
Computing and Informatics, Vol. 34, 2015, 45–76

METASCHEDULING AND HEURISTIC
CO-ALLOCATION STRATEGIES
IN DISTRIBUTED COMPUTING

Victor Toporkov, Dmitry Yemelyanov, Petr Potekhin

National Research University “MPEI”
ul. Krasnokazarmennaya, 14, Moscow, 111250, Russia
e-mail: {ToporkovVV, YemelyanovDM, PotekhinPA}@mpei.ru

Anna Toporkova

National Research University Higher School of Economics
Moscow State Institute of Electronics and Mathematics
Bolshoy Trekhsvyatitelsky per., 1-3/12, Moscow, 109028, Russia
e-mail: AToporkova@hse.ru

Alexey Tselishchev

European Organization for Nuclear Research (CERN)
Geneva, 23, 1211, Switzerland
e-mail: Alexey.Tselishchev@cern.ch

Abstract. In this paper, we address problems of efficient computing in distributed
systems with non-dedicated resources including utility grid. There are global job
flows from external users along with resource owner’s local tasks upon the resource
non-dedication condition. Competition for resource reservation between indepen-
dent users, local and global job flows substantially complicates scheduling and the
requirement to provide the necessary quality of service. A metascheduling concept,
justified in this work, assumes a complex combination of job flow dispatching and
application-level scheduling methods for parallel jobs, as well as resource sharing
and consumption policies established in virtual organizations and based on economic
principles. We introduce heuristic slot selection and co-allocation strategies for par-



46 V. Toporkov, D. Yemelyanov, P. Potekhin, A. Toporkova, A. Tselishchev

allel jobs. They are formalized by given criteria and implemented by algorithms of
linear complexity on an available slots number.

Keywords: Distributed computing, economic scheduling, resource management,
co-allocation, slot, job, task, batch

Mathematics Subject Classification 2010: AB-XYZ TBA

1 INTRODUCTION

Execution of large parallel jobs in distributed computational environments requires
allocation of a significant amount of resources partially shared with their owners [1,
2, 3, 4]. Today well-known algorithms, their combinations and heuristics used by
schedulers are usually unable to provide optimal or suboptimal solutions in terms of
heterogeneous distributed environments and dynamically changing sets of available
computational nodes and their utilization. Resource management and job scheduling
economic models proved to be efficient in such conditions [1, 2, 3].

Two established trends may be outlined among diverse approaches to distributed
computing. The first one is based on the available resources utilization and appli-
cation level scheduling. As a rule, this approach does not imply any global resource
sharing or allocation policy. Application agents, i.e. resource brokers [5, 6, 7, 8, 9,
10, 11], are usually considered as mediators between the users and the resource own-
ers. There are many projects belonging to this trend, namely AppLeS [6], APST [7],
Legion [8], DRM [9], Condor-G [10], Nimrod/G [11] and others.

Another trend is related to the formation of user’s virtual organizations (VO)
and job flow scheduling [12, 13, 14]. In this case, an external scheduler, e.g. a grid
dispatcher, a metascheduler or a Meta-Broker [15], is an intermediate chain between
the users and local resource management and job batch processing systems.

Scheduling and resource management systems belonging to the first approach
are well-scalable and application-oriented. However, simultaneous application-level
scheduling with diverse optimization criteria set by independent users, especially
upon possible competition between applications, may deteriorate such integral QoS
characteristics of a distributed environment as total job batch execution time or
overall resource utilization. VOs, on one hand, naturally restrict the scalability of
resource management systems. On the other hand, uniform rules of resource sharing
and consumption, in particular based on economic models [1, 2, 3, 4, 16, 17, 18],
make it possible to improve the job-flow level scheduling and resource distribution
efficiency.

The “convergence” idea of application-level and the job-flow scheduling approach
was declared in relatively early works [14, 19, 20, 21]. Nevertheless, in some well-
known models of distributed computing with non-dedicated resources, only the first
fit set of resources is chosen depending on the environment state [22, 23, 24], while



Metascheduling and Heuristic Co-Allocation Strategies 47

job scheduling optimization mechanisms are usually not supported. The aspects
related to the specifics of environments with non-dedicated resources – particularly
the dynamic resource loading, the competition between independent users, users’
global and owners’ local job flows – are not presented in other models [14, 16, 17].

A metascheduling concept in VOs proposed in this work fundamentally differs
from known solutions by combining methods of independent job flow management
and application-level scheduling [19, 20, 21]. We propose a model of independent job
flows management based on economic principles. The job scheduling is performed
cyclically for alternative sets of preliminary selected resources (alternatives) [25]. In
contrast to well-known models, the proposed approach assumes job flows and batches
formations according to job features, characteristics, resource requirements, users’
preferences, and further job batch cyclic scheduling based on dynamically updated
VO policies, strategies and restrictions. Job batch schedules are optimized by a cri-
teria vector according to the resource sharing and consumption policy established
in the VO.

The rest of this paper is organized as follows. Section 2 is devoted to analysis
of various VO stakeholders preferences and related works in distributed comput-
ing. There is a formal problem statement for a cyclic scheduling scheme. Then we
discuss restrictions of this scheme. In Section 3, we introduce main requirements
for a model of scheduling and fair resource sharing, representing the cyclic schedul-
ing scheme generalization. A combined scheduling approach based on generalized
cyclic scheduling scheme and backfilling is proposed in Section 4. Section 5 con-
tains a simulation framework description, variables and parameters for the model of
scheduling and fair resource sharing studies. The simulation results are presented in
Section 6. Section 7 focuses on the research of the scheduling method combined with
backfilling. Finally, Section 8 summarizes the paper and describes further research
topics.

2 SCHEDULING PROBLEMS IN VO

2.1 VO Stakeholders and Their Preferences

The scheduling efficiency in VO may be considered from different points of view.
On the one hand, one of the most important indicators is the available resources
utilization level and an average job starting time (“response” time). Computational
nodes of distributed environments with non-dedicated resources are generally par-
tially utilized by local high priority tasks. Thus, the available resources of VO are
represented as a set of slots, i.e. time spans during which the related node is idle and
ready for executing a part of a parallel job. The existence of an available slots set
with different start and finish times as well as a different performance rate (depend-
ing on the CPU node characteristics), complicates the problem of efficient resource
co-allocation and job-flow execution in the distributed environment. The resource
fragmentation also reduces the overall distributed environment utilization level. On
the other hand, the VO scheduling efficiency may be considered in terms of com-



48 V. Toporkov, D. Yemelyanov, P. Potekhin, A. Toporkova, A. Tselishchev

pliance with certain scheduling policies and VO shareholders preferences. Besides,
there are contradictory interests of VO users, resources owners and administrators.
The users are usually interested in the earliest start time for their applications with
the lowest cost, while resource owners intend to obtain the maximum profit for pro-
viding their resources in VO. The administrators define VO policy and they are
interested in the distributed environment overall performance optimization as well
as in matching preferences of users and resource owners. A fair resource sharing
implies that the interests of VO shareholders are met.

Every user job is submitted with a resource request – a list of requirements for
the resources needed for a particular application execution. One of the most im-
portant parameters is a resource reservation time, during which the allocated nodes
are utilized by the user job. For the overall job-flow execution optimization and
a resource occupation time prediction, existing schedulers rely on the time specified
in the job resource request. However, the reservation time is usually based on user
inaccurate runtime estimates [14, 26]. In case, when the application is completed
before the term specified in the resource request, the allocated resources remain
underutilized. Moreover, if the job runtime estimation substantially differs from
the real runtime, the job schedule may become ineffective in terms of optimization
criteria defined in VO.

Thus, we outline two main job-flow optimization directions in the distributed
computing environment. In the first of them, the optimal or suboptimal scheduling
under a given criterion or criteria specified in VO, is performed on the basis of
a priori information about local schedules of computational nodes and the resource
reservation time for each job execution. The cyclic scheduling scheme (CSS) [27]
belongs to this type of systems. Another approach represents scheduling “on the
fly” depending on a dynamically updated information about resource utilization.
In this case, schedulers are focused on overall resources load maximization and job
start time minimizing. Backfilling [28] may be related to this type of scheduling.
Existing scheduling approaches are discussed in the next subsection.

2.2 Related Works

There are several resource selection and scheduling algorithms for parallel jobs and
tasks with dependencies in distributed environments [17, 22, 23, 24, 29, 30, 31, 32,
33, 34, 35]. The scheduling problem in grid is NP-hard due to its combinatorial
nature and many heuristic-based solutions have been proposed. In [17], heuristic
algorithms for slot selection based on user-defined utility functions are introduced.
NWIRE system [17] performs a slot window allocation based on the user defined
efficiency criterion under the maximum total execution cost constraint. However,
the optimization occurs only on the stage of the best found offer selection.

The paper [30] presents architecture and an algorithm for performing grid re-
sources co-allocation without the need for advance reservations based on synchronous
queuing (SQ) of subtasks. The objective of SQ is to minimize the co-allocation
skew of all tasks requiring co-allocation. It enables SQ to over subscribe the re-



Metascheduling and Heuristic Co-Allocation Strategies 49

sources and hence to improve resource utilization. Mean utilization value is a single
criterion in this model. However, advance reservation is effective to improve the
co-allocation QoS. Moreover job control and resource management may be efficient
using strategies. This means a combination of different algorithms and scheduling
heuristics [3, 17, 22, 23, 24, 27, 29, 32, 34, 35] with consideration for multiple factors
and criteria: the policy of resource allocation and administration, dynamical com-
position and heterogeneity of CPU nodes, tasks dependencies, etc. By combining
the optimization criteria, VO administrators and users can form alternative search
strategies for every job in the batch [27, 29]. Users may be interested in their jobs
total execution cost minimizing or, for example, in the earliest possible jobs finish
time, and in being able to affect the set of alternatives found by specifying the job
distribution criteria. VO administrators in turn are interested in finding extreme
alternatives characteristics values (e.g., total cost, total execution time) to form
more flexible and, possibly, more effective combination of alternatives representing
a batch execution schedule.

Advance reservation-based co-allocation algorithms are proposed in [22, 23,
24, 31, 32]. First fit resource selection algorithms (backtrack [22, 23] and Nor-
duGrid [24] approaches) assign any job to the first set of slots matching the re-
source request conditions without any optimization. The co-allocation algorithms
described in [31, 32, 33] suppose an exhaustive search and some of them are based
on a linear integer programming (IP) [3, 32] or mixed-integer programming (MIP)
model [33]. In [31] an online algorithm for co-allocating resources that provides
support for advance reservations is proposed. The overall complexity of the algo-
rithm for a successful scheduling attempt for the temporal space including a set
of Q slots is O (nr ×Q× (logM)2), where M is the number of servers in a com-
puting system, and nr is the reservation spatial size, i.e., the number of servers
required for the given job. The co-allocation algorithm presented in [32] uses the
0-1 IP model with the goal of creating reservation plans satisfying user resource
requirements. Users can specify a time frame for each resource: the earliest start
time, the latest start time, and the job duration, where the user wants to reserve
a time slot. This condition imposes restrictions for slots search only within this
time frame. Moreover, the important factor is a complexity and an actual calcula-
tion time of the algorithm under consideration [32] especially with the assumption
of the repeated use during the scheduling interval. The number of variables in
the proposed algorithm becomes R3 depending on the number of computer sites
R. Thus, this approach may be inadequate for an on-line service in practical use.
A linear IP-driven algorithm is proposed in [3]. It combines the capabilities of IP
and genetic algorithm and allows to obtain the best metaschedule that minimizes
the combined cost of all independent users in a coordinated manner. In [33], the
authors propose a MIP model which determines the best scheduling for all the
jobs in the queue in environments composed of multiple clusters that act collabora-
tively.

Backfilling [28] is a FCFS (first come – first served) method modification. In
contrast to FCFS, backfilling requires user’s jobs runtime estimates in order to re-



50 V. Toporkov, D. Yemelyanov, P. Potekhin, A. Toporkova, A. Tselishchev

serve resources in advance. The resources are assigned to the jobs in a priority order,
and the jobs are allocated to suitable resources if they are not already reserved for
higher priority jobs. The advance reservation mechanism in backfilling guarantees
to get the resources for higher priority jobs and allows the job queue order violation,
which contributes to a higher overall resource utilization. The queue order violation
occurs during the backfill stage when low priority jobs are attempted to be allocated
to unreserved resources. With backfilling conservative variation a low priority job
may be executed out of order, if it will not delay the execution of all higher priority
jobs. Aggressive backfilling variation allows jobs to be executed out of the order
only in case, when they do not delay the highest priority job execution.

There are some limitations of backfilling for distributed computing. The first
one is inefficient resource usage by criteria differed from an average job start time
(especially at a relatively low level resources load). The second is a principal in-
ability to affect the resource sharing quality by defining policies and criteria in VO.
Nevertheless it is appropriate to consider the use of backfilling to reschedule tasks
[35] and to avoid resources fragmentation (see Section 2.3).

The scheduling techniques proposed in [3, 31, 32, 33, 34, 35] are efficient com-
pared with other scheduling techniques under given criteria: the minimum process-
ing cost, the overall makespan, resources utilization, load balancing, etc. However,
complexity of the scheduling process is extremely increased by the resources hete-
rogeneity and the co-allocation process, which distributes the tasks of parallel jobs
across resource domain boundaries. The degree of complexity may be an obstacle
for on-line use in large-scale distributed environments.

In this work, we use algorithms for efficient slot selection based on user and
VO administrators defined criteria with the linear complexity on the number of all
available time-slots during the scheduling interval denoting how far in the future the
system may schedule resources [25, 27, 29]. Besides, in our approach the job start
time and the finish time for slot search algorithms may be considered as criteria
specified by users in accordance with the job total allocation cost. It offers the
opportunity to perform more flexible scheduling solutions.

2.3 Cyclic Scheduling Scheme

Cyclic scheduling was proposed for a model based on a hierarchical job-flow man-
agement scheme [27]. Job-flow scheduling is performed in cycles by separate job
batches on the basis of dynamically updated local schedules of computational nodes
(Figure 1). Sets of available slots and their costs (Cj in Figure 1) determined by
resource owners are updated based on the information from local resource managers
or job batch processing systems. Thus, during every scheduling cycle, two problems
have to be solved. First of all, the alternative sets of slots (alternative offers for
each batch job) that meet the requirements (resource, time, and cost) should be se-
lected. Each alternative is characterized by the total execution cost, runtime, start
time, finish time and other parameters (for example power consumption). Second,
a combination of alternatives that would be the most efficient or optimal in terms of



Metascheduling and Heuristic Co-Allocation Strategies 51

the whole job batch execution in the current scheduling cycle is chosen (according
to the VO policy).

Figure 1. Job flow cyclic scheduling

Let Si be the family of appropriate sets of slots for executing job i, i = 1, . . . , n,
in the batch, sj ∈ Si be the set of slots that are appropriate by the resource request,
the cost ci(sj) and the execution time ti(sj), j = 1, . . . , N,N = |

⋃n
i=1 Si|. Denote by

S the family of appropriate sets of slots and by s = (s1, . . . , sn), s ∈ S, the sequence,
which we call the combination of slots, for executing the batch of jobs. Let fi(sj)
be a function determining the efficiency of executing job i in the batch on the set of
slots sj under the admissible expenses specified by the function gi(sj). For example,
fi(sj) = ci(sj) is the price of using the set sj for the time gi(sj) = ti(sj). The
expenses are admissible if gi(sj) ≤ gi ≤ g∗, where gi is the level of the total expenses
for the execution of a part of jobs from the batch (for example, jobs i, i + 1, . . . , n
or i, i− 1, . . . , 1) and g∗ is the restriction for the entire set of jobs (in particular, the
restriction on a total time t∗ of slot occupation or a limitation on a budget b∗ of the
virtual organization).

Formally, the statement of the problem of the optimal choice of a slot combina-
tion s = (s1, . . . , sn) is as follows:

extr
s∈S

f(s) = extr
sj∈Si

n∑
i=1

fi(sj), gi(sj) ≤ gi ≤ g∗, g∗ =
n∑

i=1

g0i (sj), (1)

where g0i (sj) is the resource expense level function of executing the batch.



52 V. Toporkov, D. Yemelyanov, P. Potekhin, A. Toporkova, A. Tselishchev

The recurrences for finding the extremum of the criterion in (1) for the set of
slots sj ∈ Si, i = 1, n, j ∈ {1, . . . , N} based on backward recursion are

fi(gi) = extr
sj∈Si

{fi(sj) + fi+1(gi − gi(sj))}, (2)

gi(sj) ≤ gi ≤ g∗, g∗ =
n∑

i=1

g0i (sj), i = 1, n

fn+1(gn+1) ≡ 0, gi = gi−1(sk), 1 < i ≤ n, g1 = g∗, sk ∈ Si−1,

where gi are the total expenses (utilization time or cost) for using the slots for jobs
i, i + 1, . . . , n of this batch.

The optimal expenses are determined from the equation

g∗i (sj) = arg extr
gi(sj)≤gi

fi(gi), i = 1, n. (3)

The optimal set of slots s∗i ∈ {1, . . . , N} in the scheme (2), (3) is given by the
relation

s∗i = arg extr
sj∈Si

fi(g
∗
i (sj)), i = 1, n. (4)

Here (4) represents the solution of the problem (1). An example of a resource expense

level function in (1) is t0i (sj) =
[∑

sj
ti(sj)/li

]
, where li is the number of admissible

(alternative) sets of slots for the execution of job i, [.] is the ceiling of t0i (sj). Then
the constraint on the total time of slot occupation in the current scheduling cycle
can have the form

t∗ =
n∑

i=1

t0i (sj). (5)

Let us consider several problems of practical importance.

1. Maximization of profit of resource owners under restrictions on the total time
of slot utilization. Suppose it is required to select a set of slots for executing
a batch of n jobs so as to maximize the total cost of resource utilization

fi(ti) = max
sj∈Si

{ci(sj) + fi+1(ti − ti(sj))} , i = 1, . . . , n, fn+1(tn+1) ≡ 0. (6)

The restriction on the total time of using slots by all the jobs is given by (5).

2. Minimization of the total completion time of a batch of jobs under a restriction
on the budget b∗ of the virtual organization:

fi(ci) = min
sj∈Si

{ti(sj) + fi+1(ci − ci(sj))} , i = 1, . . . , n, fn+1(cn+1) ≡ 0. (7)



Metascheduling and Heuristic Co-Allocation Strategies 53

3. Minimization of the total cost of executing a batch of n jobs under a restriction
on the total time (5) of slot utilization:

fi(ti) = min
sj∈Si

{ci(sj) + fi+1(ti − ti(sj))} , i = 1, . . . , n, fn+1(tn+1) ≡ 0. (8)

4. Minimization of the idleness of resources under the restriction on the total time
of their utilization. On the one hand, the resource owners restrict the time of
slot utilization to balance their own (local) and users’ job flows. On the other
hand, the owners naturally strive to minimize the idleness of resources. Assume
that the slot utilization time is bounded by (5). The problem is reduced to
finding a set of slots that satisfy this restriction:

fi(ti) = max
sj∈Si

{ti(sj) + fi+1(ti − ti(sj))} , i = 1, . . . , n, fn+1(tn+1) ≡ 0. (9)

The above functional Equations (6)–(9) are concretizations of (2) and are im-
plemented as simulation environment components [27].

Figure 2. An example of alternatives allocation for a batch of five jobs

Among the major CSS restrictions in terms of an efficient scheduling and re-
source allocation one may outline the following. First of all, it is not possible to af-
fect execution parameters of an individual job: the search for particular alternatives
is performed on the First Fit principle, while choice of the optimal combination (4)
represents only the interests of VO upon the whole. In our previous work [25], two al-
gorithms for slot selection AMP and ALP that feature linear complexity O(p), where
p is the number of available time-slots, were proposed. Both algorithms perform the
search of the first fitting window without any optimization. AMP (Algorithm based
on Maximal job Price), performing slot selection based on the maximum slot window
cost, proved the advantage over ALP (Algorithm based on Local Price of slots) when
applied to the above mentioned scheduling scheme. However, in order to accommo-
date an end user’s job execution requirements, there is a need for more precise slot
selection algorithms to consider various user demands along with the VO resource



54 V. Toporkov, D. Yemelyanov, P. Potekhin, A. Toporkova, A. Tselishchev

management policy. Thus, CSS-approach does not take into account user interests
and preferences, and therefore obstructs fair resource sharing. Second, the job batch
scheduling is based on a user estimation of the particular job runtime ti(sj) (often
inaccurate). Thus, in case of estimation incorrectness, the early released resources
may become idle reducing the distributed environment utilization level. Third, the
job batch scheduling requires allocation of a multiple “nonintersecting” in terms of
slots alternatives, and at the same time only one alternative is chosen for each job
execution.

Figure 2 shows a job batch scheduling example consisting of five independent
jobs.

Highlighted rectangles schematically represent all “nonintersecting” in terms of
slots alternatives found for the batch on the scheduling cycle in “CPU – Time”
space. Filled rectangles represent a combination of the alternatives selected by the
metascheduler. Thus, available resources are fragmented, and their utilization level,
especially at the beginning of the considered scheduling interval, is relatively low.

The following section is dedicated to the CSS generalization and further deve-
lopment.

3 THE MODEL OF SCHEDULING AND FAIR RESOURCE SHARING

For the metascheduling concept implementation we put the following requirements
for the model of scheduling and fair resource sharing among the VO stakeholders
(we name this model as batch-slicer). First, VO administrators should be able to
manage the scheduling process by establishing a job-flow execution policy. Second,
VO users should have an opportunity to affect their jobs execution schedule by set-
ting an optimization criterion. Third, resource owners should be able to control
utilization level of their computational nodes by specifying their pricing model dur-
ing the scheduling interval. Batch-slicer is a generalization of CSS described above,
and therefore it takes into account the interests of diverse VO stakeholders. In order
to satisfy the user preferences, a desirable optimization criterion is introduced into
the resource request format.

Unlike the so-called soft constraints [14] representing the user preferences, the
optimization criterion defined in the resource request is considered during the stage
of alternatives (slot sets) search. An Algorithm searching for Extreme Performance
(AEP) described in details in [29] is used to select optimal alternatives under a given
criterion. The job is a set of m interrelated tasks. The launch of any job requires
a co-allocation of a specified number of slots, as well as in the classic backfilling
variation [28]. The target is to scan a list of available slots and to select a window
W of m parallel slots with a length of the required resource reservation time. The
length of each slot in the window is determined by the performance rate of the
resource on which it is allocated. The time length of an allocated window W is
defined by the execution time of the task that is using the slowest CPU node, and in
the case of heterogeneous resources, as a result one has a window with a “rough right



Metascheduling and Heuristic Co-Allocation Strategies 55

edge” (Figure 3). One can define a criterion on which the best matching window
alternative is chosen. This can be a criterion crW for a minimum cost, a minimum
execution runtime or, for example, a minimum energy consumption.

The scheme for an optimal window search by the specified criterion may be
represented as follows:

Data: slotList – a list of available slots; job – a job for which the search is
performed

Result: bestWindow – a window with the extreme criterion crW value
slotList = orderSystemSlotsByStartTime();
for each slot in slotList do

if not(properHardwareAndSoftware(slot.node)) then
continue;

end
windowSlotList.add(slot);
windowStartTime = slot.startTime;
for each wSlot in windowSlotList do

minLength = wSlot.node.getWorkingTimeEstimate();
if (wSlot.endTime – windowStartTime) < minLength then

windowSlotList.remove(wSlot);
end

end
if windowSlotList.size() ≥ job.nodesNeed then

curwindow = getBestWindow(windowSlotList);
crW = getCriteriaValue(curWindow);
if crW > maxCriteriaValue then

maxCriteriaValue = crW;
bestWindow = curWindow;

end

end

end
Algorithm 1: AEP-scheme for an optimal slot window selection

Finally, a variable bestWindow will contain an effective window by the given
criterion crW .

The window search is performed on the list of all available slots sorted by their
start time in ascending order (see Figure 3). This condition is necessary to examine
every slot in the list and for operation of search algorithms of linear complexity [25,
27]. AEP can be compared to the algorithm of min/max value search in an array
of flat values. The expanded window of size p “moves” through the ordered list of
available slots. At each step any combination of m slots inside it (in the case, when
m ≤ p) can form a window that meets all the requirements to run the job. The
effective on the specified criterion window of size m is selected from these p slots



56 V. Toporkov, D. Yemelyanov, P. Potekhin, A. Toporkova, A. Tselishchev

Figure 3. Window with a “rough right edge”

and compared with the results in the previous steps. By the end of the slot list the
only solution with the best criterion crW value will be selected.

We considered as an example the problem of selecting a window of size m with
a total cost no more than C from the list of p > m slots (in the case, when p =
m the selection is trivial). The cost of using each of the slots according to their
required time length is: c1, c2, . . . , cp. Each slot has a numeric characteristic zq in
accordance to crW . The total value of these characteristics should be minimized
in the resulting window. Then the problem is formulated as follows: to minimize
a1z1 + a2z2 + . . .+ apzp, under a1c1 + a2c2 + . . .+ apcp ≤ C, a1 + a2 + . . .+ ap = m,
aq ∈ {0, 1}, q = 1, . . . , p.

Finding the coefficients a1, a2, . . . , ap each of which takes integer values 0 or 1
(and the total number of “1” values is equal to m, because each job is the set of m
interrelated tasks), determine the window with the specified criterion crW extreme
value. Additional restrictions can be added, for example, considering the specified
value of deadline. By combining the optimization criteria, VO administrators and
users can form diverse slot selection and co-allocation strategies for every job in the
batch.

Thus, a set of job execution alternatives is formed by the user preferences ac-
cording to the individual application optimization criteria. At the same time the op-
timal alternatives combination choice is carried out in accordance with the criterion
which implements VO policy. Resource owners receive an opportunity to manage
their own profit and computational nodes utilization by varying local schedules and
price establishing during the scheduling cycle.

Another difference between batch-slicer and CSS consists in the job system for-
mation algorithm. Batch-slicer implies a separation of the initial job batch into
a set of sub-batches and each sub-batch scheduling at the same given scheduling
interval. The idea of “slicing” can be particularly noticeable at a relatively high
distributed environment resources utilization level. According to the alternatives
search algorithm adopted in CSS [27], the number of execution alternatives for a job
batch may be relatively small (up to just a single alternative for every job at a high



Metascheduling and Heuristic Co-Allocation Strategies 57

resource utilization level). Such a small number of alternatives found may affect the
optimal slot combination selection (4), and therefore, may reduce overall scheduling
efficiency. The job batch “slicing” increases the number of alternatives found for
high-priority jobs and diversifies the choice on the slots combination selection (4)
stage, and thereby increases the resource sharing efficiency according to VO policy.
When separating the original batch to n sub-batches, where n is a total number of
jobs in the batch (see Section 2.3), the algorithm will find the best sets of slots for
each job according to the criteria specified in their resource requests. But in this
case the efficiency of a whole job batch scheduling is not taken into account. On the
other hand, when only a single sub-batch is “picked” from the original job batch the
scheduling result will be identical to CSS application.

Figure 4. Job flow cyclic scheduling with batch-slicing

In view of described modifications, batch-slicer is schematically shown in Fig-
ure 4: an optimization criterion is specified for each job, and the job batch is sepa-
rated to the sub-batches during the scheduling cycle.

4 CYCLIC SCHEDULING METHOD COMBINED
WITH BACKFILLING

Each of the approaches described above has its advantages and disadvantages.
Batch-slicer makes it possible to optimize the job-flow execution according to the
VO shareholders preferences on condition that a sufficient number of alternatives
was found for the batch jobs during the scheduling cycle. Backfilling responds to



58 V. Toporkov, D. Yemelyanov, P. Potekhin, A. Toporkova, A. Tselishchev

early resources releases and performs “on the fly” rescheduling which is very impor-
tant when a user job runtime estimation is significantly different from the actual job
execution time.

We propose a combined approach. During every scheduling cycle a set of high
priority jobs, for example the most “expensive” (by total execution cost) or the most
critical in terms of required resource (by performance), is allocated from the initial
job batch. These jobs should be scheduled before other jobs, probably, without
complying the queue discipline. High priority jobs are grouped into a separate sub-
batch. The scheduling of this sub-batch is further performed by batch-slicer based
on the preliminary known resources utilization schedule. The scheduling of the
rest batch jobs is performed by backfilling with the dynamically updated informa-
tion about the actual computational nodes utilization. Thus, the cyclic scheduling
method combined with backfilling (batch-slice-filling – BSF) combines the main ad-
vantages of both batch-slicer and backfilling, namely the optimization of the most
time-consuming jobs execution as well as the efficient resource usage, preferential
job execution queue order compliance and relatively low response time. The exact
number of jobs to select into the first sub-batch to schedule with batch-slicer and
the selection principle may depend on the related resource domain characteristics
as well as on the job batch composition and general parameters.

5 SIMULATION ENVIRONMENT SETUP

A series of studies were carried out with the simulation environment [27] in order
to investigate the proposed job batch scheduling approaches and to compare them
with known scheduling algorithms.

The scheduling environment core consists of the following major components:
computational procedures and random variable functions implementation for the
environment parameters generation; resource requests and distributed computing
environment generation; AEP slot processing; an algorithm for optimal alternatives
combination selection; batch-slicer module; backfilling module; BSF module.

The main features of the simulation environment are as follows.

1. The job-flow and domain heterogeneous resources generation is performed in ac-
cordance with the random variables distribution functions with settings specified
in the model for the real traces simulation.

2. Initial domain node utilization level is determined by the local tasks number
and runtime. The initial CPU node utilization schedule is generated with the
hypergeometric distribution.

3. The model supports different pricing mechanisms and the interaction between
the VO stakeholders with economic principles.

4. The algorithms for job system formation, alternatives search and the best alter-
natives combination selection are implemented in the model.



Metascheduling and Heuristic Co-Allocation Strategies 59

We introduce some realistic features into our simulation approach. The model
components general settings are used for the experiments as follows. A typical
scheduling interval length is assumed to be 600 units of time in simulation steps.
The number of nodes in the resource domain is equal to 24. The nodes performance
level is given as a uniformly distributed random value r ∈ [2, 10]. Thus the resources
with the highest performance level (r = 10) are generally able to execute jobs roughly
twice as fast as medium performance level nodes (r = 6), while nodes with the lowest
performance (r = 2) are three times slower. This configuration provides a sufficient
resources diversity level while the difference between the highest and the lowest
resource performance levels will not exceed one order within a particular resource
domain. Uniform distribution was chosen in the assumption that the CPU node
composition is formed by resource selection based on such characteristics as a CPU
node type, performance, locations, etc. (hard constraints according to [14]). The
node prices are assigned during the pricing stage depending on the node performance
level and a random “discount/extra charge” value which is normally distributed.
The number of user jobs in each scheduling cycle is assumed to be 20. The jobs
budget limit is generated in such a way that the “richest” users can afford to use
“expensive” resources with the price formed as a “market value+60 % extra charge”,
and the “poorest” users have been forced to rely on 60 % discounts. These factors
prevent the monopoly for the most expensive and, therefore, the high-performance
resources.

A special study is a simulation of a complete scheduling cycle for the same
job batch independently by proposed and known algorithms. In each experiment,
a job batch presented as a resource requests list is performed and then a resource
environment composition with local utilization schedules is generated. Thus the
study is based on scheduling results obtained with the same input (job batch) using
different scheduling algorithms comparison.

6 CSS AND FAIR RESOURCE SHARING
EXPERIMENTAL STUDIES

The goal of the investigation is to verify basic concepts of fair resource sharing, i.e.
to prove that each VO member has a possibility to affect the process of scheduling
according to his preferences (see Section 2).

6.1 AEP-Based Heuristic Strategies

The need to choose alternative sets of slots for every batch job increases the com-
plexity of the whole scheduling scheme [27]. With a large number of available slots
the search algorithm execution time may become inadequate. However, it is possible
to mention some typical optimization problems based on the AEP scheme that can
be solved with a relatively decreased complexity. These include problems of total job
cost minimizing, total runtime minimizing, the window formation with the minimal
start/finish time.



60 V. Toporkov, D. Yemelyanov, P. Potekhin, A. Toporkova, A. Tselishchev

For the proposed AEP efficiency analysis the following heuristic strategies and
their algorithmic implementations were added to the simulation model [27].

1. AMP – searching for slot windows with the earliest start time. This scheme was
introduced in [25].

2. MinRunTime – this strategy performs a search for a single alternative with
the minimum execution runtime. Given the nature of determining a window
runtime, which is equal to the length of the longest composing slot, the following
scheme may be proposed:

Data: windowSlotList – a list of slots in the window
Result: resultWindowList – a list of n slots with the minimum runtime
orderSlotsByCostAscending(windowSlotList);
resultWindowList = getSubList(0,n, windowSlotList);
spareWindowList = getSubList(n,m, windowSlotList);
while spareWindowList.size() > 0 do

longSlot = getLongestSlot(resultWindowList);
shortSlot = getCheapestSlot(spareWindowList);
spareSlotList.remove(shortSlot);
if (shortSlot.length < longSlot.length) and (()resultWindowList.sumCost
– longSlot.cost + shortSlot.cost) < job.costLimit) then

resultWindowList.remove(longSlot);
resultWindowList.add(shortSlot);

end

end
Algorithm 2: Simplified runtime minimization subwindow selection scheme

As a result, the suitable window of the minimum time length will be formed in
a variable resultWindow. The algorithm described consists of the consecutive
attempts to substitute the longest slot in the current window (the resultWindow
variable) with another shorter one that will not be too expensive. In case when
it is impossible to substitute the slots without violating the constraint on the
maximum window allocation cost, the current resultWindow configuration is
declared to have the minimum runtime.

3. MinFinish – searching for alternatives with the earliest finish time. This strategy
may be implemented using the runtime minimizing procedure presented above.
Indeed, the expanded window has a start time tStart equal to the start time of
the last added suitable slot. The minimum finish time for a window on this set
of slots is (tStart+minRuntime), where minRuntime is the minimum window
length. The value of minRuntime can be calculated similarly to the runtime
minimizing procedure described above. Thus, by selecting a window with the
earliest completion time at each step of the algorithm, the required window will
be allocated in the end of the slot list.



Metascheduling and Heuristic Co-Allocation Strategies 61

4. MinCost – searching for a single alternative with the minimum total allocation
cost on the scheduling interval. For this purpose in the AEP search scheme
m slots with the minimum sum cost should be chosen. If at each step of the
algorithm a window with the minimum sum cost is selected, at the end the
window with the best value of the criterion crW will be guaranteed to have
overall minimum total allocation cost at the given scheduling interval.

5. MinProcTime – this strategy performs a search for a single alternative with the
minimum total node execution time defined as a sum of the composing slots time
lengths. It is worth mentioning that this implementation is simplified and does
not guarantee an optimal result and only partially matches the AEP scheme,
because a random window is selected.

6. Common Stats, AMP (further referred to as CSA) – the strategy for searching
multiple alternatives using AMP. Similar to the general searching scheme [25],
a set of suitable alternatives, disjointed by the slots, is allocated for each job.
To compare the search results with the strategies 1-5, presented above, only
alternatives with the extreme value of the given criterion will be selected, so the
optimization will take place at the selection process. The criteria include the
start time, the finish time, the total execution cost, the minimum runtime and
the processor time used.

It is worth mentioning that all proposed AEP implementations have a linear
complexity O(p): algorithms “move” through the list of p available slots in the
direction of non-decreasing start time without turning back or reviewing previous
steps.

The goal of the experiment is to examine AEP implementations: to analyze
co-allocation strategies with different efficiency criteria, to compare the results with
AMP and to estimate the possibility of using in real systems considering the al-
gorithm execution time for each strategy. In each experiment a generation of the
distributed environment that consists of 100 CPU nodes was performed. The rel-
atively high number of the generated nodes has been chosen to allow CSA to find
more slot alternatives. Therefore more effective alternatives could be selected for the
searching results comparison based on the given criteria. The level of the resource
initial load with the local and high priority jobs at the scheduling interval [0; 600]
was generated by the hyper-geometric distribution in the range from 10 % to 50 %
for each CPU node. Based on the generated environment the algorithms performed
the search for a single initial job that required an allocation of 5 parallel slots for 150
units of time. The maximum total execution cost according to user requirements
was set to 1 500. This value generally will not allow using the most expensive (and
usually the most efficient) CPU nodes.

The results of the 5 000 simulated scheduling cycles are presented in Figure 5.
The obtained values of the total job execution cost are as follows: AMP – 1 445.2;

minFinish – 1 464.2; minCost – 1 027.3; minRuntime – 1 464.9; minProcTime –
1 342.1; CSA – 1 352. Each full AEP-based strategy was able to obtain the best
result in accordance with the given criterion: start time (Figure 5 a)); runtime



62 V. Toporkov, D. Yemelyanov, P. Potekhin, A. Toporkova, A. Tselishchev

a)

b)



Metascheduling and Heuristic Co-Allocation Strategies 63

c)

d)

Figure 5. Average a) start time, b) runtime, c) finish time, and d) CPU usage time



64 V. Toporkov, D. Yemelyanov, P. Potekhin, A. Toporkova, A. Tselishchev

(Figure 5 b)); finish time (Figure 5 c)); CPU usage time (Figure 5 d)). Besides,
a single run of the AEP-like algorithm had an advantage of 10 %–50 % over suitable
alternatives found by AMP with a respect to the specified criterion. According to
the experimental results, on one hand, the best scheme with top results in start
time, finish time, runtime and CPU usage time was minFinish. Though, in order to
obtain such results, the algorithm spent almost all user specified budget (1 464 of
1 500). On the other hand, the minCost strategy was designed precisely to minimize
execution expenses and provides 43 % advantage over minFinish (1 027 of 1 500), but
the drawback is a more than modest results by other criteria considered.

The important factor is a complexity and an actual working time of the algo-
rithms implementing heuristic strategies. Figure 6 a) shows the actual algorithms ex-
ecution time in miliseconds measured depending on the number of CPU nodes. The
simulation was performed on a regular PC workstation with Intel Core i3 (2 cores
@ 2.93 GHz), 3 GB RAM on JRE 1.6, and 1 000 separate experiments were simulated
for each value of the processor nodes numbers {50, 100, 200, 300, 400}.

The CSA strategy has the longest working time that on the average almost
reaches 3 seconds when 400 nodes are available. A curve “CSA per Alt” in Figure 6 a)
represents an average working time for the CSA algorithm in recalculation for one
alternative. AEP-based algorithms feature a quadratic complexity.

Figure 6 b) presents the algorithms working time in milliseconds measured de-
pending on the scheduling interval length. Overall 1 000 single experiments were
conducted for each value of the interval length {600, 1 200, 1 800, 2 400, 3 000, 3 600}
and for each considered algorithm an average working time was obtained. The ex-
periment simulation parameters and assumptions were the same as described earlier
in this section, apart from the scheduling interval length. A number of CPU nodes
was set to 100. Similarly to the previous experiment, CSA had the longest working
time (about 2.5 seconds with the scheduling interval length equal to 3 600 model
time units), which is mainly caused by the relatively large number of the formed ex-
ecution alternatives (on the average more than 400 alternatives on the 3 600 interval
length).

Analyzing the presented values it is easy to see that all proposed algorithms have
a linear complexity with the respect to the length of the scheduling interval and,
hence, to the number of the available slots. The minProcTime strategy stands apart
and represents a class of simplified AEP implementations with a noticeably reduced
working time. And though the scheme compared to other considered algorithms,
did not provide any remarkable results, it was on the average only 2 % less effective
than the CSA scheme by the dedicated CPU usage criterion (see Figure 5 d)). At the
same time its reduced complexity and actual working time (see Figure 6 b)) allow
to use it in a large wide scale distributed systems when other optimization search
algorithms prove to be too slow.

As a result it may be stated that the advantage of AEP-based strategies over
the general CSA scheme was shown for each of the considered criteria: start time,
finish time, runtime, CPU usage time, and total cost.



Metascheduling and Heuristic Co-Allocation Strategies 65

a)

b)

Figure 6. Average a) working time duration depending on the available CPU nodes number
and b) the scheduling interval length



66 V. Toporkov, D. Yemelyanov, P. Potekhin, A. Toporkova, A. Tselishchev

6.2 Taking into Account VO Users’ Preferences in Batch-Slicer

Taking into account VO users’ preferences, the analysis of scheduling results for indi-
vidual jobs is carried out by comparing the proposed batch-slicer approach with the
initial CSS. The latter does not perform optimization during the stage of alternatives
selection. Thus, there are two approaches considered in the experiment:

1. scheduling of the job batch with batch-slicer where alternatives search is per-
formed based on AEP taking into account the criterion specified in resource
request,

2. scheduling of the job batch with CSS where alternatives search is performed by
choosing the first fit alternative.

Table 1 shows the results of individual jobs scheduling depending on the opti-
mization criterion specified by the user: job start and finish time, execution time
and cost (AEP minimizes the value of the specified criterion).

Criterion NA Start time Execution time Finish Time Cost

Start time 12.8 171.7 56.1 227.8 1 281.1

Execution time 10.6 214.5 39.3 253.9 1 278.5

Finish time 12.2 169.6 45 205.5 1 283.2

Cost 12.9 262.6 55.5 318 1 098.3

CSS 12.1 222 50.3 272.3 1 248.4

Table 1. Scheduling results with VO users’ preferences

The choice of one of the four optimization criteria is made randomly with uniform
distribution at the stage of job batch generation. Uniform distribution is used
because no prevalent optimization criterion can be chosen. The last row of Table 1
shows the results of scheduling of the same job batch with initial CSS without
optimization at the stage of alternatives search. Simulation of 5 000 individual
scheduling cycles was conducted. As can be seen from Table 1, best values against
start and finish time criteria as well as by execution time and cost (the minimal
values are marked in bold) are achieved by the jobs for which the corresponding
optimization criterion is specified (“Criterion” column). The only exception is the
MinFinish strategy: the jobs for which this optimization criterion was specified show
on average not only the minimal finish time, but also the minimal start time. On
average, the use of an optimization criterion in batch-slicer, in comparison with CSS,
when executing individual jobs, allows reducing job start and finish time by more
than 23 %, reducing execution time by 21 % and reducing execution cost by 12 %.
Average number of execution alternatives (NA in Table 1) found for the jobs during
one scheduling cycle almost does not depend on the chosen optimization criterion.
Average number of jobs per each group having the same optimization criterion
equals 5 on average. This fits the use of uniform distribution when choosing one of
the four optimization criteria for each of the 20 batch jobs.



Metascheduling and Heuristic Co-Allocation Strategies 67

The individual jobs scheduling results show that users can affect the execution
of their own jobs by specifying an optimization criterion. This is achieved due to
the fact that, in the presence of different requirements to efficiency of job execution,
resources are allocated among the jobs unevenly, depending on the criterion used
in selection. Note, that in the initial CSS at the stage of alternatives search all the
resources are allocated among the jobs uniformly.

6.3 Optimization of Job Batch Execution in VO

The next experiment is dedicated to comparing the scheduling results when slic-
ing the initial job batch in batch-slicer into different number of sub-batches and at
different levels of environment utilization. The experiment allows estimating the effi-
ciency of scheduling in different modes with different input data. Modes comparison
was performed on the basis of job batch allocation results on full scheduling cycle
including initial environment generation, composition of batches and sub-batches
and then their sequential scheduling.

When choosing the optimal execution alternatives combination the average job
execution time TCPU minimization task was being solved. Total slot utilization
time for an alternative is determined as the sum of slot lengths being part of the
composed “window”. Figure 7 shows the value of TCPU depending on the number
of sub-batches k ∈ {1, 2, 3, 5, 6, 10, 20} into which the initial batch is sliced and
the level of environment utilization. When performing the series of experiments
the environment utilization level is determined by the relative average number of
failures Y – scheduling cycles in the course of which the execution schedule for all the
batch jobs was not found. The experiments were conducted under high (Y = 0.3),
medium (Y = 0.03) and low utilization levels (Y < 0.0002). Thus the number of
failures in the conducted series of experiments differs at the minimum by the order
of magnitude of one.

As a result of the job batch scheduling experiment the following patterns were
revealed. An increase of composed sub-batches number causes an increase of alter-
natives number for execution an individual job, a decrease of total job execution
cost, and an increase of a relative number of failures Y . When increasing the level
of available resources the number of alternatives for the individual job execution in-
creases, the relative number of failures Y decreases, and the total cost of job batch
execution decreases. The experiment results show that slicing of the initial batch
into sub-batches and their sequential independent scheduling allows to increase the
number of execution alternatives for the batch jobs and to perform more efficient
execution schedules. So, at a high execution environment the utilization rate, the
best efficiency and the least number of failures are provided by slicing into fewer
sub-batches. On the other hand, at a low utilization of available resources it is
advantageous to slice into a higher number of sub-batches up to scheduling the jobs
individually (see Figure 7). Another advantage of batch-slicer in comparison with
CSS is decreasing of total execution cost as the level of resource utilization becomes
lower. CSS tries to use the entire admissible budget b∗ for the job batch execution



68 V. Toporkov, D. Yemelyanov, P. Potekhin, A. Toporkova, A. Tselishchev

by choosing the corresponding set of alternatives. At the same time, when schedul-
ing sub-batches with a small number of jobs, the choice is often confined to a few
alternatives whose cost is not necessarily close to the admissible budget limitation.

Figure 7. Average jobs execution time TCPU depending on the number of sub-batches k

Thus, batch-slicer allows not only taking into account VO administrators’ pref-
erences (by optimizing at the alternatives set selection stage, like in the initial CSS),
but it can also provide a better value of the target criterion in comparison with CSS
by slicing into sub-batches (the least value of the target criterion – job batch total
execution time – was achieved when slicing the job batch into 5 sub-batches with
four jobs in each of them).

6.4 Taking into Account VO Resource Owners’ Preferences

Table 2 shows the scheduling results with batch-slicer from resource owners’ point
of view by the example of a single CPU node characteristics depending on the unit
cost c, specified for the use of scheduling interval T = 600: Lc – total slot utilization
time in the scheduling interval; U – relative resource utilization average value in the
scheduling interval; P – average profit made by the resource owner, and Y – relative
number of scheduling failures.

c Lc U P Y

2 256.6 0.44 527.1 0

4 234.9 0.39 939.6 0.001

6 185.4 0.31 1 112.3 0.013

8 109.8 0.18 878.7 0.024

10 71 0.12 710.3 0.025

Table 2. Scheduling results with VO resource owners’ preferences



Metascheduling and Heuristic Co-Allocation Strategies 69

Figure 8. A resource owner’s profit P depending on the proposed price c

As can be seen from Table 2, resource owners are able to control their profit P
and the computational node utilization level U in the scheduling interval T by
proposing the unit cost c of using their node. Profit extremum is achieved when
proposing the cost close to the “average market cost”, i.e. the average cost for
a resource with similar performance, proposed by other resource owners. The profit
value received by a resource owner for providing a single computational node is
illustrated in Figure 8.

7 EXPERIMENTAL STUDIES OF RESOURCE USE EFFICIENCY
IN THE CYCLIC SCHEME

7.1 Studies of Combined Scheduling Method BSF

The efficiency of scheduling with BSF combined approach can be considered from
two viewpoints at the same time: on the one hand, from the viewpoint of criterion
value optimization in the specific VO, job batch total execution time (7) for instance,
and, on the other hand, from the environment utilization level and the batch job
start time minimization viewpoint.

Figure 9 shows the batch job average execution time TCPU and the average start
time Tstart depending on the ratio according to which slicing into sub-batches was
made: nCSS – the number of jobs in the first sub-batch, scheduled with CSS, n –
total number of jobs in the batch.

Slicing into sub-batches was made based on a priority – the order of jobs in the
batch – without taking into account the characteristics of the jobs themselves. The
scheduling results presented in Figure 9 are obtained based on simulation of 5 000
independent scheduling cycles at a medium level of resource utilization according to
the settings described in Section 5. As seen from Figure 9, if a major part of the
job is scheduled with batch-slicer then a better value of the target VO scheduling
criterion – the execution time TCPU is achieved, but the average job start time



70 V. Toporkov, D. Yemelyanov, P. Potekhin, A. Toporkova, A. Tselishchev

Figure 9. Average job execution TCPU and start Tstart time in BSF

Tstart is delayed. And on the contrary, if a major part of the job is scheduled
with backfilling, then average start time approaches the beginning of the scheduling
interval but the value of the target optimization criterion deteriorates. Particular
emphasis should be given to the cross point of graphs in Figure 9. Its presence given
that the graphs are monotone suggests the possibility of reaching a compromise
between average start time and the value of the VO target optimization criterion.
So, BSF shows “compromise” values of the discussed characteristics compared to
BS and backfilling.

7.2 Experimental Studies of Consistency of Schedules
Based on Job Execution Time Estimate

Let us consider scheduling efficiency study results and consistency of schedules per-
formed with batch-slicer and CSS and based on the job execution time estimate
which is specified in the resource request. Batch-slicer and CSS form preliminary
job batch execution schedules in the scheduling interval without taking into ac-
count the situations in which real job execution time is less than the time spec-
ified by the user. Early job completion, untimely resource release and idleness
may negatively affect the efficiency of the job batch execution against the crite-
ria specified by VO stakeholders and to make the schedule inconsistent. On the
other hand, backfilling conducts scheduling on basis of dynamically updated in-
formation on job execution status and computational node utilization. Thanks to
this it can provide an efficient job flow execution. A simulation was conducted
to study and to compare the efficiency of schedules performed with CSS, batch-
slicer and backfilling. In the simulation the real job execution time differed con-
siderably from the resource advanced reservation time. Real job execution time
was specified as a random variable uniformly distributed in the interval [0.2 ∗
Tres, Tres], where Tres – time reserved for job execution. Uniform distribution is
chosen as it is almost impossible to predict real job execution time on the specified



Metascheduling and Heuristic Co-Allocation Strategies 71

resources. Thus, at worst, the real execution time could differ from user estimate
by 5 times.

Table 3 contains the average job execution time values (the target optimiza-
tion criterion) and average job start time obtained: 1) at the stage of preliminary
scheduling based on job execution time estimate Tres (“Scheduled” column); 2) as
the result of execution simulation of the composed schedule taking into account real
job execution time on the chosen resources (“Real” column).

Algorithm Execution time Start time
Scheduled Real Scheduled Real

Backfilling 187.7 115.1 69 37.3
CSS 150.1 90.4 281.2 281.2
Batch-slicer 138.6 83.5 223.8 223.8

Batch-slicer advantage over backfilling 26.2 % 27.5 % −69 % −83 %

Table 3. Real and scheduled job execution time

It can be seen from Table 3 that even if the difference between the resource
reservation time and the real job execution time is significant the advantage of
batch-slicer over backfilling against the VO target optimization criterion not only
remains but even increases. That is because the backfilling does not optimize against
the criteria different from a start time and a more compact job location (real start
time of jobs scheduled with backfilling is reduced by 46 % on average) uses almost all
the available resources including those less advantageous against the target criterion.

Thus, results of this stress test show that preliminary schedules formed in the
beginning of the scheduling cycle are consistent against the criteria determined in
VO in the case when the real execution time differs significantly from the resource
reservation time. Note that an additional advantage can be achieved by rescheduling
when taking into account the information about current utilization of computational
nodes.

8 CONCLUSIONS AND FUTURE WORK

In this work, we address metascheduling and co-allocation strategies with different
target criteria, and, based on scheduling and fair resource sharing model taking into
account all VO stakeholders’ preferences, we take into consideration the economic
principles. We proposed a solution of the problem in a fair resource sharing among
VO stakeholders.

The advantage over initial CSS when scheduling the job flow reaches 7 % and in
the terms of a single job execution it reaches 25 % at a medium level of environment
utilization. Resource owners can vary the resource provision unit cost (by offering
discounts, for instance) to maximize the profit or to achieve the necessary resource
utilization level. Based on the union of CSS and backfilling, a combined approach
BSF is proposed. The approach shows compromise results compared to batch-
slicer and backfilling, namely it allows utilizing the available resources efficiently



72 V. Toporkov, D. Yemelyanov, P. Potekhin, A. Toporkova, A. Tselishchev

(by means of backfilling) when efficiently executing a part of jobs in VO (by means
of optimization in batch-slicer). The consistency of scheduling made with batch-
slicer when real job execution time is significantly different from user’s estimate is
shown.

Further research will be related to a more precise investigation of dividing the
job flow into sub-batches depending on the jobs characteristics and computing en-
vironment parameters as well as to studying the mechanism of rescheduling based
on information about computational nodes current utilization.

Acknowledgements

This work was partially supported by the Council on Grants of the President of
the Russian Federation for State Support of Young Scientists and Leading Scientific
Schools (grants YPhD-4148.2015.9 and SS-362.2014.9), RFBR (grants 15-07-02259
and 15-07-03401), the Ministry on Education and Science of the Russian Federa-
tion, task No. 2014/123 (project No. 2268), and by the Russian Science Foundation
(project No. 15-11-10010).

REFERENCES

[1] Garg, S. K.—Buyya, R.—Siegel, H. J.: Scheduling Parallel Applications on Util-
ity Grids: Time and Cost Trade-Off Management. 32nd Australasian Computer Scien-
ce Conference (ACSC 2009), Wellington, New Zealand, 2009, pp. 151–159.

[2] Degabriele, J. P.—Pym, D.: Economic Aspects of a Utility Computing Service.
Technical Report HPL-2007-101, Trusted Systems Laboratory, HP Laboratories Bris-
tol, 2007, pp. 1–23.

[3] Garg, S. K.—Yeo, C. S.—Anandasivam, A.—Buyya, R.: Environment-Con-
scious Scheduling of HPC Applications on Distributed Cloud-Oriented Data Centers.
J. Parallel and Distributed Computing, Vol. 71, 2011, No. 6, pp. 732–749.

[4] Tesauro, G.—Bredin, J. L.: Strategic Sequential Bidding in Auctions Using Dy-
namic Programming. 1st International Joint Conference on Autonomous Agents and
Multiagent Systems, ACM, New York 2002, Part 2, pp. 591–598.

[5] Thain, D.—Tannenbaum, T.—Livny, M.: Distributed Computing in Practice:
The Condor Experience. J. Concurrency and Computation: Practice and Experience,
Vol. 17, 2004, No. 2-4, pp. 323–356.

[6] Berman, F.: High-Performance Schedulers. In: Foster, I., Kesselman, C. (Eds.):
The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San
Francisco 1999, pp. 279–309.

[7] Yang, Y.—Raadt, K.—Casanova, H.: Multiround Algorithms for Scheduling
Divisible Loads. IEEE Trans. Parallel and Distributed Systems, Vol. 16, 2005, No. 8,
pp. 1092–1102.

[8] Natrajan, A.—Humphrey, M. A.—Grimshaw, A. S.: Grid Resource Manage-
ment in Legion. In: Nabrzyski, J., Schopf, J. M., Weglarz J. (Eds.): Grid Resource



Metascheduling and Heuristic Co-Allocation Strategies 73

Management. State of the Art and Future Trends. Kluwer Academic Publishers,
Boston 2000, pp. 145–160.

[9] Beiriger, J.—Johnson, W.—Bivens, H.: Constructing the ASCI Grid. 9th IEEE
Symposium on High Performance Distributed Computing, IEEE Press, New York
2000, pp. 193–200.

[10] Frey, J.—Foster, I.—Livny, M.: Condor-G: A Computation Management Agent
for Multi-Institutional Grids. 10th International Symposium on High-Performance
Distributed Computing, IEEE Press, New York 2001, pp. 55–66.

[11] Abramson, D.—Giddy J.—Kotler L.: High Performance Parametric Modeling
with Nimrod/G: Killer Application for the Global Grid? International Parallel and
Distributed Processing Symposium, IEEE Press, New York 2000, pp. 520–528.

[12] Foster, I.—Kesselman C.—Tuecke S.: The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. Int. J. of High Performance Computing Applications,
Vol. 15, 2001, No. 3, pp. 200–222.

[13] Ranganathan, K.—Foster, I.: Decoupling Computation and Data Scheduling
in Distributed Data-Intensive Applications. 11th IEEE International Symposium on
High Performance Distributed Computing, IEEE Press, New York 2002, pp. 376–381.

[14] Kurowski, K.—Nabrzyski, J.—Oleksiak, A.—Weglarz, J.: Multicriteria As-
pects of Grid Resource Management. In: Nabrzyski, J., Schopf, J. M., Weglarz, J.
(Eds.): Grid Resource Management. State of the art and Future Trends. Kluwer
Academic Publishers, Boston 2003, pp. 271–293.

[15] Garg S. K.—Konugurthi P.—Buyya R.: A Linear Programming-Driven Ge-
netic Algorithm for Meta-Scheduling on Utility Grids. J. Par., Emergent and Distr.
Systems, Vol. 26, 2011, pp. 493–517.

[16] Buyya, R.—Abramson, D.—Giddy, J.: Economic Models for Resource Manage-
ment and Scheduling in Grid Computing. J. Concurrency and Computation, Vol. 14,
2002, No. 5, pp. 1507–1542.

[17] Ernemann, C.—Hamscher, V.—Yahyapour, R.: Economic Scheduling in Grid
Computing. In: Feitelson, D. G., Rudolph, L., Schwiegelshohn, U. (Eds.): JSSPP
2002, Springer, Heidelberg, LNCS, Vol. 2537, 2002, pp. 128–152.

[18] Lee, Y. C.—Wang, C.—Zomaya, A. Y.—Zhou, B. B.: Profit-Driven Schedul-
ing for Cloud Services with Data Access Awareness. J. Par. and Distr. Computing,
Vol. 72, 2012, No. 4, pp. 591–602.

[19] Toporkov, V. V.: Job and Application-Level Scheduling in Distributed Computing.
Special Issue on ICIT 2009 Conference – Applied Computing, Ubiquitous Computing
and Communication J., Vol. 4, 2009, No. 3, pp. 559–570.

[20] Toporkov, V. V.—Toporkova, A.—Tselishchev, A.—Yemelyanov, D.: Job
and Application-Level Scheduling: An Integrated Approach for Achieving Quality of
Service in Distributed Computing. 4th International Conference on Dependability of
Computer Systems, IEEE CS Press, Los Alamitos 2009, pp. 202–209.

[21] Toporkov, V.: Application-Level and Job-Flow Scheduling: An Approach for
Achieving Quality of Service in Distributed Computing. In: Malyshkin, V. (Ed.):
PaCT, 2009, Springer, Heidelberg, LNCS, Vol. 5968, 2009, pp. 350–359.



74 V. Toporkov, D. Yemelyanov, P. Potekhin, A. Toporkova, A. Tselishchev

[22] Aida, K.—Casanova, H.: Scheduling Mixed-Parallel Applications with Advance
Reservations. 17th IEEE Int. Symposium on HPDC, IEEE CS Press, New York 2008,
pp. 65–74.

[23] Ando, S.—Aida, K.: Evaluation of Scheduling Algorithms for Advance Reserva-
tions. Information Processing Society of Japan SIG Notes. HPC-113, 2007, pp. 37–42.

[24] Elmroth, E.—Tordsson, J.: A Standards-Based Grid Resource Brokering Service
Supporting Advance Reservations, Coallocation and Cross-Grid Interoperability. J. of
Concurrency and Computation, Vol. 25, 2009, No. 18, pp. 2298–2335.

[25] Toporkov, V.—Toporkova, A.—Bobchenkov, A.—Yemelyanov, D.: Re-
source Selection Algorithms for Economic Scheduling in Distributed Systems. Proce-
dia Computer Science, Elsevier 4, 2011, pp. 2267–2276.

[26] Lee, S. B.—Schwartzman, Y.—Hardy, J.—Snavely, A.: Are User Run-
time Estimates Inherently Inaccurate? In: Feitelson, D. G., Rudolph, L., Schwie-
gelshohn, U. (Eds.): JSSPP 2004, Springer, Heidelberg, LNCS, Vol. 3277, 2004,
pp. 253–263.

[27] Toporkov, V.—Tselishchev, A.—Yemelyanov, D.—Bobchenkov, A.: De-
pendable Strategies for Job-Flows Dispatching and Scheduling in Virtual Organiza-
tions of Distributed Computing Environments. Complex Systems and Dependability,
AISC, Springer, Heidelberg, Vol. 170, 2012, pp. 240–255.

[28] Moab Adaptive Computing Suite, http://www.adaptivecomputing.com/products/
moab-adaptive-computing-suite.php.

[29] Toporkov, V.—Toporkova, A.—Tselishchev, A.—Yemelyanov, D.: Heu-
ristic Co-Allocation Strategies in Distributed Computing with Non-Dedicated Re-
sources. In: Zavoral, F., Jung, J. J., Badica, C. (Eds.): 7th International Sympo-
sium on Intelligent Distributed Computing. Studies in Computational Intelligence,
Springer, Heidelberg, Vol. 511, 2013, pp. 109–118.

[30] Azzedin, F.—Maheswaran, M.—Arnason, N.: A Synchronous Co-Allocation
Mechanism for Grid Computing Systems. Cluster Computing, Vol. 7, 2004, pp. 39–49.

[31] Castillo, C.—Rouskas, G. N.—Harfoush, K.: Resource Co-Allocation for
Large-Scale Distributed Environments. 18th ACM International Symposium on High
Performance Distributed Computing, ACM, New York 2009, pp. 137–150.

[32] Takefusa, A.—Nakada, H.—Kudoh, T.—Tanaka, Y.: An Advance Reserva-
tion-Based Co-Allocation Algorithm for Distributed Computers and Network Band-
width on QoS-Guaranteed Grids. In: Frachtenberg, E., Schwiegelshohn, U. (Eds.):
JSSPP 2010, Springer, Heidelberg, LNCS, Vol. 6253, 2010, pp. 16–34.

[33] Blanco, H.—Guirado, F.—Lérida, J. L.—Albornoz, V. M.: MIP Model
Scheduling for Multi-Clusters. Euro-Par 2012, Springer, Heidelberg, LNCS, Vol. 7640,
2012, pp. 196–206.

[34] Moise, D.—Moise, I.—Pop, F.—Cristea, V.: Resource Co-Allocation for
Scheduling Tasks with Dependencies in Grid. The Second International Workshop
on High Performance in Grid Middleware (HiPerGRID 2008), Bucharest, Romania,
IEEE Romania, 2008, pp. 41–48.

[35] Olteanu, A.—Pop, F.—Dobre, C.—Cristea, V.: A Dynamic Reschedul-
ing Algorithm for Resource Management in Large Scale Dependable Distributed



Metascheduling and Heuristic Co-Allocation Strategies 75

Systems. Computers and Mathematics with Applications, Vol. 63, 2012, No. 9,
pp. 1409–1423.

Victor Toporkov received his D.Sc. degree in computer
science from Moscow Power Engineering Institute (MPEI) in
2000. Currently, he is a Head of the Computer Science Depart-
ment at National Research University MPEI, where he is Full
Professor. His primary research interests focus on distributed
computing, resource management and scheduling in grid. He is
the author and co-author of about 200 papers in computer and
computational sciences.

Dmitry Yemelyanov received his B.Sc. (2008), M.Sc. (2010)
and Ph.D. (2013) degrees in computer science from National Re-
search University MPEI, where he currently works as Assistant
Professor at the Computer Science Department. He is experi-
enced in programming, telecommunications and networks. His
research topics include distributed computing, scheduling and
resource management.

Petr Potekhin received his M.Sc. degree in computer scien-
ce from National Research University MPEI. Currently he is
a Ph.D. student at the Computer Science Department, National
Research University MPEI. He has experience in software tools
development and integration. His research interests include dis-
tributed computing, scheduling problems in grid, and job frame-
work generation for efficient scheduling.



76 V. Toporkov, D. Yemelyanov, P. Potekhin, A. Toporkova, A. Tselishchev

Anna Toporkova received her Ph.D. degree in computer
science from Moscow State Institute of Electronics and Mathe-
matics in 2001. She is now Associate Professor at the Computer
Engineering Department, National Research University Higher
School of Economics (Moscow). Her research interests include
intelligent distributed computing, scheduling and optimization
techniques.

Alexey Tselishchev received his Dipl.-Ing. degree in en-
gineering informatics from Technical University Ilmenau (Ger-
many) in 2007, M.Sc. degree in computer science in 2008, and
Ph.D. degree in computer science in 2011 from National Re-
search University MPEI. His research interests include distri-
buted computing algorithms and computer security. He has
published about 50 papers working as a research fellow at Eu-
ropean Organization for Nuclear Research, National Research
University MPEI, and as a security and identity management
architect.


