor, they are simply interpolated from the grid
points
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a)

• finally, a 5 × 5 mean filter is applied for smoothing the 3D response map (Fig-
ure 7).

The peak of the response map obtained in this manner represents the central
point of the detected object. The algorithm described above has a detection rate
of 96 % and improves processing time, computing the response map 14 times faster
than the non-enhanced algorithm.

Another way to reduce computation time is to use so-called ‘interest points’.
Interest points are detected based on certain geometrical properties that present
some kind of consistency, ex. scale or rotation invariance. The LoG (Laplacian
of Gaussian) detector filters the image and selects the parts which have a circular
aspect. Due to the circular aspect of the eye, we have decided to use the LoG op-
erator for eye detection. The experiments done on the training and test sets show
a detection rate of 95 % in the first 200 LoG points per image. The average dis-
tance of the closest LoG to the marked pixel (correct location) is approximately
2.27 pixels. This property suggests the applicability of the LoG detector in the
training process as well as the final detection process. We have created a separate
image database using the LoG points. The patches for positive images were cen-
tered on the LoG point closest to the eye marked, while the strongest LoG regions
of the face were considered negative image patches. Using the same fine-tuning
process presented in the previous section, we have created another classifier and
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b)

Figure 8. Variation of classifier responses; a) In the neighborhood of the object, b) In the
neighborhood of the false detection

descriptor based on LoG points that is also made up of 32 filters. The comparative
results of this descriptor for the training set and test set are presented in Tables 8
and 9. We can conclude that detection results are slightly better for the manu-
ally marked database. With 32 classifiers taken into account, the detection error
is around 1.5 % for marked points and 3.71 % for LoG points. Detection perfor-
mances in the test set are closer: detection error rates of 3.98 % and 3.71 % have
been measured.

With this new descriptor based on LoG points, a response map can be created
with little modification to the filtering algorithm in a similar way. At first, descriptor
responses are computed only in the LoG points. Next, detection continues with the
evaluation of interesting zones (9 adjacent points) where the average value is positive
as well. The efficiency of the algorithm depends on the number of LoG points taken
into consideration. The localization error, measured in pixels, is double compared to
the more accurate descriptor that is based on marked points. The bottleneck of the
LoG-Gabor descriptor is the detection of image patches that do not have a circular
aspect. In these cases, finding and applying other interest point detectors becomes
a necessity.
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Figure 9. Accelerating the response map computation
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LoG

No. of. cl. 4 8 12 16 20 24 28 32

ErrD 11.20 8.83 6.98 5.75 5.26 4.61 4.22 3.71
ErrFN 3.72 2.97 1.41 1.44 1.41 1.03 1.03 0.72
ErrFP 20.18 15.86 13.68 10.93 9.89 8.90 8.05 7.30

Marked Position

No. of. cl. 4 8 12 16 20 24 28 32

ErrD 12.33 5.87 4.08 3.21 2.59 2.06 1.72 1.49
ErrFN 2.29 2.19 1.23 0.86 0.27 0.21 0.03 0.14
ErrFP 23.33 9.90 7.19 5.79 5.13 4.09 3.58 2.98

Table 8. Detection performances of LoG points and marked points on the training set

LoG

No. of. cl. 4 8 12 16 20 24 28 32

ErrD 12.37 7.38 6.00 5.67 4.68 4.17 4.48 3.98
ErrFN 3.63 3.21 3.07 2.23 2.51 2.65 2.37 2.93
ErrFP 21.75 11.85 9.15 9.35 7.00 5.80 6.75 5.10

Marked Position

No. of. cl. 4 8 12 16 20 24 28 32

ErrD 12.64 6.88 5.40 4.61 3.71 3.94 3.71 3.71
ErrFN 3.14 3.62 2.52 2.20 1.57 2.52 2.52 2.36
ErrFP 21.70 10.00 8.15 6.90 5.75 5.30 4.85 5.00

Table 9. Detection performances of LoG points and marked points on the test set

6 CONCLUSION AND FUTURE WORK

This paper presents a local image descriptor based on Gabor wavelets. It presents
several improvements in order to reduce the parameter space of the used filters.
Comparing the proposed descriptor to those found in the state of the art, we can
conclude that the selected filters are adaptable to any target object.

This paper also analyses the redundancy between selected filters. Therefore, we
implement an updated version of the GentleBoost algorithm which eliminates the
filters which have high mutual information with the previously selected ones. To
reduce the computation time we compute the response map only in the so called
LoG interest points. Finally, for more accurate detection, we suggest an acceleration
algorithm in order to determine the response map faster.

Accordingly, the detector obtained is very robust and detects the most appro-
priate instance of the object in a given image with high accuracy (96 %). The com-
putational efficiency of the training and detection process is very time-consuming
because of the convolutions, hence the need for using the presented improvements
in order to reduce the high computational complexity of the system. An important
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contribution is the implementation of these expansions by a cluster of computers
working in parallel.

As to the future we propose to apply the presented descriptor in the same way
for several parts of the object to be detected. For each of these components, we get
a response map that localizes each part separately. The obtained maps have to be
processed using the detection model. We propose the deformable object model [17]
for the most effective application. With this model, false detections can easily be
eliminated using not only this descriptor, but also the special relations between the
parts.
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