
Computing and Informatics, Vol. 33, 2014, 1377–1399

OPTIMIZATION OF A PARALLEL CFD CODE AND ITS
PERFORMANCE EVALUATION ON TIANHE-1A

Yonggang Che, Lilun Zhang, Chuanfu Xu, Yongxian Wang
Wei Liu, Zhenghua Wang

Science and Technology on Parallel and Distributed Processing Laboratory
National University of Defense Technology
Changsha 410073, Hunan, P.R. China
e-mail: ygche@nudt.edu.cn, zll0434@sina.com, xuchuanfu@nudt.edu.cn,

yxwang@nudt.edu.cn, liuweinudt@126.com, zhhwang@nudt.edu.cn

Abstract. This paper describes performance tuning experiences with a parallel
CFD code to enhance its performance and flexibility on large scale parallel comput-
ers. The code solves the incompressible Navier-Stokes equations based on the novel
Slightly Compressible Model on three-dimensional structure grids. High level loop
transformations and argument based code specialization are utilized to optimize its
uniprocessor performance. Static arrays are converted into dynamically allocated
arrays to improve the flexibility. The grid generator is coupled with the flow solver
so that they can exchange grid data in the memory. A detailed performance evalu-
ation is performed. The results show that our uniprocessor optimizations improve
the performance of the flow solver for 1.38× to 3.93× on Tianhe-1A supercomputer.
In memory grid data exchange optimization speeds up the application startup time
by nearly two magnitudes. The optimized code exhibits an excellent parallel scala-
bility running realistic test cases. On 4 096 CPU cores, it achieves a strong scaling
parallel efficiency of 77.39 % and a maximum performance of 4.01 Tflops.

Keywords: Computational fluid dynamics, slightly compressible model, large-scale
parallel computing, uniprocessor optimizations, in memory grid exchange, scalabi-
lity, efficiency

Mathematics Subject Classification 2010: 65Y05

1378 Y. Che, L. Zhang, Ch. Xu, Y. Wang, W. Liu, Zh. Wang

1 INTRODUCTION

LM3D [1, 2] is a CFD (Computational Fluid Dynamics) code for three dimensional
low Mach number flows initially developed by Xiaogang Deng et al. of China Aero-
dynamics Research and Development Center (CARDC). It solves the incompressible
Navier-Stokes equations with a finite volume method. For low Mach number per-
fect gas flow, Xiaogang Deng et al. suggested a novel Slightly Compressible Model
(SCM) [1], in which the governing equations are simplified by neglecting the change
of temperature in the state equation and the pressure change results from the density
change. Thus the governing equations of LM3D are as follows:

Continuity :
Dρ

ρDt
= −∂iυi (1)

Momentum : ρ
Dυi
Dt

= −∂pi + ∂jτji (2)

State equation : p = constant · ρσ (3)

where σ is a constant with a suggested value in the range of [1.0, 1.56] in the nu-
merical calculation. The governing equations can be written in non-dimensional
variables as

ρ
Dυi
Dt

= −κ∂pi +
1

Re
∂jτji (4)

p = ρσ (5)

where Re is the Reynolds number, M∞ is the free stream Mach number, and κ is

a nondimensional number. Re = ρ∞V∞L
µ

. M∞ =

√
u2∞+v2∞+w2

∞
a∞

. κ = 1
γM2

∞
.

The governing Equations (4)–(5) can be combined into one of conservative forms
in generalized coordinates (τ, ξ, η, ζ)

∂Q

∂τ
+
∂E

∂ξ
+
∂F

∂η
+
∂G

∂ζ
=

1

Re

(
∂Ev
∂ξ

+
∂Fv
∂η

+
∂Gv

∂ζ

)
(6)

where

Q = J

ρ
ρu
ρv
ρw

 H = J

ρU
ρUu+ Ψkxp
ρUv + Ψkyp
ρUw + Ψkzp

 Hv = J
(
k2x + k2y + k2z

)
0
∂u/∂k
∂v/∂k
∂w/∂k

where U = kt + ukx + vky +wkz. When k equals to ξ, η, ζ, H equals to E,F,G, and
Hv equals to Ev, Fv, Gv. J is the Jacobian matrix of coordinates transformations.
kx, ky, kz are grid derivatives of coordinates transformations.

The governing Equations (6) are discretized by a cell-centered finite-volume
scheme and the numerical interface fluxes are calculated by upwind biased flux

Performance Optimization of a CFD Code on Tianhe-1A 1379

differences. The LU-SGS (Lower-Upper Symmetric Gauss-Seidel) scheme is used
to solve the nonlinear system of equations. The numerical efficiency and accuracy
of this method have been validated by simulation performed for some steady and
unsteady flow problems [1, 2].

Start MPI processes

Initialize the grids, flow field and boundary conditions

Calculate the viscous coefficients

Computes the right hand side

Solve the semi-linear equations (LU-SGS solver)

Enforce boundary conditions for real and inner boundaries

Calculate the residual and convergence history

Compute coefficients and flow field visualization data

Max number of sub-

iterations?

Yes

No

Max number of time steps?

No

Yes

Sub-iterations

Time steps

Figure 1. The high-level flow chart of LM3D

LM3D code is originally written in FORTRAN 77. Its flow data is stored at the
volume center, with the interfacial fluxes determined through interpolation of cell-
centered values. It is paralleled by domain decomposition method [3, 4] and MPI
(Message Passing Interface) is used for inter-process communications. The grids
of the whole computation domain are partitioned into multiple grid blocks. These
grid blocks are then distributed to the MPI processes. Each process (including the

1380 Y. Che, L. Zhang, Ch. Xu, Y. Wang, W. Liu, Zh. Wang

root) is assigned one or more distinct grid blocks. As LM3D is a CFD solver of
second order accuracy, the ghost cell width between neighboring grid blocks is 2 in
LM3D. Figure 1 shows the high-level flow chart of LM3D. The program first starts
MPI processes, and initializes the grid, flow field and boundary conditions. Then it
enters a time step loop, in which it spends most of its execution time. In each time
step, it executes the following procedures:

1. Calculating the viscous coefficients. It first initializes the field variables for
laminar problems, then computes the vorticity. If turbulent flow is involved, it
computes the eddy viscous coefficient.

2. A number of sub-iterations. The iterative algorithm is based on Newton implicit
schemes with line relaxation Gauss-Seidel sub-iterations. In each sub-iteration,
it first computes the right hand side, then calls the LU-SGS solver to solve the
semi-linear equations, and then exchanges boundary data to impose boundary
conditions for real boundaries and inner boundaries. Exchanging of boundary
data involves MPI communications among neighboring processes.

3. Calculating the residual and the convergency history of drag coefficient, lift co-
efficient, etc. For residual calculation, each process first calculates the local
residuals of density, divergence, etc., then each non-root process sends the lo-
cal residuals to the root process, which calculates the global residuals. MPI
communications between the root process and other processes are involved. For
convergency history calculation, similar computation and communication pat-
terns are involved.

After the time step loop, LM3D first computes the coefficient of surface pressure
distribution, vorticity distribution, etc. Then it computes the flow field visualization
data, outputs them in PLOT3D file format, then exits.

CFD is known to be one of the grand challenge application areas of HPC because
it is mainly limited by the amount of time to compute a solution. For example,
applying CFD simulations to wing shape optimization requires a large number of
similar simulations with different input parameters. Therefore, beside the progress in
CFD models and algorithms, further progress in CFD is closely related with efficient
usage of modern HPC systems. Many prior efforts [5, 6, 7, 8, 9, 10, 11] have been
paid on the efficient implementation of CFD applications on parallel computers. The
performance is also crucial for LM3D since it requires days of time to achieve a usable
solution. When LM3D was parallelized with MPI, several techniques to improve the
parallel performance were considered. These techniques include load balancing, data
localization, communication minimization and combination. This code has shown
good parallel scalability in our preliminary performance evaluation. However, its
computation efficiency is not satisfactory. The floating point efficiency achieved is
below 4 % of the peak even for a single process test on an Intel Xeon X5670 processor.
Furthermore, in the startup phase of LM3D, the data are serially read from the disks.
So the startup speed is very slow as compared to the computation speed, as the latter
has been accelerated by using large number of CPU cores. The mismatch between

Performance Optimization of a CFD Code on Tianhe-1A 1381

the startup speed and the computation speed also limits the parallel scalability for
large-scale simulations. When scaling to larger problem sizes (and consequently
more CPU cores), the startup will become the performance bottleneck. This work
aims to tackle these problems and optimize LM3D’s performance and scalability
for large-scale parallel computers. High level loop transformations, argument based
code specialization and value profile based optimization are applied to optimize its
uniprocessor performance. Static arrays are converted into dynamically allocated
arrays to improve the flexibility. The grid generator is coupled with the solver to
enable online grid generation and in memory data exchange. Performance evaluation
is performed on the Tianhe-1A supercomputer [14, 15]. The performance results
demonstrate the effectiveness of our optimization methods.

2 OPTIMIZATION STRATEGIES

Application performance optimizations should based on the characteristics of the
application code. Although there are many prior performance optimization efforts
for CFD applications, they are not directly applicable to LM3D. Based on the in-
depth performance measurement and analysis of the original LM3D code, three
classes of optimization strategies are applied to improve its performance as well as
flexibility.

2.1 Uniprocessor Performance Optimization

Uniprocessor performance is crucial for a parallel code to attain high performance on
a parallel computer [16]. Current uniprocessor performance optimization methods
involve many code transformations that improve the data access locality and paral-
lelism such as ILP (Instruction Level Parallelism) to better utilize the processor’s
architecture characteristics. To maximize the performance gains, we first profile
the program with Gprof to locate those computation intensive subroutines. As
a typical Navier-Stokes equations based CFD code, LM3D spends most of its time
in two phases: flux computations (to evaluate conservation law residuals) and sparse
linear algebraic kernels. Ten kernel subroutines take over 90 % of total runtime.
Then we examine the source code of these kernel subroutines to find optimization
opportunities. The following optimization transformations are found to be feasible
for LM3D code and are applied.

Loop permutation. LM3D stores its main data in several four dimensional ar-
rays, with the last three dimensions describe three coordinate indexes and the
first dimension describes different physical variables. For example, the array Q,
which stores the primitive variables, has the form Q(4, -1:jmax+1, -1:kmax+1,
-1:lmax+1), with Q(1, :, :, :), Q(2, :, :, :), Q(3, :, :, :) and Q(4, :, :, :) store ρ,
u, v and w, respectively. Array QBAR (stores the values of ∆Q) and array Q1
(stores the newly calculated values of the primitive variables) are of the same
form as array Q. Many computation intensive loop nests access these arrays

1382 Y. Che, L. Zhang, Ch. Xu, Y. Wang, W. Liu, Zh. Wang

and for better cache performance, they must access array elements along the
fast changing dimensions. Based on dependency analysis, loop permutation is
applied to those loop nests that do not access array element along the fast chang-
ing dimensions. Figure 2 presents an example of loop permutation in LM3D.
Figure 2 a) is the loop nest in (J, K, L) order. Figure 2 b) is the transformed
loop nest in (L, K, J) order, in which the loop nest accesses array elements
with much smaller strides, and hence exhibits better spatial locality of memory
access. This transformation also introduces additional compiler optimization
opportunities (e.g, inner loop vectorization) for the compiler. We should note
that current compilers can perform loop permutation automatically. However,
due to the inability of dependency analysis, the compilers are conservative in
doing so. Our manual loop permutation of LM3D improves the performance,
even when an aggressive compiler optimization switch (-O3) is used.

DO 100 J = 1, JM
DO 100 K = 1, KM
DO 100 L = 1, LM

...QBAR(*, J, K, L)...

...Q(*, J, K, L) ...

...Q1(*, J, K, L) ...
100 CONTINUE

a) The original loop nest (J, K, L)

DO 100 L = 1, LM
DO 100 K = 1, KM
DO 100 J = 1, JM

...QBAR(*, J, K, L)...

...Q(*, J, K, L) ...

...Q1(*, J, K, L)...
100 CONTINUE

b) The permuted loop nest (L, K, J)

Figure 2. An example of loop permutation in LM3D

Full loop unrolling. LM3D uses four primitive flow variables (ρ, u, v, w), so most
of its arrays have a leading dimension of 4. Figure 3 shows the definition of
these arrays.

Q(4, -1:JMAX+1, -1:KMAX+1, -1:LMAX+1)
Q1(4, -1:JMAX+1, -1:KMAX+1, -1:LMAX+1)
QBAR(4, -1:JMAX+1, -1:KMAX+1, -1:LMAX+1)
S(4, JMAX, KMAX, LMAX)

Figure 3. The definitions of main arrays, with the leading dimension of 4

Hence, many inner loops that access these arrays have a constant loop count of 4.
For these inner loops, full loop unrolling is applied. Figure 4 presents an example
of full loop unrolling in LM3D. Figure 4 a) is the original loop, where array
DSPR stores the upper limit of the sum of spectra radius of Jacobian matrix. In
Figure 4 b), the loop is unrolled for four times and the statements that control
the loop are totally eliminated. Such transformation not only increases the ILP,
but also eliminates the loop related branch penalties.

Argument-based code specialization. Some kernel subroutines are program-
med in a general way that can accept arbitrary argument values but are called
with some fixed argument values. These subroutines can be specialized and

Performance Optimization of a CFD Code on Tianhe-1A 1383

DO N = 1, 4
QBAR(N, J, K, L) = DSPR(J, K, L)*QBAR(N, J, K, L)

ENDDO

a) The original loop

QBAR(1, J, K, L) = DSPR(J, K, L)*QBAR(1, J, K, L)
QBAR(2, J, K, L) = DSPR(J, K, L)*QBAR(2, J, K, L)
QBAR(3, J, K, L) = DSPR(J, K, L)*QBAR(3, J, K, L)
QBAR(4, J, K, L) = DSPR(J, K, L)*QBAR(4, J, K, L)

b) The code lines after full loop unrolling

Figure 4. An example of full loop unrolling in LM3D

optimized for the actual argument values. Figure 5 presents an example of
argument-based code specialization in LM3D, where MVMULTI is a subroutine
that multiplies a matrix by a vector. It takes an argument ND, which is the di-
mension size of the matrix. In the whole program of LM3D, MVMULTI is called
with ND equals 3 or 4. So we first modify the subroutine with two versions of
codes, one for ND = 3 and another for ND = 4. Then for the two versions of
MVMULTI, additional optimizations (e.g., full loop unrolling) are applied be-
cause the loop count variable ND is replaced by known constant values (3 and 4)
now. We should note that while current compilers may automatically apply the
loop unrolling shown in Figure 4, they can not automatically apply the full loop
unrolling for the loops shown in Figure 5 a).

Value profile based optimization. In LM3D code, intrinsic math functions
POW (returns the value of a base expression taken to a specified power) and
SQRT (derives the square root of its argument) are time consuming. These func-
tions take arguments whose values depend on one variable ESIGMA. Figure 6
lists several expressions that use ESIGMA in the calculation of intrinsic math
functions.

ESIGMA is the variable corresponding to σ in Equation (3) and is read from
a name list stored in a configuration file. ESIGMA does not change in a simu-
lation run, that is, it has a value profile of a constant. So we can optimize the
performance by embedding its value to the source code. This is done by defining
ESIGMA as constant variable and assigning its value with the value stored in
the name list. This enables the compiler to perform some optimizations, such
as constant propagation and pre-computing. Such optimization can eliminates
some calculations that are related to these math functions.

2.2 Dynamic Memory Allocation

The original LM3D code is written in FORTRAN 77 format. It uses static arrays,
which means that the codes must be recompiled for different problem sizes or dif-
ferent numbers of processors in new runs. We modify the code into FORTRAN 90

1384 Y. Che, L. Zhang, Ch. Xu, Y. Wang, W. Liu, Zh. Wang

SUBROUTINE MVMULTI(MATR, MVE0, MVE1, ND)
DIMENSION MATR(ND, ND), MVE0(ND), MVE1(ND)
DO N = 1, ND

MVE1(N) = 0
DO M = 1, ND

MVE1(N) = MVE1(N) + MATR(N,M)*MVE0(M)
ENDDO

ENDDO

a The original subroutine

SUBROUTINE MVMULTI(MATR, MVE0, MVE1, ND)
DIMENSION MATR(ND, ND), MVE0(ND), MVE1(ND)
IF(ND .EQ. 3)THEN

DO N = 1, 3
MVE1(N) = 0
DO M = 1, 3
MVE1(N) = MVE1(N)+ MATR(N, M)*MVE0(M)
ENDDO

ENDDO
ELSE

DO N = 1, 4
MVE1(N) = 0
DO M = 1, 4
MVE1(N) = MVE1(N)+ MATR(N, M)*MVE0(M)
ENDDO

ENDDO
ENDIF

b) The subroutine after argument-based specialization

Figure 5. An example of argument-based code specialization in LM3D

CCA2 = AIRINF2*EXXX*ZO**(ESIGMA-1.0)
CCA2 =AIRINF*SQRT(EXXX*ZO**(ESIGMA-1.0))
BIR = AIRINF*SQRT(EXXX*ZA**(ESIGMA-1.0))
PLL = AIRINF2*ZLL**ESIGMA

Figure 6. Expressions that use variable ESIGMA

format with dynamic memory allocation. All major arrays are identified and de-
fined in data modules as allocatable arrays with deferred shapes. These arrays are
grouped based on their life cycles and corresponding memory allocation subroutines
are designed for each group. The memory allocation subroutines determine the size
of each array based on the input arguments, such as the number of grid points in
three dimensions and the parameters of the three dimensional processor topology.
Accordingly, memory deallocation subroutines are also designed. Memory alloca-
tion and deallocation subroutines are called at appropriate place to minimize the

Performance Optimization of a CFD Code on Tianhe-1A 1385

number of memory allocation operations. Figure 7 shows the new definition and
allocation sentences of arrays listed in Figure 3. Dynamic memory allocation makes
it flexible to change the test configurations at runtime. Once the code is compiled
into executable for a specific platform, the executable can be used for different test
cases.

! Define Q, Q1, QBAR, S as ALLOCATABLE arrays
REAL, DIMENSION(:, :, :, :), ALLOCATABLE::Q, Q1,
QBAR, S

! Allocate memory space for Q, Q1, QBAR, S
ALLOCATE(Q(4, -1:jmax+1, -1:kmax+1, -1:lmax+1),
stat=nerror(1))
ALLOCATE(Q1(4, -1:jmax+1, -1:kmax+1, -1:lmax+1),
stat=nerror(2))
ALLOCATE(QBAR(4, -1:jmax+1, -1:kmax+1, -1:lmax+1),
stat=nerror(3))
ALLOCATE(S(4, jmax, kmax, lmax), stat=nerror(4))

Figure 7. New definition and allocation sentences of arrays in Figure 3

2.3 In Memory Data Exchange

The original LM3D code has a grid generator, which is a stand alone application.
The grid generator generates the grid data and writes them to the grid file. Then
the solver reads the grid data from the disk to the memory, initializes the flow field
data and performs the simulation. This arouses performance issues because the grid
data are written to and read from the much slower disk. For large scale parallel
computing, grid I/O may potentially grow into performance bottleneck because
of the disparity in the rate of improvement in computational power compared to
storage throughput [12]. To alleviate this problem, we couple the grid generator
with the solver as a single executable and enable them to directly exchange data
in the memory. The grid generator is encapsulated into a subroutine that is called
by the main program of the solver. It takes the grid shape and the number of sub-
blocks as input arguments. As we have declared major array in data modules, it is
convenient for the grid generation routine to pass grid data to the solver routines via
the global array module. This avoids writing the grid files to the disk and reading
them from the disk, which greatly accelerates the simulation startup process. It can
also be configured to output the grid files to the disk if needed.

Coupling the grid generator with the solver may have a negative effect on the
flexibility of the problem that can be solved by the code because the capabilities of
the grid generator are rather limited. Another issue related to this method is that
the grid generation may become the bottleneck that limits the problem size. If the
grid generation task is executed by only one process, it generates the grid data of

1386 Y. Che, L. Zhang, Ch. Xu, Y. Wang, W. Liu, Zh. Wang

the whole flow field and sends them to other processes. However, the memory on
a compute node may not fit all the grid data of the whole flow field. This issue
can be settled by generating and sending grid data for each process one by one, or
designing parallel grid generation algorithm to distribute the grid generation task
to more processes. For the test case used in this paper, a parallel grid generation
algorithm is designed and each process generates its own grid data.

By dynamic memory allocation, coupling of the grid generator with the solver
and in memory grid exchange, we have significantly reformed the work flow of LM3D.
Figure 8 illustrates the work flow before and after the optimizations. Originally, the
grid generator and the solver are compiled separately along with their parameters
defined in common parameter files. Then they execute separately: the grid generator
process generates the grid file and stores it on the disk; the solver process reads the
grid file from the disk and performs the simulation. In the optimized version, the
grid generator and the solver code are compiled into one executable. They run in
the same process, accept runtime parameters and exchange grid data in the memory.
It is clear that the optimized version is more efficient by eliminating the serial and
time consuming grid file I/O operations. To our knowledge, the TAU (Parallel
Architecture of TAU-Code) [13] employs a similar in memory data access method
between modules.

3 PERFORMANCE EVALUATION

3.1 Test Setups

Since the accuracy of LM3D has been validated by previous works [1, 2], we focus our
attentions on the performance evaluation. We mainly evaluate the performance of
LM3D on the Tianhe-1A supercomputer installed at the National Supercomputing
Center in Tianjin, China [15]. Tianhe-1A has a theoretical peak performance of
4.70 Pflops and a measured Linpack performance of 2.57 Pflops. It ranks No. 1 on
November 2010 and No. 10 on June 2013 in the top500 list. Table 1 presents the
hardware and software setup of the Tianhe-1A [17]. In our test, the NVIDIA GPUs
and the FT-1000 CPUs are not used. We select the aggressive optimization switch
-O3 (Maximize Speed plus Higher Level Optimizations). This optimization switch
will enable most compiler optimizations, including memory access optimizations and
automatic vectorization to utilize the 128-bit SSE instructions on the Intel Xeon
X5670 CPUs.

Most modern processors include special hardware units called Performance Mo-
nitoring Units (PMUs) to detect and count certain microarchitectural events from
several hardware sources such as the pipeline, system bus or memory hierarchy. Such
events offer facilities to characterize the interaction between the application and the
hardware, hence provide a more precise picture of the hardware resource utilization.
We also measure the micro-architecture level performance data based on PMU to
see the effects our uniprocessor optimizations. As Tianhe-1A is a heavily loaded
supercomputer shared by many concurrent users, it is not convenient to measure

Performance Optimization of a CFD Code on Tianhe-1A 1387

Grid

generator

executable

Solver

executable

Grid parameters

Solver

parameters

compile

Grid generator

source code

Solver source

code

compile

Grid file

on the disk

Grid

generator

process

run

Solver

process

run

Simulation results

a)

Single

executablecompile

Solver source

code

Grid generator

source code

Simulation process

Grid generation

subroutine

Grid data in

the memory

Solver subroutine

Grid

parameters

Solver

parameters

run

Simulation results

b)

Figure 8. Work flow before and after the optimization: a) the original work flow, b) the op-
timized work flow

1388 Y. Che, L. Zhang, Ch. Xu, Y. Wang, W. Liu, Zh. Wang

Items Configuration

Nodes 7168 computing nodes, each has two Intel CPUs and one NVIDIA
GPU
1 024 service nodes, each has two FT-1000 CPUs

Processors 14 336 Intel Xeon X5670 CPUs (2.93 GHz, six-core)
7 168 NVIDIA M2050 GPUs (1.15 GHz, 14 cores)
2 048 FT-1000 CPUs (1.0 GHz, eight-core)

Interconnect Custom-built interconnect organized in an fat-tree structure with the
bi-directional bandwidth of 160 Gbps, the latency of 1.57µs

Memory Each compute node has 32 GB memory. The total memory size is
262 TB.

I/O system Luster file system with 6 I/O management nodes, 128 I/O storage
nodes, and 2 PB disk capacity from above 16 000 SATA drives.

OS Kylin Linux

Compiler Intel FORTRAN Compiler version 11.1 (Optimization switch: -O3)

MPI MPICH2 version 1.2.1p1-g16

Table 1. The hardware and software setup of the Tianhe-1A supercomputer

the micro-architecture level performance data on its X5670 CPU. So we choose to
measure the micro-architecture level performance data on a stand alone desktop
computer. This desktop computer is equipped with an Intel Core i3 550 3.2 GHz
CPU, which is also based on the Intel Nehalem micro-architecture, like the Intel
X5670. This CPU has two cores. Each core has a 32 KB L1 Instruction Cache,
a 32 KB L1 Data Cache and a unified 256 KB L2 Cache. A total of 4 MB Last
Level Cache (LLC) is shared by the two cores. The desktop has 2GB memory. The
program is compiled with Intel Fortran Compiler 11.1, and the optimization switch
used is -O3. We use the Intel Vtune [18] to measure the microarchitecture level
performance data. Intel Vtune is a powerful tool that can collect microarchitecture
level performance data of the Intel CPUs through the on chip PMUs. The version
used is the Intel Vtune Amplifier XE 2013 update 2. The Hyper-Threading feature
of Intel Core i3 550 CPU is disabled through the BIOS to avoid its impact to the
performance of a single threaded application.

The different versions of the LM3D code tested are designated as follows. The
original version is designated as ORI. OPT1 is the version with uniprocessor opti-
mizations and dynamic array allocation. In the OPT1 version the grid generator
and the solver are enclosed in one program but they exchange grid data by grid file
on the disk. OPT2 is the version after the OPT1 version is modified that the grid
generator and the solver exchange grid data in the memory. The three versions of
the codes differ only in the implementations that do not affect the numerical algo-
rithms. So they produce the same results and their convergence characteristics are
strictly identical.

The test case used is the viscous flow around a prolate spheroid. Many flow
related physical variables, such as the speed at three directions, the surface vorticity

Performance Optimization of a CFD Code on Tianhe-1A 1389

X Y

Z

Figure 9. The small scale grids near the surface of the test case

distribution at symmetric plane and the surface pressure distribution at symmetric
plane, are calculated. In the test, the ratio of long axis to short axis of this prolate
spheroid is 2.0. The radius of far field boundary is 19.5. The grid stretching ratio
along normal direction is 1.1678. Figure 9 shows the small scale grids near the
surface of this test case. The simple geometry allows for straightforward partitioning,
simplifying the evaluation of performance as the grid density and the number of CPU
cores are varied. As for the flow field parameters, the free stream Mach number is 0.2,
the angle of attack is 10◦.

3.2 PMU Based Performance Test on the Desktop Computer

We first perform the PMU based test to measure the micro-architecture level per-
formance data on the desktop computer. We compare the ORI version to the OPT1
version to see the effects of our uniprocessor optimizations. The two versions of
codes run serially in the test. The grid resolution used is 241×241×81 (4.49 M grid
points). For this grid resolution, the ORI version consumes about 735 MB memory,
and the OPT1 version consumes about 760 MB memory. The number of sub-steps
in each time step is 6. We use a two-phase measurement method. In the first phase,
we measure the whole application that executes 5 time steps. In the second phase,
we measure the whole application that executes 15 time steps. Then we subtract the

1390 Y. Che, L. Zhang, Ch. Xu, Y. Wang, W. Liu, Zh. Wang

data measured in the second phase with the data measured in the first phase and get
the data of 10 “pure” time steps. We select several key PMU events that exhibit the
instruction execution, the branch prediction and the memory access characteristics
of the program. The descriptions of the PMU events can be found in the Intel 64 and
IA-32 Architectures Software Developer’s Manual [19]. Figure 10 shows the number
of PMU events measured on the desktop computer for the two versions of codes.
It can be seen that the number of branch instructions executed and the number
of mispredicted branches of the OPT1 version is much less than that of the ORI
version. This indicates that our loop unrolling optimizations are effective, and these
optimizations are not applied automatically by the compiler for the original code.
The number of L1 data cache accesses, the number of L2 cache data accesses, the
number of L2 cache misses, the number of retired loads that miss the LLC cache
and number of Data Translation Look-aside Buffer (DTLB) misses of the OPT1
version are significantly less than that of the ORI version, indicating the effective-
ness of our memory optimization methods. The number of instructions executed
of the OPT1 version is also slightly reduced as a result of less branch instructions
executed and less number of mispredicted branches. Overall, our optimizations have
greatly reduced the execution time. The number of clock cycles executed of the ORI
version in the 10 “pure” time steps is about 102.58 billions, whereas the number of
clock cycles executed of the OPT1 version in the 10 “pure” time steps is only about
31.44 billions.

3.3 Solver Performance Test on the Tianhe-1A Supercomputer

The solver performance test on the Tianhe-1A aims to evaluate the performance
improvement of our uniprocessor optimizations to the parallel LM3D codes, and
to evaluate the parallel scalability feature of the optimized LM3D code. We first
compare the performance of the ORI version and the OPT1 version to see the perfor-
mance improvement of the uniprocessor optimizations to the parallel code. Two grid
resolutions are used in the test: 481×481×81 (17.87 M grid points), 961×961×81
(71.34 M grid points). For each grid resolution, a set of runs with the number of
CPU cores ranging from 1 to 4 096 are examined. We run each test case only 100
time steps instead of running it until convergence to a steady-state. Only the run-
time of 100 time steps is measured and the time spent on grid generation and flow
field initialization is not counted. The number of sub-steps in each time step is 6.
Figure 11 shows the performance improvement of the uniprocessor optimizations for
the parallel code on Tianhe-1A. The performance improvement ratio is computed
by dividing the runtime of the ORI version with the runtime of the OPT1 version.
This is also the ratio of the solution speed improvement as the convergence charac-
teristics of the ORI version and the OPT1 version are the same. We see that our
uniprocessor optimizations are effective for the parallel code even in the presence
of the highly optimized Intel compiler with aggressive compiler optimization level.
The OPT1 version outperforms the original ORI version by 1.38× to 3.93×. The
ratio of performance improvement drops with the number of CPU cores because

Performance Optimization of a CFD Code on Tianhe-1A 1391

1.0E+13

1.0E+10

1.0E+11

1.0E+12
ORI

OPT1

1.0E+08

1.0E+09

1.0E+10

1.0E+07

Figure 10. The number of PMU events measured on an Intel Core i3 processor based
desktop computer for a grid size of 4.70 M for the ORI version and the OPT1
version

when the number of CPU cores increases, the cost of communication increases. The
performance improvement is more significant for larger grid size because when the
grid size increases, the computation to communication ratio also increases.

For the parallel scalability test we use the OPT2 version as this version has
a fast startup with the in memory grid data exchange optimization. Besides the two
previous grid resolutions, an additional and larger grid resolution, 1 921×1 921×81
(286.06 M grid points), is also used in the test. We have performed test runs with
grid sizes that exceed 1 giga grid point and the number of CPU cores reaches 16384.
However, we are not able to perform comprehensive tests because the Tianhe-1A
system is heavily loaded. Here we only report the strong scaling data of tests with
the maximum number of CPU cores of 4 096. Figure 12 shows the floating-point
performance in Gflops of the OPT2 version when using 2n CPU Cores. When the
number of CPU cores is large, the floating-point performance achieved for the case
of 286.04 M grid points is higher than that achieved for the other two cases. It
achieves a sustained floating-point rate of 4 101.77 Gflops (4.01 Tflops) for the case
of 286.04 M grid points on 4 096 CPU cores, which is proximally 8.54 % of the peak
floating point performance of these CPU cores. To our knowledge, achieving such

1392 Y. Che, L. Zhang, Ch. Xu, Y. Wang, W. Liu, Zh. Wang

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

Number of CPU cores

P
er

fo
rm

an
ce

 i
m

p
ro

v
em

en
t

17.87M grid points

71.34M grid points

Figure 11. The performance improvement of the uniprocessor optimizations on Tianhe-1A
(the OPT1 version versus the ORI version)

a high floating point efficiency at this scale is encouraging for CFD codes that solve
Navier-Stokes equations on structured grids.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

Number of CPU cores

G
fl

o
p

s

17.87M grid points

71.34M grid points

286.06M grid points

Figure 12. The floating-point performance of the OPT2 version on Tianhe-1A

Figure 13 shows the parallel efficiency of the OPT2 version computed based on
data in Figure 12. We see that the code scales excellently in these strong scaling

Performance Optimization of a CFD Code on Tianhe-1A 1393

test cases. The parallel efficiency decreases slowly with the number of CPU cores
and reaches 69.13 %, 68.85 % and 77.39 %, respectively for the cases of 17.87 M grid
points, 71.34 M grid points and 286.04 M grid points when the number of CPU cores
is 4 096. The excellent parallel scaling behaviors can be attributed to the high degree
of parallelism, the high computation to the communication ratio and the high speed
of the interconnect. The decrease of parallel efficiency for larger number of CPU
cores can be attributed to the increase of communication to computation ratio as
well as the communication resource contentions.

65%

70%

75%

80%

85%

90%

95%

100%

105%

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

Number of CPU cores

P
ar

al
le

l
ef

fi
ci

en
cy

17.87M grid points

71.34M grid points

286.06M grid points

Figure 13. The parallel efficiency of the OPT2 version on Tianhe-1A

3.4 Startup Performance Test on Tianhe-1A

The startup performance test aims to investigate the effect of in memory grid ex-
change method to the startup speed. We measure the startup time of the OPT2
version and the OPT1 version. Then we calculate the speedup of the OPT2 version
over the OPT1 version. For the OPT1 version, the startup time includes the time
spent on writing and reading the grid file. The data for the case of 286.06 M grid
points are not measured because for this grid resolution, the OPT1 version spends
too long startup time while a large number of processes are idle waiting for the
grid data. The size of the grid file is approximately 0.83 GB for the case of 17.87 M
grid and 3.36 GB for the case of 71.34 M grid points. The startup time of the two
versions of codes and the corresponding speedup are shown in Table 2. We see that
the OPT2 version spends much less time on startup than the OPT1 version. The
speedup of the OPT2 version over the OPT1 version ranges from 58.99 to 95.00,

1394 Y. Che, L. Zhang, Ch. Xu, Y. Wang, W. Liu, Zh. Wang

as considered for the startup time. This indicates that the application startup per-
formance is improved by nearly two magnitudes, which will greatly facilitates large
scale parallel runs.

17.87 M grid points 71.34 M grid points

Cores OPT1 OPT2 Speedup OPT1 OPT2 Speedup

1 142.5 1.50 95.00 – – –

2 146.1 1.58 92.47 553.1 8.31 66.56

4 146.3 1.59 92.01 555.6 8.45 65.75

8 145.9 1.65 88.42 551.6 8.52 64.74

16 146.8 1.69 86.86 551.9 7.56 73.00

32 147.3 1.66 88.73 558.0 7.59 73.52

64 146.8 1.64 89.51 552.8 8.00 69.10

128 142.5 1.75 81.43 551.6 7.86 70.18

256 141.3 1.88 75.16 553.3 8.46 65.40

512 145.0 1.98 73.23 562.0 8.83 63.65

1 024 146.8 2.05 71.61 557.6 9.01 61.89

2 048 146.5 2.05 71.46 557.4 9.23 60.39

4 096 146.9 2.09 70.29 557.5 9.45 58.99

Table 2. The startup time in seconds and the corresponding speedup (the OPT2 version
over the OPT1 version) on Tianhe-1A

Figure 14 shows the ratio of the startup time versus the solver time. Figure 14 a)
is the ratio for the OPT1 version. Figure 14 b) is the ratio for the OPT2 version.
We know from previous experiments that the simulation will converge within 10 000
time steps. We also observed that each time step costs nearly the same runtime.
So we measure runtime of 100 time steps, scale it by 100 times and use the scaled
runtime as the solver time. Hence, the solver time used is approximately the runtime
of 10 000 time steps. For the OPT1 version, the ratio of the startup time versus the
solver time grows rapidly with the number of CPU cores and exceeds 25 % for 4 096
CPU cores. It is clear that the startup time has grown into a main part of the total
runtime when a large number of CPU cores are used. For the OPT2 version, with in
memory grid exchange, this ratio is greatly reduced to below 0.5 % for all cases. This
suggests that enabling in memory data exchange between the grid generator and the
solver may greatly boost the performance of large-scale parallel CFD simulation flow.
This is especially useful in the industrial design optimization process.

4 CONCLUSION

In this work, we have optimized LM3D, a parallel three dimensional finite volume
CFD code based on the Slightly Compressible Model. High level loop transforma-
tions, argument based code specialization and value profile based optimization are
used to improve its uniprocessor performance. Dynamic array allocation is used to
improve its flexibility. The grid generator is coupled with the solver to eliminate

Performance Optimization of a CFD Code on Tianhe-1A 1395

30%

25%

r
ti

m
e

17.87M grid points

71.34M grid points

15%

20%

v
er

su
s

so
lv

er

10%

S
ta

rt
u

p
 t

im
e

v

5%

S

0%

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

Number of CPU cores

a)

0 45%

0.50%

17 87M grid points

0.35%

0.40%

0.45%

lv
er

 t
im

e

17.87M grid points

71.34M grid points

0.25%

0.30%

. %

m
e

v
er

su
s

so

0.15%

0.20%

S
ta

rt
u

p
 t

im

0 00%

0.05%

0.10%

0.00%

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

Number of CPU cores

b)

Figure 14. The ratio of startup time versus the solver time for the OPT1 version and the
OPT2 version on Tianhe-1A: a) the OPT1 version, b) the OPT2 version

1396 Y. Che, L. Zhang, Ch. Xu, Y. Wang, W. Liu, Zh. Wang

grid I/O related overhead. Performance evaluation is performed on the Tianhe-1A
supercomputer. Experimental results demonstrate the importance and effectiveness
of these optimization methods. The uniprocessor optimizations improve the parallel
simulation performance for 1.38× to 3.93× on Tianhe-1A. The optimized code scales
excellently on Tianhe-1A. It achieves a maximum floating-point performance of 4.01
Tflops when use of 4 096 CPU cores on Tianhe-1A. Furthermore, the application
startup performance is improved by nearly two magnitudes.

Acknowledgements

We thank Xiaogang Deng and Daping Xiang of CARDC for the original LM3D
code and technical help. We also thank the National Supercomputing Center in
Tianjin, China for providing the Tianhe-1A supercomputer for the performance
evaluation. This work was partially supported by the Major State Basic Research
Development Program of China (973 Program) under Grant No. 2009CB723803
and the National Natural Science Foundation of China under Grant Nos. 60603055,
11272352, 61103014 and 61379056.

REFERENCES

[1] Deng, X.—Zhuang, F.—Mao, M.: On Low Mach Number Perfect gas Flow Cal-
culations. 14th AIAA Computational Fluid Dynamics Conference, 1999, pp. 595–604.

[2] Xiang, D.—Deng, X.—Mao, M.: Study on a Novel Method for Low Mach Number
Flows Computation. Acta Aerodynamica Sinica, Vol.20, 2002, No. 4, pp. 373–378 (In
Chinese with English abstract).

[3] Xiang, D.—Deng, X.—Mao, M.: Parallel Computation for Low Mach Number
Flows. Acta Aerodynamica Sinica, Vol. 20, 2002, pp. 77–81 (In Chinese with English
abstract).

[4] Wang, Z.—Che, Y.: Parallel Implementation of a Low Mach Flow Simulator and
Its Performance Analysis. Acta Aerodynamica Sinica, Vol. 20, 2002, pp. 82–87 (In
Chinese with English abstract).

[5] Gropp, W.D.—Kaushik, D.K.—Keyes, D. E.—Smith, B. F.: Performance
Modeling and Tuning of an Unstructured Mesh CFD Application. ACM/IEEE 2000
Conference on Supercomputing, pp. 34, DOI: 10.1109/SC.2000.10059.

[6] Andres, E.—Widhalm, M.—Caloto, A.: Achieving High Speed CFD Simula-
tions: Optimization, Parallelization, and FPGA Acceleration for the Unstructured
DLR TAU Code. 47th AIAA Aerospace Sciences Meeting, January 5–8, 2009, Or-
lando, Florida.

[7] Gorobets, A.V.—Borrell, R.—Trias, F.X.—Kozubskaya, T.K.—
Oliva, A.: Efficiency of Large-Scale CFD Simulations on Modern Supercomputers
Using Thousands of CPUs and Hybrid MPI + OPENMP Parallelization. Proceed-
ings of the Fifth European Conference on Computational Fluid Dynamics, Lisbon,
Portugal, June 14–17, 2010, 12 pp.

Performance Optimization of a CFD Code on Tianhe-1A 1397

[8] Gourdain, N.—Gicquel, L.—Montagnac, M.—Vermorel, O.—Ga-
zaix, M.—Staffelbach, G.—Garcia, M.—Boussuge, J.-F.—Poinsot, T.:
High Performance Parallel Computing of Flows in Complex Geometries – Part 1:
Methods. Computational Science and Discovery, TR CFD 09 117.

[9] Duffy, A.C.—Hammond, D.P.—Nielsen, E. J.: Production Level CFD Code
Acceleration for Hybrid Many-Core Architectures. NASA/TM-2012-217770, Langley
Research Center, October 2012.

[10] Xu, C.—Deng, X.—Zhang, L.—Jiang, Y.—Cao, W.—Fang, J.—Che, Y.—
Wang, Y.—Liu, W.: Parallelizing a High-Order CFD Software for 3D, Multi-Block,
Structural Grids on the TianHe-1A Supercomputer. 28th International Supercomput-
ing Conference (ISC 2013), LNCS, Vol. 7905, 2013, pp. 26–39.

[11] Lin, P.-H.—Jayaraj, J.—Woodward, P.R.—Yew, P.-C.: A Code Transfor-
mation Framework for Scientific Applications on Structured Grids. Technical Report
11-021, UMN Computer Science and Engineering Technical Report, 2011.

[12] Lang, S.—Carns, P.—Latham, R.—Ross, R.—Harms, K.—Allcock, W.:
I/O Performance Challenges at Leadership Scale. Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis – Supercomputing
2009 (SC ’09), November 14–20, 2009, Portland, Oregon, USA, Article No. 40, DOI:
10.1145/1654059.1654100.

[13] Schwamborn, D.—Gerhold, Th.—Heinrich, R.: The DLT TAU-Code: Re-
cent Applications In Research And Industry. European Conference on Computational
Fluid Dynamics (ECCOMAS CFD 2006), 25 pp.

[14] Yang, X.-J.—Liao, X.-K.—Lu K.—Hu, Q.-F.—Song, J.-Q.—Su, J.-S.: The
TianHe-1A Supercomputer: Its Hardware and Software. Journal of Computer Science
and Technology, Vol. 26, 2011, No. 3, pp. 344–351.

[15] http://www.top500.org/system/10587/.

[16] Gropp, W.D.—Kaushik, D.K.—Keyes, D. E.—Smith, B. F.: Towards Realis-
tic Performance Bounds for Implicit CFD Codes. Proceedings of Parallel CFD ’99,
pp. 233–240.

[17] http://www.nscc-tj.gov.cn/en/resources/resources_1.asp#TH-1A.

[18] http://www.intel.com/software/products/vtune/.

[19] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual
Combined Volumes. September 2013.

1398 Y. Che, L. Zhang, Ch. Xu, Y. Wang, W. Liu, Zh. Wang

Yonggang Che received his Ph. D. in computer science from
National University of Defense Technology (NUDT), Changsha,
P. R. China in 2004. He has been an Associate Professor at
School of Computer, NUDT since 2006. His research interests
include program performance optimization and performance eva-
luation of computer systems.

Lilun Zhang received his Ph. D. in computer science from Na-
tional University of Defense Technology, Changsha, P. R. China
in 2002. He has been an Associate Professor at School of Com-
puter, NUDT since 2004. His research interests include parallel
algorithms and optimization.

Chuanfu Xu received his Ph. D. in computer science from Na-
tional University of Defense Technology, Changsha, P. R. China
in 2011. He has been an Assistant Professor at School of Com-
puter, NUDT since 2006. His research interests include program
performance optimization and performance evaluation of com-
puter systems.

Yongxian Wang received his Ph. D. in computer science from
National University of Defense Technology, Changsha, P. R. Chi-
na in 2004. He has been an Associate Professor at School of Com-
puter, NUDT since 2008. His research interests include parallel
algorithms and optimization.

Performance Optimization of a CFD Code on Tianhe-1A 1399

Wei Liu received his Ph. D. in aerodynamics from National Uni-
versity of Defense Technology, Changsha, P. R. China in 2010.
He has been an Associate Professor at School of Computer,
NUDT since 2010. His research interests include parallel CFD
computing.

Zhenghua Wang received his Ph. D. in aerodynamics from Na-
tional University of Defense Technology, Changsha, P. R. China
in 1992. He has been a Professor at School of Computer, NUDT
since 1999. His research interests include parallel algorithms and
optimization.

