
Computing and Informatics, Vol. 34, 2015, 99–137

DATA AND QUERY ADAPTATION USING DAEMONX

Marek Polák, Martin Chytil, Karel Jakubec
Vladimı́r Kudelas, Peter Piják, Martin Nečaský
Irena Holubová (Mlýnková)

Department of Software Engineering
Charles University in Prague
Malostranské náměst́ı 25, 118 00 Praha 1, Czech Republic
e-mail: {polak, necasky, holubova}@ksi.mff.cuni.cz

Abstract. The most common applications of the today’s IT world are information
systems. The problems related to their design and implementation have sufficiently
been solved. However, the true problems occur when an IS is already deployed and
user requirements change. In this paper we introduce DaemonX – an evolution
management framework which enables to manage evolution of complex applica-
tions efficiently and correctly. Using the idea of plug-ins, it enables to model almost
any kind of a data format (currently XML, UML, ER, and BPMN). Since it pre-
serves also mapping among modeled constructs of modeled formats via a common
platform-independent model, it naturally supports propagation of changes to all
related and affected parts.

Keywords: Evolution management, data adaptation, query adaptation

1 INTRODUCTION

The most common application of the today’s information-technology (IT) world are
information systems (IS). There exist various types of ISs, such as decision-support
systems, database-management systems, etc. Currently a very popular kind of IS
are distributed ISs. For instance, such an IS can be based on the Service Ori-
ented Architecture (SOA) [1] and its most common implementation – Web Services
(WS) [2].

The life-cycle of a complex system of applications is similar to the life-cycle of
a single application; however, the complexity is much higher. We need to design nu-

100 M. Polák, M. Chytil, K. Jakubec, V. Kudelas, P. Piják, M. Nečaský, I. Holubová

merous data structures, i.e., schemas, which are usually mutually related or overlaid.
In other words, each application of the system utilizes several views of a common
problem domain. Hence, they cannot be designed separately. In addition, sooner or
later the user requirements of the applications change and, hence, the data struc-
tures they process must be modified respectively – we speak about the problem of
evolution. Due to the relations and overlays, such a modification can influence mul-
tiple parts of the system and we need to maintain them during the whole life-cycle
to be able to propagate the changes to all affected parts correctly and efficiently.
The ability of an IS to adapt to the changes is called adaptability. Even though such
ability is natural, currently it is being solved mostly manually by an IT expert who
knows the IS well and is able to identify all its components that need to adapt. But,
in a complex IS it is not possible for a single person to consider and cover all the
components and aspects.

Another approach, utilized mainly by standardization entities is preservation
of backward compatibility. For example, the open XML standard OpenTravel.org1

currently offers 319 XML schemas which standardize communication in the traveling
community. OpenTravel.org is changed twice a year and the changes are published
in a form of a new version of the XML schemas and a documentation of the changes
in a form of human-readable document. This solution, however, requires tremendous
manual effort from designers to adapt their transformation scripts and potentially
their database, their own XML formats and their program code as well.

To solve the indicated problem we need a robust evolution framework that en-
ables to concurrently model all related parts of the system (i.e., data structures,
ICS and operations) as precisely as possible (i.e., with a rich set of constructs), to
preserve the relations between system components, and to enable respective change
management (i.e., correct propagation of changes to all the affected parts). In this
paper we introduce DaemonX 2 – an evolution management framework, which en-
ables to manage evolution of complex applications efficiently and correctly on the
basis of semi-automatic and formally well-founded strategies. Using the idea of
plug-ins, it enables to model almost any kind of a data format (currently it supports
XML, UML [3], ER [4], and BPMN [5]). Since it preserves relationships among the
modeled constructs, it naturally supports also propagation of changes to all related
affected parts. In this paper we first describe the proposal of DaemonX and its
architecture in general and then we focus on several important and novel aspects
of change management covered by the system. In particular, we show how such
a general system enables to deal with change management of areas which are not
covered in current literature much due to complexity, namely change propagation
from XML schemas to XML queries expressed in XPath [6] and from relational
schemas to SQL [7] queries.

The paper is structured as follows: In Section 2 we discuss the problem of evo-
lution management in more detail and propose the general evolution framework.

1 http://www.opentravel.org
2 http://daemonx.codeplex.com/

Data and Query Adaptation Using DaemonX 101

In Section 3 we describe the architecture of DaemonX. The next two sections are
devoted to selected representatives of successful evolution management using Dae-
monX. First, in Section 4 evolution of queries over evolving XML data is presented.
In the following Section 5 evolution of relational model and SQL queries from the
original paper is described. In Section 6 we describe the related papers relevant to
our research. Finally, in Section 7 we conclude.

2 EVOLUTION MANAGEMENT

Let us consider a company that receives purchase orders and let us focus on the
part of the system that processes purchases. Let the messages used in the system be
XML messages formatted according to a family of different XML schemas. Consider
the two sample XML documents in Figure 1. The former one is formatted according
to an XML format for a list of customers. The latter one is formatted according to
a different XML format for purchase requests. As we can see, the concept of customer
is represented in each of our sample XML formats in a different way (i.e., viewed from
different perspectives). In the first one, different kinds of customers are distinguished
(private and corporate customers). For private customers, elements name, address
and phone are present. For corporate customers, elements name, different addresses
(hq, i.e., headquarters, storage and secretary), and phone are present. In the
second XML document, we do not distinguish different types of customers. We have
only element cust with child elements name, code, ship-to and bill-to. The
last two represent addresses. However, this is a different representation than in the
previous sample. We need an unified representation of shipping and billing addresses
in purchase requests for all kinds of customers.

a) b)

Figure 1. Sample XML documents from the same problem domain: a) XML format for
list of customers, b) XML format for purchase requests

102 M. Polák, M. Chytil, K. Jakubec, V. Kudelas, P. Piják, M. Nečaský, I. Holubová

Let us now consider a new user requirement that an address should no longer be
represented as a simple string. Instead, it should be divided into elements street,
city, zip, etc. Apparently, in a complex system comprising tens or even hundreds
of XML formats, this is a difficult and error-prone task. Even identifying the af-
fected parts is not an easy and straightforward process. For example, we may need
to make the modification only for addresses that represent a place where to ship the
goods (i.e., elements address and storage in the XML format instantiated in the
first schema and element ship-to in the second schema), whereas we do not want
to modify addresses that represent headquarters, etc. As indicated in the introduc-
tion, in a real-world application such a simple change can trigger a huge amount of
necessary modifications. And, in general, the changes can be much more complex
and ongoing process.

A natural and real-world solution of the evolution problem is to rely on an IT
expert who is able to denote the part of the system which is modified and satisfies
the following problems: (P1) to make the required change easily and correctly, (P2)
to identify all affected parts of the system, that needs to adapt too, and (P3) to make
the respective changes of the affected parts semantically correctly. But, in a complex
information system involving hundreds of schemas it is impossible for a single person
to consider and cover all the components and aspects. In addition, since the system
may involve multiple formats, the IT expert must know all of them and be able
(P4) to express the changes also syntactically correctly regarding the selected format.
And, last but not least, the system may naturally grow, e.g., new schemas may come
or be required and, hence, the IT expert must be able (P5) to integrate new schemas
and discover relations to the current ones.

To help to solve the indicated problems P1–P5, in our previous papers [8, 9]
we have described the idea of a five-level evolution management framework. Using
several levels of abstraction it enables one to model all parts of the system regardless
technical details of a selected format. Preserved relations between the levels enable
one to propagate the changes correctly among multiple related and overlapping
schemas. In the first part of our research we focused on its first part – so-called
XML view, i.e., evolution of a set of XML schemas. In this paper we extend the idea
towards other possible formats, i.e., we consider the system in its full generality.
The full architecture of the framework is depicted in Figure 2.

As we can see, the framework can be partitioned both horizontally and verti-
cally; in both cases its components are closely related and interconnected. If we
consider the horizontal partitioning, we can identify five levels, each representing
a different view of the system and its evolution. The lowest level, called extensional
level, represents the particular instances that form the implemented system such
as, e.g., XML documents, relational tables or Web Services that are components
of particular business processes. Its parent level, called operational level, repre-
sents operations over the instances, e.g., XML queries over the XML data expressed
in XQuery [10] or SQL/XML [11] queries over relations. The level above, called
schema level, represents schemas that describe the structure of the instances, e.g.,
XML schemas or SQL/XML Data Definition Language (DDL).

Data and Query Adaptation Using DaemonX 103

XML
documents

XML
documents

XML queries

XML schema

XML PSM
diagram 1

PIM diagram

XML
documents

XML
documents

XML queries

XML schema

XML PSM
diagram m

ER PSM
diagram 1...

PIM
Level

PSM
Level

Schema
Level

Operational
Level

Extensional
Level XML

data
XML

storage
XML
data

SQL DDL

XML
documents

XML
documents
SQL DML

...
ER PSM

diagram n

XML
storage

SQL DDL

XML
documents

XML
documents
SQL DML

BP PSM
diagram 1

BPEL script

...
BP PSM

diagram k

BPEL script

Application Application

XML view Storage view Processing view

Xcase and Exolutio tools
DaemonX tool

Figure 2. Five-level evolution management framework with depicted difference between
DaemonX and our previous tools XCase and eXolutio

Considering only the three levels leads to evolution of each affected schema
separately. However, this is a highly time-consuming and error-prone solution.
Therefore, we introduce two additional levels, which follow the model driven ar-
chitecture (MDA) [12] principle, i.e., modeling of a problem domain at different
levels of abstraction. The topmost one is the platform-independent level which com-
prises a schema in a platform-independent model (PIM schema). The PIM schema
is a conceptual schema of the problem domain. It is independent of any particu-
lar data (e.g., XML or relational) or business process (e.g., Web Services) model.
The level below, called platform-specific level, represents mappings of the selected
parts of the PIM schema to particular data or business process models. For each
model it comprises schemas in a platform-specific model (PSM schemas) such as,
e.g., XSEM [13] schemas which model hierarchical data structures implemented
using a selected XML schema language or ER [14] schemas which are typically im-
plemented using relational schemas. Each PSM schema can be then automatically
translated into a particular language used at the schema level (e.g., XML Schema [15]
or SQL DDL [7]) and vice versa.

Now, having a hierarchy of models which interconnect all the applications and
views of the data domain using the common PIM level, change propagation can be
done semi-automatically and much easily. We do not need to provide a mapping
from every PSM to all other PSMs, but only from every PSM to the PIM. In other
words, instead of N mappings for each model we need only one. Hence, the change
propagation is realized using this common point. For instance, if a change occurs
in an XML schema, it is propagated to PSM schema and, finally, PIM schema. We
speak about upwards propagation, in Figure 2 represented by the white arrows. It
enables one to identify the part of the problem domain that was affected. Then,
we can invoke the downwards propagation and propagate the change of the problem
domain to all the related parts of the system. In Figure 2 it is denoted by the grey
arrows.

104 M. Polák, M. Chytil, K. Jakubec, V. Kudelas, P. Piják, M. Nečaský, I. Holubová

The described ideas have been first implemented as a project called XCase3 and
later re-engineered into a more general system called eXolutio4. DaemonX is another
step in our effort. On the basis of the lessons learned from the two previous systems
focussing on XML view (blue part in Figure 2), we have implemented a general and
extensible tool which supports almost any kind of data format.

3 THE DAEMONX FRAMEWORK

The described architecture was implemented in the DaemonX framework. The
DaemonX project is a plug-in-able tool for data and/or process modeling. It was
developed by the DaemonX team at the Faculty of Mathematics and Physics of the
Charles University in Prague as a student software project. The application was
designed to support user-defined plug-ins which define specific functionality needed
by the author of the plug-in. These plug-ins are then managed by the application
core to provide inter-operability and evolution process between models.

The key abilities of DaemonX are as follows:

• Support for user-defined plug-ins – for model and evolution process

• Support for core functionalities for plug-in inter-operability

• Evolution process management of the models defined in user-defined plug-ins

• Multiple views (diagrams) of the model

• Multi-diagram undo/redo management

3.1 Architecture

The core of DaemonX is based on the Meta-Object Facility (MOF) approach [16],
a standard for model-driven engineering. This architecture pattern provides the
ability to define a model at different layers of abstraction. DaemonX itself defines
the meta-model (M2 layer in MOF). This M2 layer model is used by DaemonX core
as an abstraction over all model plug-ins which the application controls. In the M2
layer there are defined basic classes M2 Construct and other needed structures of
this layer, i.e. M2 Property, which represents a property of the M2 Construct and
M2 Relation, which is a special structure representing connection between two M2
Constructs (for the full list see the developer documentations [17]). The authors
of the particular model plug-in have to inherit from these structures in their model
design and give special behaviors to their model. These particular models form
the next layer, called M1 layer and represents a specific model like the UML class
diagram. Finally, an instance of the particular UML class in the diagram is called
M0 layer. The described idea with framework constructs and an example of design
of the UML class diagram model plugin is depicted in Figure 3.

3 http://xcase.codeplex.com/
4 http://exolutio.com/

Data and Query Adaptation Using DaemonX 105

Next, the design of the framework plugins uses the Model-View-Controller pat-
tern (MVC) [18]. This approach enables the design of a model (for example UML [3])
in logically separated parts. The model consists of application data; view (or multi-
ple views) represents the output of the data for the user; controller mediates input
and actions and manages the model and the view.

The framework itself is designed to be loosely coupled. Hence it is possible to
substitute components of the framework with other components providing different
functionality. The basic framework architecture diagram is depicted in Figure 4.

The framework consists of the three base parts – Core, Evolution Manager (de-
scribed in Section 3.3) and Undo-Redo Manager (see Section 3.4).

M0

Model instance

M1

Concrete model

M2

Base framework
constructs

M3 Class

M2ConstructM2Property M2Relation

+Type
+Name

UML Attribute

+Name
UML Class UML Association

+Name
+Surname

Person1

+Fullname
Person2

Figure 3. A schema of MOF layers and a UML example

3.2 Plug-in Support

As we have mentioned, the strength of DaemonX is based on the idea of plug-ins.
Basically, the application provides two types plug-ins: 1) modeling plug-in and 2)
evolution plug-in.

Modeling Plug-in. This type of plug-in defines a specific model which will be used
by designer (for example the UML class diagram model). In the plug-in there
are defined all behaviors and operations of the model. There are no limitations

106 M. Polák, M. Chytil, K. Jakubec, V. Kudelas, P. Piják, M. Nečaský, I. Holubová

Framework

Framework Core

UndoRedo Manager

Evolution Plugin

Modeling Plugin

Evolution Manager

Modeling Plugin

...

Figure 4. A simple architecture diagram

of the plug-in abilities except for DaemonX interfaces which the plug-in has to
implement.

Evolution Plug-in. The main purpose of this plug-in is to support one-directional
evolution process between two particular modeling plug-ins. As in the modeling
plug-in, there are no limitations of the functionality except for implementation
of the required interfaces. The next restriction is that the plug-in is related to
two modeling plug-ins, called source and target.

3.3 Evolution Process

The most important and novel part of DaemonX is the evolution process which
is ensured by the framework part called evolution manager. Evolution manager
controls the evolution plug-ins defining one-directional description of propagation
changes from a particular source model to a particular target model. This means
that the plug-in knows about all public operations of both the modeling plug-
ins.

Next important thing defined by the evolution plug-in are so-called evolution
references which define how constructs from one model can be related with con-
structs from another model (e.g., that a UML class can be related only to a UML
class, but not to a UML class attribute). Hence, there can be defined a specific be-
havior of the evolution process between the models. The evolution process is based
on an analysis of the operations done in source modeling plug-ins. The result of the
operation analysis is a collection of operations generated by the evolution plug-in
which must be processed in the target models. These changes can be subsequently

Data and Query Adaptation Using DaemonX 107

set as an input of another evolution plug-in to be propagated transitively to other
related model(s). A simple process diagram is depicted in Figure 5.

Framework core analysis
of the generated

commands by the source
plugin

Evolution manager analysis of
the commands generated by

the source plugin. Check if exist
references from the source
model to the target model

Execution of all
commands by the

framework

Generating of commands
for target model by

correspondend evolution
plugin(s)

[no]

[yes]

[target model is
now source model]

Figure 5. Evolution process diagram

The framework core and the evolution manager are loosely coupled, so its im-
plementation can be easily modified. The current implementation of the evolution
manager supports transitive propagation in a tree graph which satisfies that one
diagram can be changed by the evolution process only once and the process can
not get into an infinite loop. The evolution process is semi-automatic. Propagation
is done automatically and the user is asked only if the validations processed before
propagation (while generating operations for target model) fail or if the plugin needs
some user interaction.

The first release of DaemonX contained the basic core framework with experi-
mental implementation of the following model plug-ins:

• PIM Model for modeling of the problem domain,

• XSEM PSM Model for modeling of XML data,

• UML Class Model for modeling general data structures,

• Relational model for modeling relational data, and

• BPMN Model for modeling business processes.

And the following evolution plug-ins between existing model plug-ins were in-
volved:

• UML→ UML,

• PIM→ XSEM PSM,

• XSEM PSM→ PIM, and

• PIM→ relational model.

In Figure 6 there are depicted screen shots of the application and models of
the implemented modeling plug-ins. On the left we can see the PIM model, in the
top-center is the DB PSM (relational) model, in the bottom-center the UML class
model and finally on the right the XSEM PSM model.

108 M. Polák, M. Chytil, K. Jakubec, V. Kudelas, P. Piják, M. Nečaský, I. Holubová

Figure 6. An example of existing modeling plugins

Figure 7. An example of evolution process – initial state

Data and Query Adaptation Using DaemonX 109

Figure 8. An example of evolution process – attribute movement

Figure 9. An example of evolution process – final state

110 M. Polák, M. Chytil, K. Jakubec, V. Kudelas, P. Piják, M. Nečaský, I. Holubová

In Figure 7 we can see an example of three models of an e-shop model design. On
the left there is a PIM model representing base entities of the order, in the middle
there is an XSEM PSM model representing message format and on the right there is
a DB PSM model representing database schema. All these models are interconnected
by references – both XSEM PSM and DB PSM are related on PIM model – they
are targets of the source PIM model. Now suppose that there is a design request
to move attribute address from entity User to entity Detail and split this attribute
to new attributes country, city, address and postCode with appropriate data types.
The benefit of relations between models is that the designer has to update only the
source PIM model and all related models will be updated automatically.

In the first step attribute address is moved to entity Detail as we can see in
Figure 8. The related attributes in the XSEM PSM and column in the DB PSM are
moved automatically by the evolution process. In the second step the ability of the
PIM model to split attribute address to multiple attributes is used. The last step
is to change the data type of the new created attribute postCode from default type
String to Integer. The final form of the models is depicted in Figure 9.

As mentioned before, the propagation is possible thanks to relations between
models, especially between constructs of the model (e.g., a UML class or a UML
association). In DaemonX there exists a special view where it is possible to man-
age appropriate references between constructs; the respective screen shot is shown
in Figure 10. It is divided into three parts. On the left we can choose the source
diagram, on the right the target diagram and in the middle an available evolu-
tion plugin between these two diagrams. Lines between constructs of these models
represent created evolution references.

Figure 10. Screen shot of DaemonX – evolution manager window

3.4 Undo-Redo Management

Another ability of DaemonX is that it is fully command-based. All operations
which are done by the user with the model or view must be defined as commands

Data and Query Adaptation Using DaemonX 111

Figure 11. Screen shot of DaemonX with command stack for undo-redo management

in the model plug-in. This ensures the ability to provide full undo/redo support by
framework part called undo-redo manager. As evolution manager, it is also loosely
coupled with DaemonX.

In Figure 11 we can see a screen shot of DaemonX. On the right-hand side
a command stack for undo-redo management is situated. Commands which can be
undone are marked with blue color and commands which can be redone are marked
with green color.

3.5 Additional Framework Extension

Since the first release, DaemonX was significantly extended within multiple Master
Theses which enrich the first release application core and/or new add modeling and
evolution plug-ins. Thesis [19] added the support for constraint languages over vari-
ous models. Thesis [20] deals with propagation of changes from XML Schema model
to XPath model, i.e., from XML schemas to XML queries (described in Section 4).
Thesis [21] focuses on propagation of changes from relational model to SQL model,
i.e., from relations to SQL queries (described in Section 5). Thesis [22] extends
the undo/redo capabilities with three new algorithms. And, last but not least, the-
sis [23] adds the support for propagation changes among business process models.
We will describe selected extensions, namely those related to evolution management
of operations, in more detail in the following sections.

4 EVOLUTION OF XML SCHEMAS AND QUERIES

Thesis [20] (published in [24]) studies the related problem of evolution and adapt-
ability of XML-based applications. One particular issue that has received much

112 M. Polák, M. Chytil, K. Jakubec, V. Kudelas, P. Piják, M. Nečaský, I. Holubová

attention is the evolution of XML queries. In the context of Figure 2, we focus on
change propagation from the schema level to the operational level of the XML view
(blue part) – see Figure 12.

XML
documents

XML
documents

XML queries

XML schema
Schema
Level

Operational
Level

Figure 12. DaemonX – evolution of XML schemas and XML queries

The work was motivated by the observation that a schema change can cause not
only data inconsistency, but also query inconsistency, i.e., the XML queries over the
original schema and over the new schema may return different results.

To ensure correct change propagation we first need to define a model of XML
schema and XPath queries and respective edit operations. Then, we can study the
impact of the schema changes on the queries. In this section we show cases when
the query can be directly adapted, when user interaction is required and when the
adaptation cannot be decided. For our purposes we have selected only a subset of
XML Schema and XPath.

4.1 Models for XML Schema and XPath

The platform-specific model (PSM) of the platform-specific level enables us to specify
how a part of the reality modeled at the platform-independent level is represented
in a particular XML schema. In addition, the designer works in a UML-style way
which is more user-friendly than editing the XML schema. The model we use is
called XSEM [13].

Definition 1. A PSM schema is a tuple S = (Sc, Sa, Sr, Se, CS , content). Sc,
Sa, and Sr are sets of classes, attributes, and associations, respectively. Se is a set
of association ends. An association is an ordered pair R = (E1, E2), where E1,
E2 ∈ Se are different association ends. Any two associations are disjoint. CS ∈ Sc is
a schema class of S. Function content assigns a class C with an ordered sequence
of all associations with C as the parent.

A PSM schema is displayed as a UML class diagram in an ordered tree layout
which reflects the hierarchical structure of XML data. Note that we omit names,
types and cardinalities from the definition for simplicity. We do not cover all the
schema constructs – they are covered in the full definition of our model [13]. An
actual XML schema can be automatically generated from our PSM schema and vice
versa. A sample self-explanatory PSM schema is depicted in Figure 13.

Data and Query Adaptation Using DaemonX 113

Figure 13. Sample PSM schema

For the purpose of evolution of XPath queries related to XML schemas, there
must exist a mapping between an XML schema and an XPath query. Since the
full XPath syntax is too extensive, we use its subset based on the Positive Core
XPath [25] with several modifications. Our syntax at the current stage does not
consider predicates and we add the operator except to the definition.

X ≡ X|X ‖ /X ‖ X/X ‖ (X) ‖ X except X ‖ A :: L
A ≡ self ‖ child ‖ parent ‖ descendant ‖ ancestor ‖ preceding ‖ following

‖ descendant-or-self ‖ ancestor-or-self ‖ preceding-sibling ‖ following-sibling

where X denotes a location path and A represents an axis. As we can see, the only
one node test is possible – name test, denoted L.

The original Positive Core XPath definition contains predicates, but it can only
be used to test element/attribute occurrence. A query using predicates can be
rewritten to a query without them and still returns the same result set [26]. This
solution has only one problem – the query is transformed to a complex form, not
transparent for the designer at first sight. In the defined syntax, it is also pos-
sible to use all classical XPath abbreviations for axes, such as “∗” for all named
child nodes, “ ” for the child:: axis, “.” for the self::node() step, “..” for the
parent::node() step and “//” for /descendant-or-self::node()/ query.

To be able to map an XSEM PSM diagram to an XPath query, an XPath model
must be defined. We propose a model that follows the ordered tree structure of
the XPath query, it results from the presented syntax and it visualizes its textual
representation. The components of the model can be divided into two parts – nodes
which represent nodes in the location path and edges that represent axes. An edge

114 M. Polák, M. Chytil, K. Jakubec, V. Kudelas, P. Piják, M. Nečaský, I. Holubová

and a node together comprise a location step of the XPath query. The model contains
the following components:

• Node (E) – representing node test, or name test if name is specified

• Axes child (Lch), descendant (Ld), descendant-or-self (Ldos), parent (Lpa), ances-
tor (La), ancestor-or-self (Laos), following (Lf), following-sibling (Lfs), preceding
(Lpr), preceding-sibling (Lprs) and self (Ls)

• Expression node (Eex) representing disjunction (denoted by ‘|’) and except op-
erators. Its first output edge represents the first part of the expression, the
second output edge represents the second part of the expression. The third edge
represents the following part of the query in the sense of:
(first expression operator second expression)/third expression

An expression node with the corresponding query is visualized in Figure 14. In
particular, we use the notation we have proposed in [20] and implemented in [17].

Figure 14. XPath expression node

Since the XSEM PSM schema has a tree structure and the XPath query follows
a tree structure, it is straightforward and natural to map XSEM PSM to a location
path. An example is shown in Figure 15; its formal definition is provided in [20].
As we can see, an axis can intervene not only a single node in the schema tree, but
also a part of a tree – axis element() in the XPath query intervene two nodes in
XSEM PSM model, Item and Product. We say that the part of the tree is hit by
the location step. When the schema evolves, the query is gradually evaluated and

Data and Query Adaptation Using DaemonX 115

Figure 15. Mapping between XSEM and XPath models

the hit parts are compared with the previous version. If a difference is discovered,
the evolution algorithm is launched.

4.2 Evolution Algorithm

Every change in the source XSEM PSM can cause changes in multiple location
steps of the XPath model. All operations which change the source XSEM PSM
schema are atomic. We use the subset of operations for query adaptation identified
in [9] (see Table 1). Naturally, from the atomic operations any composite and more
user-friendly operations can be created.

Following the set of operations in Table 1, we established similar set of operations
for the XPath model – see Table 2.

Formally, let Q be the original query over the original schema S, Q′ be the
adapted query over the evolved schema S ′, R = Q(S) be the result set of Q over S
and R′ = Q′(S ′) be the result set of Q′ over S ′. Let AOXSEM be an atomic oper-
ation done in an XSEM PSM schema (from Table 1) which should be propagated
and let OSXPath be a sequence of atomic operations in an XPath model (from
Table 2) which was generated from AOXSEM to preserve the same results of the
queries with the original and the new XSEM PSM schema. Then R = R′ = Q(S) =
Q′(S ′) = OSXPath(Q)(AOXSEM(S)) if there exists an appropriate propagation algo-
rithm which generates OSXPath.

Due to space limitations, we will use some simplifications. (For full description
see [20].) We will consider changes with a single class corresponding to element x

116 M. Polák, M. Chytil, K. Jakubec, V. Kudelas, P. Piják, M. Nečaský, I. Holubová

Operation Description

α(C) Adds a new PSM class C as the root into the XSEM PSM
diagram.

α(C,Cp) Adds a new PSM class C into XSEM PSM diagram as a child
of parent class Cp. This operation creates an association A
between these classes.

ρ(A) Removes a PSM association A from XSEM PSM diagram.

ρ(C) Removes a PSM class C from XSEM PSM diagram, s.t. C
is a leaf node of the schema tree. When a PSM class C is
deleted, all associations connected to C are deleted too.

δ(C,name) Sets a new name to PSM class C.

ψ(C, direction) Moves a PSM class C to the left or to the right in the se-
quence of its siblings.

µ(C,Cp) Reconnects a PSM class C as child of PSM class Cp.

Table 1. Operations for the XSEM model

Operation Description

α(Eroot) Adds a new root node Eroot into XPath diagram.

α(E,Ep) Adds a new node E into XPath diagram as a child of node
Ep.

α(L,Ep, Ech) Adds a new axis edge L between two nodes, child node Ech

and parent node Ep.

ρ(L) Removes axis edge L from the diagram.

ρ(E) Removes node E and all related axis edges.

δ(E,name) Sets a new name to node E.

Table 2. Operations for the XPath model

and its adding to the existing model. Also, if not specified otherwise, all considered
elements are in a sequence element. In all presented situations we suppose that there
exists no two sibling elements of the same name in S and in S ′. In the description
we will use functions with self-explanatory names, such as parent(), descendant(),
absolute path to(), absolute path to previous sibling() etc.

In the following text we will consider cases when query consistency is violated
(i.e., R 6= R′) and Q′ needs to be adapted accordingly. Since each query can be
divided into separate location steps, we can consider only one location step of the
query Q.

An Example of Adding. This operation adds an element x as a child of
an existing element in S. In the current location step we consider context element
p ∈ S. Propagation of this operation is described in Table 3.

Consider schema in Figure 16 on the left and XPath model of Q = /vehicle/
child :: ∗/registration number in Figure 17 on the left. If element motorcycle is added
as a child of element vehicle (see Figure 16 on the right), sub-query /vehicle/child :: ∗

Data and Query Adaptation Using DaemonX 117

Axis Description

ancestor (-or-self), parent Since x can be added only as a child element (see Table 1),
adding x as ancestor/self/parent of p to the root will be
solved in another location step.

child If Q = p/child :: ∗, then Q′ = p/child ::
∗except absolute path to(x).
Note: If x is inserted into choice or when minOccurs of x
is 0, then Q′ = Q, i.e., no change propagation is needed.

descendant If Q = p/descendant :: ∗, then Q′ = p/descendant/ ::
∗except absolute path to(x).

(-or-self) Note: This modification is possible only if there exists no
sibling element q ∈ S′, s.t. name(q) = name(x). Other-
wise, we should use function position which in combina-
tion with different values of minOccurs disallows precise
selection of x. Therefore, we assume no sibling elements
in S and S′ with the same name.
If Q = p/descendant :: str, then revalidation is needed
only when name(x) = str.

following (-sibling) If Q = p/following :: ∗, then Q′ = p/following ::
∗except absolute path to(x).

preceding (-sibling) If Q = p/preceding :: ∗, then Q′ = p/preceding ::
∗except absolute path to(x).

self Solved in another location step.

Table 3. Refinement – adding element x

will return all elements including motorcycle. Hence, the location step is updated
from child :: ∗ to child :: ∗except/vehicle/motorcycle and Q′ = /vehicle/(child ::
∗except/vehicle/motorcycle)/registration number. The model of Q′ is shown in Fig-
ure 17 on the right.

Figure 16. Schema example for adding

Description of all remaining operations on the XSEM PSM model and their
propagation to XPath Query model is described in [20].

118 M. Polák, M. Chytil, K. Jakubec, V. Kudelas, P. Piják, M. Nečaský, I. Holubová

Figure 17. Query example for adding

4.3 Proof of the Concept and Implementation

The full implementation of the proposed approach was incorporated into the Dae-
monX framework. (Note that the sample figures are screen shots of the system.)
Since there is no existing real-world project that provides similar abilities (see Sec-
tion 6 for more details), it is not possible to compare our solution and results of
others. Also a kind of quantitative evaluation is difficult, since the efficiency is not
our target. Therefore, queries from XPathMark XPath-TF [27] were used to pro-
vide a proof of the concept, i.e., to depict that the approach works as expected. In
addition, since this test set is quite simple, we also created our own more complex
queries using various axes to test abilities of the solution.

Firstly, from the test set we selected tests corresponding to our XPath syntax,
namely A1 – A11, P1 – P11 (rewritten into queries without predicates) and O1, O3,
O4. Examples of the queries are as follows:

//l/ancestor::* (A5)

//l/following::* (A9)

//l/descendant::* (P5)

//l/preceding-sibling::* (P7)

//q/following::*/parent::* except //g/ancestor::* (O1)

All these queries were applied on the respective schema and then all possible
edit operations (see Table 1) were tested. All updates were executed correctly in all
cases, i.e., the data were modified according to respective mapping to queries.

Secondly, to test the approach on more complex queries, we took XML schema
of an order from Amazon AWS [28] used for communication with customers by
Web Services. XSEM PSM model was created from this schema and a set of XPath
queries utilizing all available axes in various combinations was defined. These queries
were automatically mapped to the schema by the DaemonX framework. Examples
of the queries are as follows:

Data and Query Adaptation Using DaemonX 119

//RegionDefinition/parent::ExcludedRegions/parent::*

/Order/ParameterizedUrls/*/*

//AmazonUpsellPreferences/child::*

//ShippingRate/following-sibling::*/descendant::*

//MerchantUpsellItem/Images/preceding-sibling::*

//ShippingMethods/following::*

//RegionDefinition/ancestor::*

//Taxamount/following::Shipping/child::*

//Images/parent::*/ItemCustomDate/ancestor::Cart

Next, we made various changes in the schema to simulate a designer. After
propagation the results of both original and new queries were checked. There were
found no limitations in the evolution process.

5 EVOLUTION OF RELATIONAL SCHEMAS AND SQL QUERIES

Thesis [21] (published in [29]) also studies adaptation of queries with regard to
schemas, but in different domain – it focuses on adaptation of SQL queries with
regard to relational schemas. In the context of Figure 2, we have focused on change
propagation from the schema level to the operational level of the storage view (green
part) – see Figure 18.

Schema
Level

Operational
Level

SQL DDL

XML
documents

XML
documents
SQL DML

Figure 18. DaemonX – evolution of relational schemas and SQL queries

To describe the change propagation mechanism, we again need to define the data
model, the query model, and the respective operations. The description is naturally
similar to the previous case of XML data and queries; however, it corresponds to
the relational model. The visualization of the models in DaemonX is different,
since it corresponds to respective classical visualization strategies. This depicts the
advantage of plug-ins and the universality of DaemonX. It enables to incorporate
a completely different data model and respective operations and apply the same
evolution management strategy.

5.1 Database Model

The database model we consider is based on the relational database model. Such
database model is used as platform-specific. The PSM database model diagram

120 M. Polák, M. Chytil, K. Jakubec, V. Kudelas, P. Piják, M. Nečaský, I. Holubová

consists of Tables, Columns which are included in Tables and Relationships visual-
ized as an arrow leading from the referencing table to the referenced table. The full
description of the model can be found in [21]. We omit the details and examples for
space limitations and general popularity of the model.

5.2 Query Model

For possibility of evolution of SQL queries related to a given database schema, there
must also exist a mapping between an SQL query and a database schema model.
We introduce a graph-based SQL query model which is particularly designed for the
evolution process. We describe its visualization model, limitations and possibilities.
The mapping between SQL query model and the database schema will be introduced
as well. (The algorithm to generate the SQL query from the model can be found
in [21].)

Naturally, the full SQL language syntax was not used in the proposal and for
this reason there exist the following limitations:

• Projection operator ‘∗’ is banned to use. It is always necessary to enumerate all
the columns used in the SELECT clause.

• In queries it is possible to use only simple column enumeration, other expressions
or functions other than aggregate functions are banned to use. This limitation
relates to the CASE construct as well.

• The model does not support UNION, INTERSECT and EXCEPT constructs.

• Each condition used in the SQL query is assumed to be in the conjunctive normal
form (CNF) [30].

But, there are no major limitations to extend the work to cover wider SQL
syntax and with additional propagation algorithms in future research.

The idea of the graph-based model results from papers [31] and [32]. However,
it is adjusted and extended for purposes of our approach. First, each SQL query in
the model is represented as a directed graph with particular properties.

Definition 2 (Query Graph.). A query graph G of the SQL query Q is a directed
graph GQ = (V,E), where V is a set of query vertices and E is a set of query edges.

Definition 3 (Query Model.). A query model M of SQL query Q is a tuple MQ =
(GQ, TV , TE, τV , τE), where GQ is a query graph GQ = (V,E), TV is a set of vertex
types {AggregateFunction, Alias, BooleanOperator, CombineSource, ComparingOp-
erator, ConstantOperand, DataSource, DataSourceItem, From, FromItem, GroupBy,
Having, OrderBy, OrderByType, QueryOperator, Select, SelectItem, Where}, TE is
a set of edge types {Alias, Condition, ConditionOperand, DataSource, DataSource-
Alias, DataSourceItem, DataSourceParent, FromItem, FromItemParent, FromItem-
Source, GroupBy, GroupByColumn, Having, MapColumn, MapSource, OrderBy,
OrderByColumn, SelectColumn, SelectQuery, SourceTree, Where}, function τV :

Data and Query Adaptation Using DaemonX 121

V → TV assigns a type to each vertex of the query graph GQ and function τE : E →
TE assigns a type to each edge of the query graph GQ.

A query vertex represents a particular part of the SQL query, e.g., a database
table, a table column, a comparing operator in condition, a selected column in the
SELECT clause, etc. A query edge connects parts of the SQL query together and
gives a particular semantics to this connection. For instance the edge connecting
a From vertex and a Where vertex means that the query contains a WHERE clause
represented by the Where vertex.

Each query graph can be logically divided into smaller subgraphs. These sub-
graphs are called essential components. Each essential component has a visual equiv-
alent in the query visualization model (described in Section 5.3). There exist the
following essential components: DataSource, From, Select, Condition, GroupBy, Or-
derBy. For instance, the simplest SQL queries of the form ’SELECT projection
FROM table’ require only DataSource, From and Select components. Figure 19
illustrates a simple example of the modeled GROUP BY clause. The example is
equivalent to the following parts of the SQL query:

SELECT
CustomerId as cid , COUNT(OrderId) as orderCount
. . .

GROUP BY
CustomerId

Figure 19. An example of a simple model of the GROUP BY clause

Note that all these components contain subcomponents. The full list and their
description can be found in [21].

5.3 SQL Query Visualization Model

Although the graph-based query model can describe any SQL query, it is relatively
complex. Even a query model for an extremely simple SQL query contains a lot
of vertices and edges (see Figure 19). For this reason we proposed a visualization
model, which simplifies a related query model for users and model creation.

122 M. Polák, M. Chytil, K. Jakubec, V. Kudelas, P. Piják, M. Nečaský, I. Holubová

The visualization model is divided into so-called essential visual components.
Each essential component mentioned in Section 5.2 has its visual equivalent by some
essential visual component, so each visual component represents a part of the SQL
query graph model. We distinguish the following visual components: DataSource,
QueryComponent and Component Connection. A DataSource visual component vi-
sualizes a DataSource essential component. For example, the rectangle Customer
in Figure 20 shows an example of DataSource visual component. The example rep-
resents a database table Customer with columns: customerId, firstname, lastname,
email and phone. A QueryComponent is a universal visual essential component,
which represents parts of the SQL query: Select, From, Where, GroupBy, Having,
OrderBy. For example, the rectangle Where in Figure 20 illustrates an example of
the QueryComponent visual component. The example shows visualization of the
WHERE clause. A Component Connection does not correspond directly to any
essential component of the query graph. Instead, it covers a connection of two es-
sential components to finish the correct and complete query graph. For example,
the whole modeled SQL query in Figure 20 is the following one:

For comparison, the related query graph model consists of 45 vertices connected
by 87 edges.

SELECT
c . f i r s tname , c . lastname ,
a . s t r e e t , a . c i ty , a . postcode ,

FROM
Customer as c
JOIN Address as a
ON c . customerId = a . customerId

WHERE
(c . f i r s tname = ’ John ’
OR c . f i r s tname = ’ Jane ’)
AND (c . lastname = ’Doe ’)

ORDER BY
c . customerId ASC,
c . lastname ASC,
a . postcode DESC

5.4 Mapping to the Database Model

Since the database model consists of tables and its columns which we can interpret
as a general source of data, we have a direct mapping from the database model to the
query model. We do not consider database relationships between database tables in
the database model. For the purpose of the query model they are not important,
because the queries do not need to reflect them and join the tables arbitrarily.

The mapping between the database model and the query model is described as
follows:

Data and Query Adaptation Using DaemonX 123

Figure 20. An example of a visual model of a more complex SQL query

• Database table → DataSource The database table in the database model
is mapped to the DataSource visual component which corresponds to the Data-
Source vertex of the related query graph.

• Table column→ DataSourceItem The table column in the database model
is mapped to the DataSourceItem visual component which corresponds to the
DataSourceItem vertex of the related query graph.

An example of the mapping is shown in Figure 21. The example illustrates the
mapping from a database table Customer to a DataSource visual component called
Customer.

Figure 21. An example of a mapping between database model and query model

Note that the mapping does not preserve keys (primary keys, foreign keys) and
any other column attributes like NOT NULL or UNIQUE. For the purpose of the
data querying this property is insignificant.

124 M. Polák, M. Chytil, K. Jakubec, V. Kudelas, P. Piják, M. Nečaský, I. Holubová

5.5 Model Operations

All changes in the database model are again done via atomic operations which can
form more complex operations (like, e.g., move or split). All atomic operations in
the database model which have an impact on the SQL query model are translated by
the evolution process into corresponding atomic operations in the SQL query model.
Let us have a database model MD, which consists of a set of tables Ti, i ∈ [1, n].
Each table Ti ∈ MD has a name TiN and a set TiC of columns cj, i ∈ [1, ni]. Each
column cj has a name cjN . The operations for modification of database model MD

are listed in Table 4.

Operation Description

αT : (Ti,m)→ T ′
i Renaming Database Table: The operation returns table T ′

i ,
where T ′

iN
= m and T ′

iC
= TiC .

βT : (MD, Ti)→M ′
D Removing Database Table: The operation removes database

table Ti ∈ MD from the database model MD. It returns
database model M ′

D, where M ′
D = MD\{Ti}.

γC : (Ti, cj)→ T ′
i Creating Table Column: The operation adds the column cj

into table Ti. It returns table T ′
i , where T ′

iN
= TiN and

T ′
iC

= TiC ∪ {cj}.
αC : (cj ,m)→ c′j Renaming Table Column: The operation returns column c′j

where c′jN = m.

βC : (Ti, cj)→ T ′
i Removing Table Column: The operation removes column

cj ∈ Ti from the table Ti. It returns table T ′
i , where T ′

iN
=

TiN and T ′
iC

= TiC\{cj}.

Table 4. Operations for the database model

Let us have a query model MQ, whose query graph GQ consists of a set of
DataSources Di, i ∈ [1, k] and other components, which are not important for our
purpose. Each DataSource Di ∈ MQ has a name DiN and a set DiI , which is
a set of DataSourceItems dj, j ∈ [1, ki]. Each DataSourceItem dj has a name djN .
The operations for SQL query model MQ are listed in Table 5. Note that they
are triggered by operations performed by the user over the database model MD

(as specified in Table 4). More complex operations like Split, Merge, Move done
in the database model can be propagated to the SQL query model as well. In the
SQL query model these operations are simply composed from the mentioned atomic
operations.

As mentioned before, the SQL query model operations defined in Table 5 are
atomic operations, i.e., they cannot be divided into smaller operations. However,
in fact, each of these atomic operations over the SQL query model MQ corresponds
to a set of smaller steps called graph operations, which modify the query graph
of the query model MQ. In the following definitions GQ represents a query graph
GQ = (V,E). The respective operations are listed in Table 6.

Data and Query Adaptation Using DaemonX 125

Operation Description

αD : (Di,m)→ D′
i Renaming DataSource: The operation returns Data-

Source D′
i where D′

iN
= m and D′

iI
= DiI .

βD : (MQ, Di)→M ′
Q Removing DataSource: The operation removes Data-

Source Di ∈MQ from the query model MQ. It returns
query model M ′

Q where M ′
Q = MQ\{Di}.

γI : (Di, dj)→ D′
i Creating DataSourceItem: The operation adds Data-

SourceItem dj into DataSource Di. It returns the
DataSource D′

i where D′
iN

= DiN and D′
iI

= DiI ∪
{dj}.

αI : (dj ,m)→ d′j Renaming DataSourceItem: The operation returns
DataSourceItem d′j where d′jN = m.

βI : (Di, dj)→ D′
i Removing DataSourceItem: The operation removes

DataSourceItem dj ∈ Di from the DataSource Di.
It returns DataSource D′

i where D′
iN

= DiN and
D′

iI
= DiI\{dj}.

Table 5. Operations for the query model

These atomic functions are combined in the set of so-called composite operations
which are called in the evolution process. All these functions with theirs algorithms
are described in [21].

An Example of Creating a Table Column. First, Algorithm 1 creates a new
FromItem vertex in the corresponding From vertex and connects it with appropri-

Operation Description

γv : (GQ, v) → G′
Q CreateVertex: The operation returns graph

G′
Q = (V ∪ {v}, E).

γe : (GQ, vsrc, vdst, etype) → G′
Q CreateEdge: The operation creates edge e =

(vsrc, vdst) such that EdgeType(e) = etype and
returns graph G′

Q = (V,E ∪ {e}).
βv : (GQ, v) → G′

Q RemoveVertex: The operation returns graph
G′

Q = (V \{v}, E
⋂(V \{v}

2

)
).

βe : (GQ, e) → G′
Q RemoveEdge: The operation returns graph

G′
Q = (V,E\{e}).

λ : (GQ, v, l) → G′
Q ChangeLabel: The operation returns graph

G′
Q = (V \{v} ∪ {v′}, E), where vertex type

v′type = vtype and label v′L = l.

η : (GQ, C, t) → G′
Q ChangeConnectionType: The operation returns

graph G′
Q = (V \{C}∪{C ′}, E) where Combine-

Source vertex C ′ corresponds to vertex C with
connection type t.

Table 6. Operations for the query graph

126 M. Polák, M. Chytil, K. Jakubec, V. Kudelas, P. Piják, M. Nečaský, I. Holubová

ate vertices. Subsequently it traverses to the Select vertex, where it creates corre-
sponding vertices and edges using algorithm DistributeCreatingDatasourceItemSelect
(see [21]). Finally it traverses to the OrderBy vertex, where it creates corresponding
vertices and edges using algorithm DistributeCreatingDatasourceItemOrderBy. Fig-
ure 22 depicts adding of a new DataSourceItem OrderDate to the DataSource com-
ponent using Algorithm DistributeCreatingDatasourceItem and to the From compo-
nent using Algorithm 1. In the figure the original elements are black and the new
elements of the query graph are highlighted with a red color.

Figure 22. An example of adding new DataSourceItem to the DataSource and to the From
components

Algorithm 1 DistributeCreatingDatasourceItemOnAlias

Require: Alias vertex A, change context C
Ensure: Graph operations to create new DataSourceItem.
1: fromVertex← A.GetNeighbour(DataSourceAlias)
2: newItem← new FromItem(C.Name)
3: C.Plan← CreateVertex(C.GQ, newItem)
4: C.Plan← CreateEdge(C.GQ, C.Originator, newItem,FromItemSource)
5: C.Plan← CreateEdge(C.GQ, newItem, A,Alias)
6: C.Plan← CreateEdge(C.GQ, fromVertex, newItem,FromItem)
7: C.Plan← CreateEdge(C.GQ, newItem, fromVertex,FromItemParent)
8: C.Originator← newItem
9: selectVertex← fromVertex.GetNeighbour(SelectQuery)

10: if selectVertex ! = null then
11: DistributeCreatingDatasourceItemOnSelect(selectVertex, C)
12: end if
13: orderByVertex← fromVertex.GetNeighbour(OrderBy)
14: if orderByVertex ! = null then
15: DistributeCreatingDatasourceItemOnOrderBy(orderByVertex, C)
16: end if
17: C.Plan← ResetContent(C.GQ, fromVertex)

Algorithm DistributeCreatingDatasourceItemSelect creates a new SelectItem ver-
tex in the SELECT clause. Then it checks, whether the GroupBy vertex exists. If

Data and Query Adaptation Using DaemonX 127

it does, it connects the GroupBy vertex with the new SelectItem vertex. Finally it
traverses to all Alias vertices of dependant queries and applies already mentioned
Algorithm 1.

5.6 Proof of the Concept and Implementation

Again the full experimental implementation of the presented approach was incor-
porated into DaemonX. (In fact, Figures 20, 23 and 24 are screen shots of the
application.) Our approach adds two new plug-ins into DaemonX. The first plug-in
is a plug-in for SQL query modeling described in Section 5.3 (a screen-shot from
this plug-in is depicted in Figure 20). The second plug-in is used for evolution
propagation from the PSM database model to the SQL query model.

Since there are no existing applications which provide comparable features5, to
be able to depict the features of our approach we used an existing database project
Adventure Works [34]. In the database model we modeled a set of tables of a given
database schema (the list of them can be found in [21]). From this database model
we derived to the query model tables as DataSources, which we used to model
queries and views. Next, we applied various operations over the database model to
simulate propagation to the query model. After the propagation the new queries
were inspected whether they correspond to the expected results.

Due to space limitations we will use some simplification. We present an example
of adding new column to the table and its propagation to the related GroupBy query.
Suppose the following SQL query which model is depicted in Figure 23:

SELECT
d . GroupName , COUNT(d .Name)
as NumberOfDepartments

FROM
HumanResources . Department as d

GROUP BY
d . GroupName

HAVING COUNT(d .Name) > 2
ORDER BY

NumberOfDepartments DESC

A new column GroupID was added to the table HumanResources.Department.
This change was propagated into the complex GroupBy query. The new column
was added to all its components. The original query was transformed by algorithm
DistributeCreatingDatasourceItem (described in [21]) to the new query (its model is
depicted in Figure 24):

5 Though there are projects which focus on similar areas, such as [33] – a more detailed
description can be found in Section 6.

128 M. Polák, M. Chytil, K. Jakubec, V. Kudelas, P. Piják, M. Nečaský, I. Holubová

Figure 23. The model of the complex usage of complex GroupBy query

SELECT
d . GroupName , COUNT(d .Name)
as NumberOfDepartments ,
d . GroupID

FROM
HumanResources . Department as d

GROUP BY
d . GroupName , d . GroupID

HAVING COUNT(d .Name) > 2
ORDER BY

NumberOfDepartments DESC,
d . GroupID ASC

6 RELATED WORK

The current approaches towards evolution management can be classified according
to distinct aspects [35]. The changes and transformations can be expressed [36] as
well as divided [37] variously too. However, to our knowledge there exists no general
framework comparable to our proposal made in Section 2; particular cases and views
of the problem have previously only been solved separately, superficially and mostly
imprecisely without any theoretical or formal basis. In this section we describe the
closest and most advanced approaches related to our proposal from the point of view
of Figure 2.

XML View. Current approaches of the XML view consider changes at the schema
level and differ in the selected XML schema language, i.e., DTD [38, 39] or XML
Schema [40, 41]. In general, the transformations can be variously classified. For

Data and Query Adaptation Using DaemonX 129

Figure 24. The updated model of the complex GroupBy query

instance, paper [40] proposes migratory (e.g., movements of elements/attributes),
structural (e.g., adding/removal of elements/attributes) and sedentary (e.g., mo-
difications of simple data types). The changes are expressed variously and more
or less formally. For instance in [41] a language called XSUpdate is described. The
changes are then automatically propagated to the extensional level to ensure validity
of XML data. There also exists an opposite approach that enables to evolve XML
documents and propagate the changes to their XML schema [42]. Other approaches
are similar, but they consider changes at an abstraction of logical level – either
visualization [43] or a kind of UML diagram [44]. Both cases work at the PSM level,
since they directly model XML schemas with their abstraction. No PIM schema
is considered. All approaches consider only a single separate XML schema being
evolved.

Another open problem related to schema evolution is adaptation of the respective
XML queries, i.e., propagation to the operational level. Unfortunately, the amount
of existing works is relatively low. The paper [45] gives recommendations on how to
write queries that do not need to be adapted for an evolving schema. On the other
hand, in [46] the authors consider a subset of XPath 1.0 constructs and study the
impact of XML schema changes on them.

In all the papers cited the authors consider only a single XML schema. In [47]
multiple local XML schemas are considered and mapped to a global object-oriented
schema. Then, the authors discuss possible operations with a local schema and their
propagation to the global schema. However, the global schema does not represent
a common problem domain, but a common integrated schema; the changes are
propagated just upwards and the operations are not defined rigorously. The need
for well defined set of simple operations and their combination is clearly identified
in Section 6 of a recent survey of schema matching and mapping [48].

130 M. Polák, M. Chytil, K. Jakubec, V. Kudelas, P. Piják, M. Nečaský, I. Holubová

Storage View. The idea of evolution and change management in XML storage
strategies is currently focused particularly on data updates and, usually, joined with
XQuery Update Facility [49]. However, this is not the area we are dealing with since
the updates are mostly considered within the respective XML schema. In the area of
evolution of general database schemas we can find approaches that focus on evolution
of (object-)relational schemas [50, 51] as well as object-oriented schemas [52, 53].
Similar to the case of XML schema evolution, there are also approaches that deal
with propagation from an ER schema, i.e., PSM level, to a relational schema [54],
i.e., schema level or propagation to an operational level [50].

In the purely XML-related approaches we need to consider schema-driven stor-
age strategies. As surveyed in [55], the amount of the respective approaches is not
high. We can find first attempts of change propagation in the current leading object-
relational database management systems – Oracle DB6, IBM DB2 7 and Microsoft
SQL Server 8. In this case we can differentiate two types of schema evolution –
whether backward compatibility of the changes, i.e., preservation of data validity, is
required, or not. Both the DB2 and SQL Server require the backward compatibil-
ity. Oracle DB also supports change propagation regardless backward compatibility;
however, it is not done automatically; a data expert must provide an XSLT script
which re-validates the stored XML documents. To ease this approach we have re-
cently proposed an algorithm that enables to provide such transformation script
semi-automatically [56].

Processing View. Since we are considering the area of evolution of XML ap-
plications, we cannot omit the most popular application of XML format – Web
Services. Currently we can find several approaches that deal with evolution of Web
Service; however, again they solve just part of the issues described [57]. In [58]
the authors describe a plug-in to IBM Rational Software Architect (RSA)9 which
enables semi-automatic propagation of changes from business process model of Web
Services to respective BPEL scripts and thus respective applications. It is one of
the frameworks that are very close to our proposal described in Section 3; however,
the authors do not provide any theoretical background on the allowed changes or
details on the propagation mechanisms. A different approach is used in system Mor-
pheus [59], also based on IBM RSA. At the platform-specific level, it considers three
UML artifacts – use cases, sequence diagrams and service specifications – and the
change propagation among them. The output of the propagation is a set of change
suggestions for the respective execution part which should be then done manually
by an expert.

In [60] the authors solve the problem using a completely different strategy. They
provide an abstract service definition model (ASD) which enables us to model all

6 http://www.oracle.com/us/products/database/
7 http://www-01.ibm.com/software/data/db2/
8 http://www.microsoft.com/sqlserver/2008/en/us/
9 http://www-01.ibm.com/software/awdtools/architect/swarchitect/

Data and Query Adaptation Using DaemonX 131

related concepts of a Web Service, i.e., data structures, behavior and policies at
a conceptual level using UML class diagrams. Both ASD and the related opera-
tions are defined formally and the completeness and correctness of the operations is
proven. On the other hand, change propagation to respective PSMs is not consid-
ered and the ASD itself is relatively unnatural. And, considering even more formal
approaches and model, in [61] the authors model the Web Services using Formal
Concept Analysis and, in particular, lattices or in [62] using lenses and monoids of
edits. However, though the approaches are theoretically very interesting, our aim is
to provide less complex and more user-friendly formal background and tools.

7 CONCLUSION

In this paper we have introduced DaemonX, an implementation of a five-level evo-
lution framework we have proposed in our previous papers [8, 9]. Our aim was
to create a robust and extensible evolution framework that enables to concurrently
model all related parts of the system (i.e., data structures, ICs and operations) as
precisely as possible (i.e., with a rich set of constructs), to preserve the relations
between system components, and to enable respective change management (i.e.,
correct propagation of changes to all the affected parts). First we have briefly de-
scribed the idea of a five-level evolution framework and its advantages. The core of
the text, however, considered DaemonX. We have described the way the framework
is implemented and the way it can be extended with other functionality. We have
also provided several screen shots demonstrating its interface. Then we have focused
on two extensions of the framework (1) evolution of XML schemas and consequent
change management of XML queries and (2) evolution of relational schemas and
consequent change management of SQL queries.

Even though the tool currently covers the key aspects so that it can be used
in most applications and, at the same time, proves the proposed concepts from
various points of view (i.e., various data and processing models), there is a significant
amount of open problems and future directions we want to focus on. The key areas
involve support for more complex constructs of the implemented models, support
for integrity constraints, and business process modeling.

Acknowledgement

This work was partially supported by the Czech Science Foundation (GAČR), grant
number 202/11/P455 and the Grant Agency of the Charles University (GAUK),
grant number 1416213.

REFERENCES

[1] IBM. Service Oriented Architecture – SOA. IBM. http://www-01.ibm.com/

software/solutions/soa/.

132 M. Polák, M. Chytil, K. Jakubec, V. Kudelas, P. Piják, M. Nečaský, I. Holubová

[2] W3C. Web Services Activity, 2009. http://www.w3.org/2002/ws/.

[3] Object Management Group. UML Superstructure Specification 2.1.2, November 2007.
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/.

[4] Chen, P. P.: The Entity-Relationship Model – Toward a Unified View of Data. ACM
Transactions on Database Systems, Vol. 1, 1976, No. 1, pp. 9–36.

[5] OMG. Documents Associated with Business Process Modeling Notation (BPMN) 1.2.
OMG, 2009. http://www.omg.org/spec/BPMN/1.2/.

[6] W3C. XML Path Language (XPath) Version 2.0, W3C Working Draft. 15 November
2002. http://www.w3.org/TR/xpath20/.

[7] ISO/IEC 9075-1:2008. Part 1: Framework (SQL/Framework). Int. Organization for
Standardization, 2008.

[8] Nečaský, M.—Kĺımek, J.—Malý, J.—Mlýnková, I.: Evolution and Change
Management of XML-Based Systems. Journal of Systems and Software, Vol. 85, 2012,
No. 3, pp. 683–707.

[9] Nečaský, M.—Mlýnková, I.—Kĺımek, J.—Malý, J.: When Conceptual Model
Meets Grammar: A Dual Approach to XML Data Modeling. International Journal
on Data & Knowledge Engineering, Vol. 72, 2012, pp. 1–30.

[10] Boag, S.—Chamberlin, D.—Fernández, M. F.—Florescu, D.—Robie, J.—
Siméon, J.: XQuery 1.0: An XML Query Language. W3C, 2007. http://www.w3.
org/TR/xquery/.

[11] ISO. ISO/IEC 9075-14:2003 Part 14: XML-Related Specifications (SQL/XML).
ISO, 2006.

[12] Miller, J.—Mukerji, J.: MDA Guide Version 1.0.1. Object Management Group,
2003. http://www.omg.org/docs/omg/03-06-01.pdf.

[13] Nečaský, M.: Conceptual Modeling for XML, Volume 99 of Dissertations in
Database and Information Systems. IOS Press, Amsterdam, Netherlands, 2009.

[14] Chen, P. P.: The Entity-Relationship Model: Toward a Unified View of Data. ACM
Transactions on Database Systems, Vol. 1, 1976, No. 1, pp. 9–36.

[15] Thompson, H. S.—Beech, D.—Maloney, M.—Mendelsohn, N.: XML
Schema Part 1: Structures (Second Edition). W3C, October 2004. http://www.w3.
org/TR/xmlschema-1/.

[16] OMG. Meta-Object Facility. http://www.omg.org/mof/.

[17] DaemonX-Team. Daemonx, June 2001. http://daemonx.codeplex.com.

[18] Weisfeld, M.: The Object-Oriented Thought Process. Developer’s Library.
Addison-Wesley, 2009.

[19] Piják, P.: Universal Constraint Language. Master’s thesis, Charles University in
Prague, 2011. http://www.ksi.mff.cuni.cz/~holubova/dp/Pijak.pdf.

[20] Polák, M.: XML Query Adaptation. Master’s thesis, Charles University in Prague,
2011. http://www.ksi.mff.cuni.cz/~holubova/dp/Polak.pdf.

[21] Chytil, M.: Adaptation of Relational Database Schema. Master’s thesis, Charles
University in Prague, 2011. http://www.ksi.mff.cuni.cz/~holubova/dp/Chytil.
pdf.

Data and Query Adaptation Using DaemonX 133

[22] Jakubec, K.: Management of Undo/Redo Operations in Complex Environments.
Master’s thesis, Charles University in Prague, 2012. http://www.ksi.mff.cuni.cz/

~holubova/dp/Jakubec.pdf.

[23] Kudelas, V.: Adapting Service Interfaces when Business Processes Evolve. Mas-
ter’s thesis, Charles University in Prague, 2012. http://www.ksi.mff.cuni.cz/

~holubova/dp/Kudelas.pdf.

[24] Polák, M.—Mlýnková, I.—Pardede, E.: XML Query Adaptation as Schema
Evolves. Proceedings of the 21st International Conference on Information Systems
Development (ISD ’12), Prato, Italy, 2012, Springer Science + Business Media, Inc.,
2013, pp. 401–416.

[25] Hartel, P. H.: A Trace Semantics for Positive Core XPath. TIME ’05, Washington,
DC, USA, 2005, IEEE, pp. 103–112.

[26] Cate, B.—Marx, M.: Axiomatizing the Logical Core of XPath 2.0. Theor. Comp.
Sys., Vol. 44, 2009, pp. 561–589.

[27] Franceschet, M.: XPathMark. http://sole.dimi.uniud.it/~massimo.

franceschet/xpathmark/FT.html.

[28] Amazon. Amazon Web Services. http://amazonpayments.s3.amazonaws.com/

documents/order.xsd.

[29] Chytil, M.—Polak, M.—Necasky, M.—Holubova, I.: Evolution of a Rela-
tional Schema and Its Impact on SQL Queries. IDC ’13, Studies in Computational
Intelligence, Springer International Publishing, Vol. 511, 2013, pp. 5–15.

[30] Korovin, K.: CNF and Clausal Form. In Logic in Computer Science. Springer, 2006.

[31] Papastefanatos, G.—Vassiliadis, P.—Vassiliou, Y.: Adaptive Query Formu-
lation to Handle Database Evolution. ICAiSE ’06, Springer, 2006, pp. 5–9.

[32] Papastefanatos, G.—Vassiliadis, P.—Simitsis, A.—Aggistalis, K.—
Pechlivani, F.—Vassiliou, Y.: Language Extensions for the Automation of
Database Schema Evolution. In: Cordeiro, J., Filipe, J. (Eds.): ICEIS ’08, 2008,
pp. 74–81.

[33] Papastefanatos, G.—Kyzirakos, K.—Vassiliadis, P.—Vassiliou, Y.:
Hecataeus: A Framework for Representing SQL Constructs as Graphs. EMMSAD ’05,
2005, pp. 13–17.

[34] Adventure Works Team. Adventure Works 2008R2, November 2010. http://

msftdbprodsamples.codeplex.com.

[35] Mens, T.—Van Gorp, P.: A Taxonomy of Model Transformation. Electron. Notes
Theor. Comput. Sci., Vol. 152, 2006, pp. 125–142.

[36] OMG. MOF QVT Final Adopted Specification. Object Modeling Group, June 2005.
http://fparreiras/papers/mof_qvt_final.pdf.

[37] Cicchetti, A.—Di Ruscio, D.—Pierantonio, A.: Managing Dependent
Changes in Coupled Evolution. ICMT ’09, Springer, LNCS, Vol. 5563, 2009,
pp. 35–51.

[38] Al-Jadir, L.—El-Moukaddem, F.: Once Upon a Time a DTD Evolved into
Another DTD. . . Object-Oriented Information Systems, Springer, Berlin, Heidelberg,
2003, pp. 3–17.

134 M. Polák, M. Chytil, K. Jakubec, V. Kudelas, P. Piják, M. Nečaský, I. Holubová

[39] Coox, S. V.: Axiomatization of the Evolution of XML Database Schema. Program.
Comput. Softw., Vol. 29, 2003, No. 3, pp. 140–146.

[40] Tan, M.—Goh, A.: Keeping Pace with Evolving XML-Based Specifications.
EDBT ’04 Workshops, Springer, Berlin, Heidelberg, 2005, pp. 280–288.

[41] Cavalieri, F.: EXup: An Engine for the Evolution of XML Schemas and Associated
Documents. EDBT ’10, ACM, New York, NY, USA, 2010, pp. 1–10.

[42] Bouchou, B.—Duarte, D.—Halfeld Ferrari Alves, M.—Laurent, D.—
Musicante, M. A.: Schema Evolution for XML: A Consistency-Preserving Ap-
proach. Mathematical Foundations of Computer Science, Springer-Verlag, Prague,
Czech Republic, 2004, pp. 876–888.

[43] Klettke, M.: Conceptual XML Schema Evolution – The CoDEX Approach for
Design and Redesign. BTW ’07, Aachen, Germany, March 2007, pp. 53–63.

[44] Doḿınguez, E.—Lloret, J.—Rubio, A. L.—Zapata, M. A.: Evolving XML
Schemas and Documents Using UML Class Diagrams. DEXA ’05, Springer, LNCS,
Vol. 3588, 2005, pp. 343–352.

[45] Moro, M. M.—Malaika, S.—Lim, L.: Preserving XML Queries During Schema
Evolution. WWW ’07, ACM Press, New York, NY, USA, 2007, pp. 1341–1342.

[46] Geneves, P.—Layaida, N.—Quint, V.: Identifying Query Incompatibilities with
Evolving XML Schemas. ICFP ’09, ACM, New York, NY, USA, 2009, pp. 221–230.

[47] Passi, K.—Morgan, D.—Madria, S.: Maintaining Integrated XML Schema.
IDEAS ’09, ACM, New York, NY, USA, 2009, pp. 267–274.

[48] Bellahsene, Z.—Bonifati, A.—Rahm, E.: Schema Matching and Mapping.
Data-Centric Systems and Applications. Springer Berlin Heidelberg, 2011.

[49] Chamberlin, D.—Florescu, D.—Melton, J.—Robie, J.—Siméon, J.:
XQuery Update Facility 1.0. W3C, 2007.

[50] Curino, C.—Moon, H. J.—Zaniolo, C.: Automating Database Schema Evolu-
tion in Information System Upgrades. HotSWUp ’09, ACM, New York, NY, USA,
2009, pp. 1–5.

[51] Curino, C. A.—Moon, H. J.—Zaniolo, C.: Graceful Database Schema Evolu-
tion: The PRISM Workbench. Proc. VLDB Endow., Vol. 1, 2008, No. 1, pp. 761–772.

[52] Banerjee, J.—Kim, W.—Kim, H.-J.—Korth, H. F.: Semantics and Implemen-
tation of Schema Evolution in Object-Oriented Databases. SIGMOD Rec., Vol. 16,
1987, No. 3, pp. 311–322.

[53] Lerner, B. S.: A Model for Compound Type Changes Encountered in Schema
Evolution. ACM Trans. Database Syst., Vol. 25, 2000, No. 1, pp. 83–127.

[54] An, Y.—Hu, X.—Song, I.-Y.: Round-Trip Engineering for Maintaining
Conceptual-Relational Mappings. CAiSE ’08, Springer-Verlag, Berlin, Heidelberg,
2008, pp. 296–311.

[55] Simanovsky, A. A.: Data Schema Evolution Support in XML-Relational Database
Systems. Program. Comput. Softw., Vol. 34, 2008, No. 1, pp. 16–26.

[56] Malý, J.—Mlýnková, I.—Nečaský, M.: XML Data Transformations as Schema
Evolves. ADBIS ’11, Springer-Verlag, Vienna, Austria, 2011.

Data and Query Adaptation Using DaemonX 135

[57] Sun, C.—Rossing, R.—Sinnema, M.—Bulanov, P.—Aiello, M.: Modeling
and Managing the Variability of Web Service-Based Systems. J. of Systems and Soft-
ware, Vol. 83, 2010, No. 3, pp. 502–516.

[58] Sindhgatta, R.—Sengupta, B.: An Extensible Framework for Tracing Model
Evolution in SOA Solution Design. OOPSLA ’09, ACM, New York, NY, USA, 2009,
pp. 647–658.

[59] Ravichandar, R.—Narendra, N. C.—Ponnalagu, K.—Gangopadhyay, D.:
Morpheus: Semantics-Based Incremental Change Propagation in SOA-Based So-
lutions. IEEE International Conference on Services Computing, 2008, Vol. 1,
pp. 193–201.

[60] Andrikopoulos, V.—Benbernou, S.—Papazoglou, M. P.: Managing the Evo-
lution of Service Specifications. CAiSE ’08, Springer-Verlag, Berlin, Heidelberg, 2008,
pp. 359–374.

[61] Aversano, L.—Bruno, M.—Di Penta, M.—Falanga, A.—Scognamiglio,
R.: Visualizing the Evolution of Web Services Using Formal Concept Analysis. IW-
PSE ’05, 2005, pp. 57–60.

[62] Stevens, P.: Bidirectional Model Transformations in QVT: Semantic Issues and
Open Questions. Software and System Modeling, Vol. 9, 2010, No. 1, pp. 7–20.

Marek Pol�ak received his M.Sc. degree in computer science
from Charles University in Prague, Czech Republic in 2011.
Currently he is a Ph.D. candidate at Department of Software
Engineering of the Charles University in Prague. His research
is focused on MDA and model evolution management. He also
works as architect and developer in Puls.io project in the office in
Prague, Czech Republic. Previously he was working as a system
specialist in Commerzbank AG on investment banking systems
for world-wide branches. He is interested in cloud services and
NoSQL database.

Martin Chytil received his M.Sc. degree in computer science
from Charles University in Prague, Czech Republic in 2012. Cur-
rently he works as a software developer in Infor in the office in
Prague, Czech Republic. He is working on a database backend
of Business Intelligence software products of Infor BI Applica-
tion stack. He also participates in a development of core services
for cloud architecture. His professional interests are relational
databases and OLAP, especially in connection with SOA and
cloud computing.

136 M. Polák, M. Chytil, K. Jakubec, V. Kudelas, P. Piják, M. Nečaský, I. Holubová

Karel Jakubec received his M.Sc. degree in computer science
from the Charles University in Prague, Czech Republic in 2012.
Currently he works as a system architect in Puls.io, building the
best platform for API monitoring. Before he worked as a senior
software engineer for GoodData, hacking various parts of the
Open Analytics platform. He is interested in relational databases
(mostly Postgresql) and recently discovered ease of web devel-
opment with Python and Flask.

Vladimı́r Kudelas received his M.Sc. degree in software sys-
tems from Charles University in Prague, Czech Republic in 2012.
Currently he is a team leader of hospitality project SilverPro at
the NCR Corporation, Prague Center of Excellence. He is ac-
tively participating in analysis and feature specifications for this
project. He was also a member of Autopilot team at the NCR
Corporation working on automated testing tool for Aloha Point
of Sale.

Peter Pij�ak received his M.Sc. degree in computer science from
Charles University in Prague, Czech Republic in 2011. Currently
he works as a software developer in Descartes Systems Group in
the office in Žilina, Slovakia. He is working on software pro-
duct solving vehicle routing problem, processing map data and
computing shortest paths for vehicles. He has published a pub-
lication in the area of modeling data and integrity constraints.

Martin Ne�cask�y received his Ph.D. degree in computer scien-
ce from Charles University in Prague, Czech Republic in 2008,
where he currently works as Assistant Professor at the Depart-
ment of Software Engineering. His research areas include linked
data, semantic web, XML data design, integration and evolution.
He is an organizer/PC chair/member of more than 10 interna-
tional events. He has published more than 50 papers (5 of them
received the Best Paper Award). He published 3 book chapters
and one book. He is a founding member of the OpenData.cz
initiative.

Data and Query Adaptation Using DaemonX 137

Irena Holubov�a received her Ph.D. degree in computer scien-
ce from Charles University in Prague, Czech Republic in 2007.
Currently she is Associate Professor at the Department of Soft-
ware Engineering, Charles University and external member of
the Department of Computer Science and Engineering, Czech
Technical University. She has published more than 80 publica-
tions in the area of XML data management and web engineering;
she gained 4 times the Best Paper Award. She is a PC mem-
ber or reviewer of 15 international events and co-organizer of
4 international workshops.

