
Computing and Informatics, Vol. 33, 2014, 1288–1311

SUPPORTING DYNAMICITY IN EMERGENCY
RESPONSE APPLICATIONS

Ricard Fogues

Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València, Valencia, Spain
e-mail: rilopez@dsic.upv.es

Jose M. Such

School of Computing and Communications
Lancaster University, Lancaster, UK
e-mail: j.such@lancaster.ac.uk

Juan M. Alberola, Agustin Espinosa, Ana Garcia-Fornes

Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València, Valencia, Spain
e-mail: {jalberola, aespinos, agarcia}@dsic.upv.es

Abstract. Multiagent Systems are a promising paradigm for software development.
It is feasible to model such systems with many components where each one can solve
a specific problem. This division of responsibilities allows multiagent systems to
work in dynamically changing environments. An example of an environment that is
very changeable is related with emergencies management. Emergency management
systems depend on the cooperation of all their components due to their specializa-
tion. In order to obtain this cooperation, the components need to interact with
each other and adapt their interactions depending on their purpose and the system
components they are interacting with. Also, new components may arrive on the
scene, which must be informed about the interaction policies that original compo-
nents are using. Although Multiagent Systems are suited to managing scenarios of
this kind, their effectiveness depends on their capacity to dynamically modify and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computing and Informatics (E-Journal - Institute of Informatics,...

https://core.ac.uk/display/267941841?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Supporting Dynamicity in Emergency Response Applications 1289

adapt the protocols that control the interactions among agents in the system. In
this paper, an infrastructure to support dynamically changing interaction protocols
is presented.

Keywords: Dynamic agent interactions, interaction protocols, emergency manage-
ment systems, multiagent systems

1 INTRODUCTION

As stated in [1], Multiagent Systems (MAS) allow the development of complex com-
putational systems in changing environments. Agent-based technologies are involved
in a wide range of domains, specially those that are identified as open and dynamic
systems which agents can act upon on behalf of service owners, locating services,
negotiating contracts and making pro-active runtime decisions while responding to
changing circumstances. This view of systems requires the development and integra-
tion of infrastructures in which agents with different capabilities are able to collab-
orate. Each agent is specialized in one task, and none of the agents can accomplish
all of the system’s objectives on their own. Therefore, agents must collaborate and
work together to accomplish these objectives.

Open systems must be able to dynamically adapt their structure and behaviour
by means of adding, removing or substituting components of the system while it
is running and without bringing it down [2, 3]. In a MAS, this means that new
agents can enter the system and replace previous ones while the system is running,
thereby improving the behaviour of the MAS. These new agents need to know how
to communicate with the rest of the agents of the system in order to operate prop-
erly. The way that agents interact with each other is another component of the
system, which can also be changed and improved. This flexibility requires adaptive
technologies.

A common way for agents to manage interactions with each other is through
the use of Interaction Protocols (IPs). IPs allow the specification of the agents’
behaviour within a closed environment in which allowed interactions are predefined.
As defined by the Foundation for Intelligent Physical Agents (FIPA)1, IPs specify
pre-agreed message exchange protocols. IPs define the set of rules that govern the
interactions between participants [4]. However, in dynamic scenarios such as open
systems, pre-specified IPs may not be enough.

In our previous work described in [5], a support software for managing inter-
actions between agents in terms of dynamic IPs is proposed. In that work, we
proposed an agent architecture that is oriented to conversations that follow IPs that
can be dynamically modified, according to changes in both the environment and
the system. This agent architecture has been integrated into the Magentix2 Agent

1 http://www.fipa.org/

1290 R. Fogues, J.M. Such, J.M. Alberola, A. Espinosa, A. Garcia-Fornes

Platform (AP) [6]. In this paper, the proposal is extended so that IPs can be speci-
fied and exchanged among agents in order to agree upon the IPs to be used in the
conversation as well as in order to communicate the modification of the IPs.

Dynamic IPs provide a high level of adaptability to the interactions between the
agents of the system. Nevertheless, there is no way to coordinate IP modifications
in the MAS. Thus, the inclusion of a mechanism to exchange IPs among agents
became necessary. In dynamic systems, agents could suggest new (or modified)
IPs to other agents when required by changes in the environment. Therefore, it
is necessary for the agents to have a method to transmit an IP to another agent.
Moreover, when an agent enters such a system, it may need to know which IPs are
in use in the system in order to be able to communicate with the rest of the agents
in the system. One way to learn these IPs could be to ask another agent for them.
Developers also need a language that allows them to define IPs in a unified way that
is easy for human beings to understand. In order to achieve all these aims, our work
proposes a specification of IPs using the cpXML conversation description language
and a mechanism to communicate and adopt new IPs.

In order to validate our proposal, we implement an emergency response system.
As stated in [7], emergency response systems deal with very changeable environments
and depend on the cooperation of all their components due to their specialization.
To obtain this cooperation, the components need to interact with each other and
adapt their interactions depending on their purpose and the system components
they are interacting with. Additionally, new components may arrive on the scene,
which must be informed about the interaction policies that the original components
are using. Although multi-agent systems are suited to managing scenarios of this
kind, their effectiveness depends on their capacity to dynamically modify and adapt
the protocols that control the interactions among agents in the system.

The rest of the paper is organized as follows. Section 2 shows the agent ar-
chitecture, which is oriented to conversations. Section 3 shows how the cpXML
language can be used to communicate an interaction protocol to an agent. Section 4
presents an emergency management system that uses dynamic interaction protocols,
and Section 5 explains how this system was implemented. Section 6 details previous
works related to our proposal. Finally, Section 7 presents some concluding remarks.

2 CONVERSATIONAL AGENT ARCHITECTURE

Interactions among agents are usually represented by means of IPs. FIPA [8] defines
IPs as patterns that ongoing interactions among agents often follow. In these cases,
certain message sequences are expected, and, at any point in the interaction, other
messages are expected to follow. According to the FIPA specifications, an IP is
represented by two agent roles that define different behaviours: the initiator role
corresponds to the agent that initiates the IP; the participant role corresponds to
the agent (or agents) that participates in the IP. The sequence of messages regarding
an IP is exchanged among agents that play these roles.

Supporting Dynamicity in Emergency Response Applications 1291

MAS are executed on an AP, which provides support for the development and
execution of MAS. There are many APs developed by the agent community that pro-
vide different features and support [9, 10]. APs provide all the basic infrastructure
required to create a MAS [11] and some of them bring support for IPs [15, 12, 14, 13].
Nevertheless, these APs only consider predefined IPs. Thus, IPs can neither be
changed at execution time nor communicated to other agents.

In [5], we propose an agent architecture for implementing dynamic IPs that is
modelled as finite state machines (FSM). In this work, each interaction between
agents is called a conversation. The term “conversation” expresses every possible
sequence and combination of messages that can be passed between two or more
agents participating in a given agent system [16]. The agent architecture proposed
in this work has been integrated in the Magentix2 AP. This architecture is composed
by two main components: Conversation Factories (CFactories) and Conversation
Processors (CProcessors). A CFactory represents an IP, and a CProcessor represents
an instance of a CFactory. CFactories allow agents to maintain several conversations
following a specific IP or different IPs simultaneously with other agents. Each of
these conversations is managed by a different CProcessor.

A CFactory defines an IP as a directed graph composed by nodes and arcs be-
tween nodes. Each node represents a state during the IP, and the arcs represent
all possible transitions from one state to other states. A CFactory is in charge of
creating CProcessors that follow the IP defined by the CFactory each time that
the agent starts a new conversation that requires this IP. Each CFactory manages
the incoming messages that follow the specific IP defined. If the message received
belongs to an ongoing conversation associated to a CProcessor, the message is de-
livered to this CProcessor ; otherwise, a new CProcessor is created to manage this
conversation. Both CProcessors and CFactories can be modified dynamically. This
allows the way that an agent interacts with other agents or the way an agent carries
out an ongoing conversation to be changed.

A CFactory uses states and transitions to define the behaviour of each role of the
IP. There are five types of states that can define an IP: Begin, Final, Send, Receive,
and Wait. A transition between two states occurs depending on the type of the
state where the conversation is at a given moment. Following, there is a list of the
different states of the conversation according to the actions that trigger a transition
from each state:

• Begin: A transition is triggered from this state when the conversation starts.

• Receive: A transition is triggered from this state when a message is received and
managed.

• Send : A transition is triggered from this state when a message is sent by the
agent.

• Wait : A transition is triggered from this state when a message is received. The
difference between the transition from a Wait state and from a Receive state is
that the Wait state waits for any message, and depending on the message, the

1292 R. Fogues, J.M. Such, J.M. Alberola, A. Espinosa, A. Garcia-Fornes

conversation travels to a specific Receive state. Then the Receive state processes
the message and the conversation travels to the next state.

3 DESCRIBING AND EXCHANGING INTERACTION PROTOCOLS

In order for agents to be able to communicate the protocols that they are using in
their conversations, we must specify IPs by using a conversation description lan-
guage. In this work, we used cpXML [17] as the language for specifying IPs.

CpXML was created by IBM in 2002. It is an XML dialect for describing conver-
sation policies (CP). A CP is a set of constraints on the schemas and sequencing of
messages that may be sent in a conversation between two or more applications. A CP
is a purely “passive” structure that describes a set of possible message sequences,
without reference to which sequence is actually followed in any given conversation.
In practice, the conversing applications need not follow the CP’s constraints. That
is, CPs are non-normative in the sense that no application is required to follow any
given CP (or any CP at all, for that matter). CPs are intended to be used as com-
mon, conventional, standard protocols that are available for use by applications as
an aid to interacting effectively. A single CP covers messages from all participants,
which is written in a way that is independent of any particular participant (i.e., a CP
is written from the point of view of a third party overhearing the conversation).

Other languages such as IOM/T [18] also allow the specification of IPs. IOM/T
aims at a tight correspondence with AUML diagrams used in interaction design. The
use of this language allows users to implement an interaction protocol in a unique
place, without dispersing the codes of the interaction between the agents partici-
pating in it. In other words, the interaction protocol is only described in a single
structure rather than being described twice (once for the initiator role and once for
the participant role).

CpXML has been chosen for specifying the IPs because it allows a specification
that is similar to FSM and the agent architecture proposed also models IPs as FSMs.
Therefore, the algorithm to convert a cpXML specification into a CFactory is very
intuitive. Another feature that has been considered choosing cpXML is that it is
a XML dialect, therefore it is easy to parse and use in conjunction with Java.

3.1 Describing IPs with CPXML

CpXML specifications of IPs can be exchanged between agents in order to agree upon
the IP they are going to use in the conversation and to communicate modifications
in the IP. A cpXML document can be described as the script of a play. The script
determines the set of characters to be played, the things each character has to say,
and the order in which these things must be said. However, the script does not
say anything about the actors. Thus, the interpretation that actors give to their
characters, where or how the play is put on, what technology (if any) is used to
reach the audience, etc. will be specific for each instance of the play.

Supporting Dynamicity in Emergency Response Applications 1293

A cpXML document defines the roles that identify the participants. The main
content of the document is a set of states connected by transitions. One of the states
is the initial one, and a subset of the states are final states. There are three types
of transitions. Each one is triggered by a different event:

1. sending a message,

2. timeout, and

3. starting a subconversation.

This last type is a valuable feature since it allows the creation of complex CPs com-
posed of several subconversations. Figure 1 shows the FIPA Request [19] definition.
In this figure, the IP is represented with Agent UML, which is the common repre-
sentation of IP used by FIPA. Figure 2 shows the same IP described with cpXML.
As the figure shows, in cpXML, the conversation is represented as a whole. It is
not represented from two different points of view, but rather from a unique third
party’s point of view. In the figure, “I” stands for Initiator and “P” for participant.
“I → P” means that the Initiator sends a message to the Participant, and “P → I”
means that the Participant sends a message to the Initiator. Each node in the graph
represents a state in the conversation; for example, the first state “No request” re-
presents the moment before the Initiator sends a message requesting something from
the Participant. The conversation travels from one state to another when a message
is sent; for example, in the first state of the conversation, the state would change
whenever the Initiator sends the request message to the Participant.

There is a major difference between a cpXML specification and a CFactory. This
difference is that in cpXML, an IP description covers messages from all the agents
that take part in the conversation. On the contrary, two CFactories are needed
to describe an IP (one for the initiator role and other for the participant role).
Nevertheless, CFactories and cpXML are very similar since both can represent the IP
as FSM. Therefore, it is easy to derive a CFactory from a cpXML. The algorithm for
transforming a cpXML specification into a CFactory basically performs the following
two actions:

• For each state of the cpXML specification that has associated transitions of
sending messages, the algorithm creates a Send state if the agent plays the
initiator role in the conversation. If the agent plays the participant role, the
algorithm creates a Wait state and a Receive state and adds a transition between
the two states. The timeout associated to the Wait state is the value that is
specified in the timeout transition of the state in the cpXML specification. If
there is not specified a timeout transition, then the Wait state associates an
infinite timeout. Finally, each terminal state of the cpXML specification causes
the creation of a Final state.

• Once all the states have been created, the algorithm adds transitions between
them according to the transitions specified in the cpXML document.

1294 R. Fogues, J.M. Such, J.M. Alberola, A. Espinosa, A. Garcia-Fornes

Figure 1. FIPA Request Interaction Protocol described in AUML

NoRequest

RequestSent
I->P:

SendRequest

P->I:

SendRefuse

P->I:

SendAgree

Agreed

P->I:

SendFailure

P->I:

SendInform

RequestFailed

RequestDone

Figure 2. FIPA Request Interaction Protocol described with cpXML

Supporting Dynamicity in Emergency Response Applications 1295

Figure 3 shows the FIPA Request IP as a CFactory for the initiator role2. This
CFactory has been constructed from the cpXML specification using the algorithm
described above.

Figure 3. FIPA Request Interaction Protocol as a CFactory

3.2 IP Exchange Using cpXML

Agents can exchange IPs by using messages. There are two possible scenarios for
IP exchange. On the one hand, an agent may need to communicate with another
agent, but it does not know how to do it. Therefore, the first agent has to ask the
second one to tell it a valid IP in order to have an interaction. On the other hand,
an agent may propose another agent an IP for their conversation.

When agent Alice wants to communicate with another agent Bob using a specific
IP, agent Alice sends a propose message to Bob. The message contains the cpXML
specification of the IP that agent Alice wants to use in the conversation as well
as the role that agent Bob will play in this conversation. Then, agent Bob can
transform the cpXML specification into a CFactory and send an accept message
to agent Alice, or it can decline the proposal and answer with a refuse message.
Figure 4 shows how this IP Proposal method works. Agent Bob just entered the
system, and agent Alice wants to communicate with the new agent. Therefore,
agent Alice sends a propose message containing the cpXML specification of an IP.
Agent Bob accepts the proposal, converts the cpXML specification into a CFactory

2 The CFactory for the participant role is not included in the figure for the sake of
clarity

1296 R. Fogues, J.M. Such, J.M. Alberola, A. Espinosa, A. Garcia-Fornes

and answers back to agent Alice with an accept message. From this moment on,
these agents can start new conversations following the proposed IP.

If an agent needs to communicate with another agent but it does not know what
IP to use, instead of proposing an IP to the other agent, it can ask for an IP de-
scription. In this case, agent Bob, who is willing to communicate, sends a request
message soliciting the IP to agent Alice. Then, agent Alice can answer with an in-
form message containing the IP or with a refuse message; this means that agent
Alice does not want to interact with agent Bob. This method of IP Request is shown
in Figure 5. Agent Bob wants to communicate with agent Alice but agent Bob does
not know which IP it can use. Hence, agent Bob requests a valid IP to agent Alice.
When agent Bob receives the valid IP, Bob converts it into a CFactory, and, from
this moment on, agent Bob can communicate with agent Alice using that IP.

Bob Alice

1. Propose

2. Accept

3. New conversation
following the
proposed IP

cpXML

Figure 4. IP Proposal method for IP exchange

4 AGENT INTERACTION IN EMERGENCY SCENARIOS

In this section, we explain how an emergency management scenario can be developed
using the proposed support for IPs. In this scenario, different elements with unique
capabilities need to cooperate with each other in order to achieve their objectives.
These elements also have to be capable of coordinating themselves quickly due to
the emergency context they have to work in. In cases like riots, fire, or traffic
accidents, a police patrol may need to call on the services of a number of specialists
who can provide crucial assistance. In real life, it is more likely for the coordination
of these elements to be carried out by a central coordinating element; this element

Supporting Dynamicity in Emergency Response Applications 1297

Bob Alice

1. Request

3. New conversation
following the
requested IP

2. Requested IP

cpXML

Figure 5. IP Request method for IP exchange

proxies the messages calling for a service that comes from the requester to the
specialists. Specialists who offer their services are not always in the same geographic
location or may not be able to attend to all emergencies at all times. It is more
likely for them to dynamically change their availability and geographic location.
Therefore, enviromental emergency managment systems must attempt to manage
these dynamic situations. As stated in [7], a primary challenge in responding to both
natural and man-made disasters is communication. Therefore, this scenario is the
perfect situation in which to test our interaction support software. Since emergency
scenarios are complex systems where unforseen events may change the conditions of
the system, the elements that make up the system have to adapt to these changes.
Communication as a main component has to be prepared to evolve and adapt to any
modification in the system. Meissner et al. [20] state that flexibility is necessary for
emergency management systems to work properly. They must be designed for fast
adaptation to modifications of the organizational structure due to situation changes.
Meissner defines three kinds of actors in the system with regard to their degree of
mobility:

• Stationary actors: Government organizations like police headquarters.

• Semi-mobile actors: mobile command posts.

• Mobile actors: frontline personnel like firefighters or paramedics.

The scenario in this paper includes actors with different degrees of mobility.
Therefore, it must deal with this dynamism at the communication level by offering
flexible and adaptative IPs.

1298 R. Fogues, J.M. Such, J.M. Alberola, A. Espinosa, A. Garcia-Fornes

This paper analyzes a situation in which a police patrol is patrolling a city and
the roads around it. There are many situations that the police patrol can manage by
itself, such as robbery or small disturbances. However, there are other situations that
a single police patrol is not able to control. If there is a car accident, the police patrol
cannot attend to the injuried people. This requires specialized medical personnel,
firefighting professionals, and equipment. As new specialist teams become available
to attend to an emergency, they are added to the set of potential participants.
From an open multiagent point of view, any former agent of the system may request
a service offered by a new agent, as long as this agent is provided with the appropriate
interaction protocols.

Each actor participating in the scenario has a mobile device with a software
agent that acts as his/her representative. Every agent knows the geographic po-
sition, availability, and other important data of the personnel it represents. The
communication between the people who participate in the scenario is always car-
ried out by their agents. For example, if a firefighter requires assistance, he will
specify to his agent what kind of assistance is needed and the agent will do the rest
(i.e. check availability of the assistant personnel, communicate with the person in
charge, etc.). The agents help by keeping actors’ communication easy and precise.
The agent abstraction also allows us to model an emergency management scenario
as a MAS.

Let us suppose a scenario where a police patrol has witnessed a serious traffic
accident in which some people have been badly injured and a fire has started. The
police patrol has an idea of the kind of assistance that is needed, mainly medical
assistance and the fire department. The police patrol contacts police central using
the agent in their mobile device to request assistance. In this interaction, the police
patrol plays the initiatior role and police central the participant one. The initiator
communicates with police central in order to know which services are available and
to call on them. Figure 6 shows a global view of the system. The figure shows
how the police patrol sends proxied messages to police central, and how its agent
central locates specialist agents that are capable of attending to the request. Once
they are found, the police central agent informs the police patrol and tells them
that their request can be attended to and starts to communicate with the located
specialist agents. Depending on the request that the police patrol has made, the
police central agent will use a specific interaction protocol with the specialist agents.
In summary, the police central agent acts as an intermediary that recruits specialist
agents depending on the needs of the police patrol that has assessed the situation.

There are three main components in this scenario:

1. police patrol, which acts as initiator;

2. police central, which acts as participant, and

3. specialist agents, which act as target agents.

The interaction shown in Figure 6 corresponds to the FIPA Recruiting IP speci-
fication [21]. The messages sent to the participant agent by the initiator will be

Supporting Dynamicity in Emergency Response Applications 1299

Police Central

Ask
for help

 Proxy message /
 Recruit

Report result
to Initiator

Specialist Agents

Police Patrol

Initiator Participant

Figure 6. Global vision of emergy management system

proxied to the target agents. Then the target agents will report the action result
to the initiator. The proxy communication is composed of subprotocols between
the participant and the target agents. This complicated scenario with so many el-
ements involved is a good context to demonstrate how agent-based systems that
implement their interaction with the proposed software can respond effectively to
changing conditions.

Figures 7 and 8 show the interaction protocol used by the police patrol and
police central. First, the police patrol agent sends a message to the participant.
This message specifies which service is needed and other parametres, such as the
number of agents or what type of agent is needed. Then the participant answers the
police patrol with an agree message if it wants to act as intermediary; otherwise,
it sends a refuse message. If it agrees, then it will check for specialist agents that
fit the specifications of the police patrol’s message. If police central locates one or
more agents it will start a subprotocol with each located specialist agent in order to
recruit it. If police central cannot find any specialist agent, then it will send a failure
message to the police patrol. Finally, police central sends a message to the police
patrol informing whether or not the proxy action was succesful. Even if specialist
agents interact with police central during the subprotocol execution, they report the
result of the subprotocol to the police patrol.

The subprotocol that the central police agent and specialist agents use to com-
municate with each other is the appropriate one to manage the request that comes
from the police patrol. This shows how useful the flexibility of our conversation

1300 R. Fogues, J.M. Such, J.M. Alberola, A. Espinosa, A. Garcia-Fornes

Begin

 Final

Send: Message to

be proxied

and parameters

for target agents

Wait

Receive: Refuse

Receive: Agree

Receive:

Failure-no-match

Receive:

Inform-done-proxy

Wait

Wait Receive:

Inform-done-

subprotocol

Receive:

Inform-res-

subprotocol

Receive:

Failure-

subprotocol

Receive:

Failure-proxy

Figure 7. Recruiting interaction protocol for the initiator role

Begin

 Final

Receive:

proxy message

Send: Refuse

Send: Agree

Send:

Failure-no-match

Start subprotocol

Send:

Inform-done-

proxy

Receive:

Failure-proxy

Wait

Figure 8. Recruiting interaction protocol for the participant role

Supporting Dynamicity in Emergency Response Applications 1301

support to join protocols by means of subprotocols is in a scenario like this. The
subprotocol used by police central and specialist agents is not shown here due to its
diversity. Depending on the message sent by the police patrol, the police central has
to start an appropriate subprotocol. For example, one of the protocols used could
be the FIPA Request IP shown in the previous section. Each subprotocol could
be arranged between the police central and a specialist agent when it enters the
system or could be specified by the system in advance and communicated to each
new specialist agent.

Let us assume that now the scenario gets more complex. The accident involved
many cars and is blocking a highway with a lot of traffic. Also, some of the injured
people need medical helicopter assistance. The police patrol requests more police
back-up in order to control and divert the traffic to other secondary roads. The
helicopter aid cannot be requested by the police patrol due to their inability to
diagnose injuries. Therefore, medical personnel have to request helicopter support
and act as initiatior in the recruiting protocol in the same way the police patrol does.
It is hard for police central to cope with all this complexity. Therefore, there is a risk
of police central delaying petition handling. Henceforth, police central concludes
that it is necessary to change the protocols governing the MAS’ interactions. Once
police central has decided which protocols better fit the new situation, it sends
a message with the appropriate protocol described in cpXML to the agents. As
explained in the previous section, the message is a proposal for changing the IP used
between the specialist or police patrol agent and police central. An agent can accept
or refuse the proposed change. If the agent accepts, then it will convert the cpXML
specification into a CFactory and replace the previous IP used to communicate
with police central by the new one3, otherwise police central may propose another
IP to the agent or may not consider the agent for future interactions. With this
mechanism, the interactions in the MAS can adapt themselves to any circumstance
and improve the communication among agents.

5 IMPLEMENTATION

This section first describes the implementation of the emergency scenario by using
of the emergency scenario by using the agent architecture provided by Magentix2.
It then explains how IPs are exchanged at the implementation level.

5.1 Implementation of Conversational Agents

The agent architecture shown in Section 2 focuses all the actions that the agent
performs on the conversations in which it participates. The initiator agent has

3 It is assumed that agents in the system are benevolent and will follow IP specifications
in every interaction.

1302 R. Fogues, J.M. Such, J.M. Alberola, A. Espinosa, A. Garcia-Fornes

an associated initiator CFactory. This CFactory would have an associated CPro-
cessor specifying the protocol shown in Figure 7. The participant agent has an as-
sociated participant CFactory that would create CProcessors following the protocol
shown in Figure 8 and as many initiator CFactories as different subprotocols it
would need. Some source code of the different agents that make up the MAS for
emergency management is shown below. These examples show how conversational
agents work and how they are programmed, thereby providing, a global view of the
MAS implementation.

Before showing the code of any agent of the MAS, the protocol templates must
be explained. These templates have been created to make the use of protocols spe-
cified by the FIPA standard easier (for example FIPA Recruiting or FIPA Request).
Protocol templates are offered in the same API used by conversational agents, and
they can be used to create new CFactories. These CFactories are adaptations made
by the programmer of interaction protocols defined in the FIPA standard. The tem-
plates allow the agent programmer to focus on the actions the agent has to perform
in each conversation state. It is not necessary for the programmer to consider the
different states of the conversation and the transitions between them. For example,
when programming the agent that plays the participant role in the FIPA Recruiting
IP, the programmer has to define how the agent selects specialist agents to recruit
depending on the message sent by the initiator role. However, the programmer
does not need to define all the possible transitions from that state. This is already
done by the interaction template. Interaction templates make programming with
CProcessors and CFactories easier, but they do not limit the dynamic possibilities
of our proposal (i.e., any CFactory programmed using an interaction template can
be modified during execution time). In this specific example, all the agents start
using FIPA standard protocols, but as the emergency situation evolves, the IPs
also change and the CFactories created from the templates are modified or simply
replaced.

Now, we show the skeleton of the police central agent source code. The code
shows that the agent inherits from the CAgent class. This class refers to a Conversa-
tional Agent. Thus, every agent inheriting from this class can manage conversations
by means of CProcessors and CFactories. The CFactory that manages the FIPA
Recruiting conversation is defined in the lines of code implemented below. This
CFactory inherits from the FIPA Recruiting template. Through this inheritance,
the programmer only needs to implement a few methods (more can be defined, but
the template offers default behaviours in some states that can be modified if needed).
The methods defined are:

• doReceiveProxy: In this method, the agent manages the initial message sent
by the initiator and decides whether he accepts the proxy action.

• doLocateAgents: In this method, depending on the message sent by the initia-
tor, the agent locates the collection of specialist agents it has to recruit.

Supporting Dynamicity in Emergency Response Applications 1303

1 public class PoliceCentral extends CAgent{

2 ...

3 class myFIPARecruitingParticipant extends

FIPA_RECRUITING_Participant{

4 @Override

5 protected ArrayList <AgentID > doLocateAgents(CProcessor

myProcessor , ACLMessage proxyMessage) {

6 ...

7 }

8 @Override

9 protected String doReceiveProxy(CProcessor myProcessor ,

ACLMessage msg) {

10 ...

11 }

12 ...

13 protected void execution(CProcessor firstProcessor ,

ACLMessage welcomeMessage) {

14 MessageFilter filter = new MessageFilter("protocol =

fipa -recruiting");

15 CFactory recruiting = new myFIPARecruitingParticipant ()

.newFactory("TALK", filter , null , 1, this , 0);

16 this.addFactoryAsParticipant(recruiting);

17 }

18 }

19 }

The method execution is the main method of the agent. In order for CFactory
to be able to create CProcessors for FIPA Recruiting conversations, the agent creates
a new CFactory from the template. This is done in line 15. It is necessary to
pass some arguments to the CFactory creation, like the name of the CFactory,
or the filter; this specifies that only messages with the parameter protocol set to
fipa-recruiting will start new conversation, etc..

5.2 IP Exchange between Conversational Agents

Conversational agents can exchange IPs using messages. As explained in Section 3,
an agent can request an IP or it can propose the use of a specific IP to another
agent. Each of these methods of exchanging an IP constitutes an IP itself. These
IPs are known beforehand by all conversational agents, and the management of
conversations following any of these IPs is transparent to the agent. Our agent
architecture offers two methods to exchange IPs: proposeIP(AgentID id, cpXML

IP) and requestIP(AgentID id). Each method starts an appropriate conversation
depending on the agent that is requesting or proposing an IP. Once a new IP is
accepted (if it was proposed) or sent (if it was requested), it is automatically added
as a new CFactory to the agent.

1304 R. Fogues, J.M. Such, J.M. Alberola, A. Espinosa, A. Garcia-Fornes

Each subprotocol that police central may start with any specialist agent has
to be defined as a cpXML. The police central agent and each specialist agent have
to agree beforehand as to when to use each subprotocol and with whom. In our
MAS, when a new specialist agent is available, it announces its availability to po-
lice central. Then, police central answers by proposing a protocol that will be
used when police central needs to recruit this specialist agent. If the proposed
protocol is accepted, that specific protocol is associated with that specific agent;
otherwise, the police central agent can propose another protocol or just not con-
sider the new specialist agent as recruitable. The police central makes its proposal
by sending a message to the specialist agent. This message has a cpXML speci-
fication of a CP as content. The message also specifies which role the specialist
agent will play in a conversation following the protocol. Below, we show how to
define the FIPA Request protocol in cpXML. This cpXML is one of the protocols
that the police central agent proposes to the specialist agents as they enter the
system.

1 <conversationpolicy >

2 <name >FipaRequest </name >

3 <roles >

4 <role >Initiator </role >

5 <role >Participant </role >

6 </roles >

7

8 <initialstate >NoRequest </ initialstate >

9

10 <state StateId =" NoRequest">

11 <SendMessageTransition TransitionName =" SendRequest">

12 <Target >RequestSent </Target >

13 <Sender >Initiator </Sender >

14 <Event >SendMessage </Event >

15 <Message >

16 <Encoding >xml -document </Encoding >

17 <Schema >Request </Schema >

18 </Message >

19 </SendMessageTransition >

20 </State >

21

22 <state StateId =" RequestSent">

23 <SendMessageTransition TransitionName =" SendRefuse">

24 <Target >RequestFailed </Target >

25 <Sender >Participant </Sender >

26 <Event >SendMessage </Event >

27 <Message >

28 <Encoding >xml -document </Encoding >

29 <Schema >Refuse </Schema >

Supporting Dynamicity in Emergency Response Applications 1305

30 </Message >

31 </SendMessageTransition >

32

33 <SendMessageTransition TransitionName =" SendAgree">

34 <Target >Agreed </Target >

35 <Sender >Participant </Sender >

36 <Event >SendMessage </Event >

37 <Message >

38 <Encoding >xml -document </Encoding >

39 <Schema >Agree </Schema >

40 </Message >

41 </SendMessageTransition >

42 </State >

43

44 <State StateId =" Agreed">

45 <SendMessageTransition TransitionName =" SendFailure">

46 <Target >RequestFailed </Target >

47 <Sender >Participant </Sender >

48 <Event >SendMessage </Event >

49 <Message >

50 <Encoding >xml -document </Encoding >

51 <Schema >Failure </Schema >

52 </Message >

53 </SendMessageTransition >

54

55 <SendMessageTransition TransitionName =" SendInform">

56 <Target >RequestDone </Target >

57 <Sender >Participant </Sender >

58 <Event >SendMessage </Event >

59 <Message >

60 <Encoding >xml -document </Encoding >

61 <Schema >Inform </Schema >

62 </Message >

63 </SendMessageTransition >

64 </State >

65

66 <State StateId =" RequestDone">

67 <return >Done </return >

68 </State >

69

70 <State StateId =" RequestFailed">

71 <return >Fail </return >

72 </State >

73

74 </ConversationPolicy >

1306 R. Fogues, J.M. Such, J.M. Alberola, A. Espinosa, A. Garcia-Fornes

The implementation of the police patrol is quite similar to the implementation of
police central. Obviously, the CFactory that is added to the agent is not the same.
In this case, the police patrol uses the template for the initiator role of the FIPA
Recruiting protocol. When this template is used, the most important method is the
setProxyMessage method. In this method, the agent has to specify the message
that will be proxied and to which specialist agents.

It is not necessary to define any protocol during the implementation of the spe-
cialist agents. These agent will receive the specification of the protocol that they
will use to communicate with police central when they enter the MAS. This learning
capability is the same that all the agents in the MAS use when the emergency situa-
tion conditions change and the agents need to adapt to them. The previous section
showed how the emergency situation can change the interaction of the agents. Police
is in charge of determining which protocols must be changed. To accomplish this,
police central will send a propose message to every agent in the system. The content
of these messages will be a new and appropriate protocol for the new situation.

6 RELATED WORK

Several APs provide support for specifying IPs. As an example, Jade [12] and
Madkit [14] support the execution of IPs proposed by FIPA. However, they do not
provide support for developing their own IPs. Zeus [13] also provides support for
specifying their own IPs by means of the Protoz environment. It allows the specifi-
cation of the roles involved in an IP by means of FSM. The transitions associated
to the FSM are triggered by incoming messages (from other agents or from internal
procedures). Agentbuilder [15] also provides tools for specifying IPs. It provides
a protocol editor tool that allows the specification of IPs by means of FSM.

The major drawback of these supports for IPs is that they do not allow the
modification of the IPs while the system is running. Therefore, applications that
involve runtime changes in the IP specification are not able to be developed. Fur-
thermore, since IPs are specified before execution, agents are not able to negotiate
the IP associated to their conversation.

With regard to works that deal with dynamic IPs, Artikis et al. [22, 23] present
a framework for specifying open systems from the perspective of organizations in-
stead of individual agents. They represent open MAS as normative systems by
specifying what is permitted, prohibited, and obligatory. In this framework, the
specification of IPs is carried out at design time but can be modified at execution
time since the rules that govern the protocol may change. However, this approach
restricts the range of applications to normative systems. We propose a support
at the AP level so that the users can apply their own system model according to
the requirements of the specific applications. In fact, Artikis’ framework could be
implemented using our work in this paper.

Walton et al. [24] propose a method for defining interaction protocols during
runtime. Therefore, agents are able to interact in systems where the interaction

Supporting Dynamicity in Emergency Response Applications 1307

protocol may be unknown beforehand. They provide a language for defining IPs
that will be created during conversations by the participants. Although this proposal
focuses on large and open MAS, it is not integrated in any AP. This severely limits
its practical application. Our proposal provides a support for dynamic IPs at the
AP level. Therefore, it supports the management of not only single messages but
also of entire conversations.

The support for design and execution of IPs that we presented in [5] did not
use a structured language to specify IPs. By using a language for specifying the IP,
agents are able to exchange the IP they are going to use in their conversation or in
the modification of a previous IP. Besides, by representing the IP in two different
places (in the initiator and in the participant agents), it is difficult for a user to
interpret the IP. To correct these problems, a conversation description language
and two different methods for exchanging IPs have been added to our proposal.
The conversation description languages aim to fill the gap between conversation
definition and implementation.

Our proposal provides support to IPs modelled as FSM, but other approaches
model IPs through the use of different methods. One of such methods is the use of
Enhanced Dooley Graphs (EDG) for agent modeling [25], which is a technique based
on Dooley graphs [26]. This proposal is focused on basing the design of new agents
on the analysis of existing agents and their interactions. This analysis finds patterns
that can guide subsequent implementation of agents. However, this proposal has not
been implemented. Another method is Nowostawski’s proposal [27], which is based
on modeling IPs as coloured Petri nets (CPN). He also provides an implementation
at the agent level, which is integrated in the AP Opal.

7 CONCLUSIONS

In this paper, a support based on the specification and execution of dynamic IPs
has been presented. Although some other approximations have been presented, few
have been implemented or can support dynamic protocols. The support presented
in our approach can even implement some of these works.

This support can be used to create a MAS where the interaction between the
agents is non-trivial and the IPs directing these interactions have to adapt to a dy-
namic changing environment. This support greatly helps to improve applications
where service-providing agents can enter and leave the system during its execu-
tion. These new agents need to know which interaction protocols are in use in the
system in order to offer their services and to request other agents’ services. The
conversational agent architecture can be used to program the agents that make up
a MAS with these characteristics. Moreover, the capacity of agent architecture to
maintain several interactions following the same protocol improves the MAS perfor-
mance.

CpXML has been added to our previous proposal. This addition has increased
the functionality of our software. CpXML language can be used to communicate

1308 R. Fogues, J.M. Such, J.M. Alberola, A. Espinosa, A. Garcia-Fornes

IPs among the agents of the MAS. CpXML is also used to centralize the definition
of IPs and make them easier to manage and understand by humans.

We have also shown an implementation of an emergency management system
using the support. An emergency situation is very unpredictable and can change
easily; hence, systems that manage these situations have to be flexible and adaptive.
The agent architecture is offered in an API integrated in Magentix2, which is already
available. Using conversational agents and their functionality, our system is able to
cope with dynamically changing situations such as an emergency. The API also offers
protocol templates that help programmers to easily modify IPs that are widely used
without losing any adaptive characteristic.

In the future, we plan to implement a visual tool for designing interaction pro-
tocols. This tool should facilitate the use of cpXML to define CP. Once a CP has
been defined, it would be converted into Java code. This code could then be used to
implement agents. This tool could also be embedded in a CASE utility to facilitate
the design and implementation of MAS. Another objective for the future is to ex-
tend our interaction support as a part of an interaction-guided agent model. In this
model, concurrent interactions with other agents will be considered in the reasoning
process of the agent.

Acknowledgements

This work has been partially supported by CONSOLIDER-INGENIO 2010 under
grant CSD2007-00022, and project TIN2008-04446.

REFERENCES

[1] Luck, M.—McBurney, P.—Shehory, O.—Willmott, S.: Agent Technology:
Computing as Interaction (A Roadmap for Agent Based Computing). AgentLink,
2005.

[2] Valetto, G.—Kaiser, G.E.—Kc, G.S.: A Mobile Agent Approach to Process-
Based Dynamic Adaptation of Complex Software Systems. Proceedings of the
8th European Workshop on Software Process Technology (EWSPT ’01), Springer-
Verlag, London, UK 2001, pp. 102–116. ISBN 3-540-42264-1, http://dl.acm.org/
citation.cfm?id=646199.681826.

[3] Dignum, V.—Dignum, F.—Sonenberg, L.: Towards Dynamic Reorganization
of Agent Societies. Proceedings of Workshop on Coordination in Emergent Agent
Societies, 2004, pp. 22–27.

[4] Li, N.—Tarus, H.—Irvine, J. M.—Moessner, K.: A Communication Middle-
ware for Ubiquitous Multimedia Adaptation Services. Computing and Informatics,
Vol. 29, 2010, No. 4, pp. 628–646.

[5] Fogués, R. L.—Alberola, J. M.—Such, J. M.—Espinosa, A.—Garcia-
Fornes, A.: Towards Dynamic Agent Interaction Support in Open Multiagent Sys-

Supporting Dynamicity in Emergency Response Applications 1309

tems. Proceedings of the 13th International Conference of the Catalan Association
for Artificial Intelligence, IOS Press, 2010, pp. 89–98.

[6] Magentix2: http://users.dsic.upv.es/grupos/ia/sma/tools/magentix2/
index.php.

[7] Manoj, B. S.—Baker, A. H.: Communication Challenges in Emergency Response.
Communications of the ACM, Vol. 50, 2007, No. 3, pp. 51–53.

[8] FIPA: FIPA Interaction Protocol Library Specification. 2002

[9] Alberola, J. M.—Such, J. M.—Garcia-Fornes, A.—Espinosa, A.—
Botti, V.: A Performance Evaluation of Three Multiagent Platforms. Artificial
Intelligence Review, Vol. 34, 2010, No. 2, pp. 145–176.

[10] Such, J.M.—Alberola, J. M.—Barella, A.—Garcia-Fornes, A.: A Secure
Group-Oriented Framework for Intelligent Virtual Environments. Computing and
Informatics, Vol. 30, 2011, No. 6, pp. 1225–1246.

[11] Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley and Sons
2002.

[12] Bellifemine, F.—Poggi, A.—Rimassa, G.: Jade: A fipa2000 Compliant Agent
Development Environment. Proceedings of the Fifth International Conference on Au-
tonomous Agents (AGENTS ’01), ACM Press, New York 2001, pp. 216–217.

[13] Nwana, H. S.—Ndumu, D. T.—Lee, L. C.—Collis, J. C.—Re, I. I.: Zeus:
A Tool-Kit for Building Distributed Multi-Agent Systems. Applied Artificial Intelli-
gence Journal, Vol. 13, 1999, pp. 129–186.

[14] Gutknecht, O.—Ferber, J.: MadKit: A Generic Multi-Agent Platform. Pro-
ceedings of the Fourth International Conference on Autonomous Agents, ACM, 2000,
pp. 78–79.

[15] Agentbuilder: Acronymics, Inc. http://www.agentbuilder.com.

[16] McGinnis, J.—Robertson, D.: Dynamic and Distributed Interaction Protocols.
Proceedings of the AISB 2004 Convention, 2004, pp. 45–54.

[17] Hanson, J. E.—Nandi, P.—Levine, D. W.: Conversation-Enabled Web Services
for Agents and E-Business. Proceedings of the International Conference on Internet
Computing (IC-02), CSREA Press, 2002, pp. 791–796.

[18] Takuo, D.—Tahara, Y.—Honiden, S.: IOM/T: An Interaction Description Lan-
guage for Multi-Agent Systems. Proceedings of the Fourth International Joint Con-
ference on Autonomous Agents and Multiagent Systems, ACM, 2005, pp. 778–785.

[19] FIPA: FIPA Request Interaction Protocol Specification. 2002.

[20] Meissner, A.—Luckenbach, T.—Risse, T.—Kirste, T.—Kirchner, H.: De-
sign Challenges for an Integrated Disaster Management Communication and Infor-
mation System. The First IEEE Workshop on Disaster Recovery Networks (DIREN
2002), New York City, USA, June 24, 2002.

[21] FIPA: FIPA Recruiting Interaction Protocol Specification. 2002.

[22] Artikis, A.: Dynamic Protocols for Open Agent Systems. Proceedings of The
8th International Conference on Autonomous Agents and Multiagent Systems (AA-
MAS ’09), 2009, pp. 97–104.

1310 R. Fogues, J.M. Such, J.M. Alberola, A. Espinosa, A. Garcia-Fornes

[23] Artikis, A.—Sergot, M.: Executable Specification of Open Multi-Agent Systems.
Logic Journal of the IGPL, Vol. 18, 2010, No. 1, pp. 31–65.

[24] Walton, C.: Dialogue Protocols for Multi-Agent Systems. Informatics Research
Report EDI-INF-RR-0183, University of Edinburgh, 2003, 12 pp.

[25] Parunak, H. V. D.: Visualizing Agent Conversations: Using Enhanced Dooley
Graphs for Agent Design and Analysis. Proceedings of the Second International Con-
ference on Multi-Agent Systems (ICMAS ’96), 1996, pp. 275–282.

[26] Dooley, R. A.: Repartee as a Graph. Appendix B in R. E. Longacre: An Anatomy
of Speech Notions, Peter de Ridder, Lisse, Holland, 1976, pp. 348–358.

[27] Nowostawski, M.—Purvis, M.—Cranefield, S.: A Layered Approach for Mo-
delling Agent Conversations. Proceedings of the Second International Workshop on
Infrastructure for Agents, MAS and Scalable MAS, the Fifth International Conference
on Autonomous Agents, Montreal, Canada, 2001, pp. 163–170.

Ricard Fogues is currently working at Universitat Politècnica
de València towards the Ph. D. degree in computer science and
holds a research grant supported by the European Union. He
received the B. Sc. from Universitat Jaume I, Castello, Spain and
M. Sc. degree in artificial intelligence, pattern recognition and
digital image from Universitat Politècnica de València, Valencia,
Spain, in 2007 and 2010, respectively. His research interests
include privacy, access control models, and self presentation, and
relationship management on social media.

Jose M. Such is Lecturer (Assistant Professor) in the School of
Computing and Communications at Lancaster University (UK)
since 2012. In 2011 he was awarded by Ph. D. degree in com-
puter science from Universitat Politècnica de València (Spain),
where he was research fellow. His main research interests are on
the intersection between artificial intelligence and cyber security,
and in particular, intelligent/automated approaches to privacy,
identity management, access control models, trust and reputa-
tion. He is also interested in human factors in cyber security
and machine learning applied to cyber security.

Juan M. Alberola is a postdoc researcher at the Departa-
ment de Sistemes Informàtics i Computació of the Universitat
Politècnica de València. He received his Ph. D. in computer
sience in 2013. His research interests include agent organiza-
tions, adaptation, multiagent systems, artificial intelligence ap-
plication in educational environments, teamwork and coalition
formation, case-based-reasoning, prediction markets, and elec-
tronic markets.

Supporting Dynamicity in Emergency Response Applications 1311

Agust́ın Espinosa is Lecturer at the Departament de Sistemes
Informàtics i Computació of the Universitat Politècnica de Va-
lència and a researcher in the GTI-IA research group of the Uni-
versitat Politècnica de València. His research interests include
multiagent systems, agent architectures, agent platforms, agent
frameworks, and real-time agents. He received his Ph. D. in com-
puter science from the Universitat Politècnica de València, Spain
in 2003.

Ana Garcia-Fornes holds a position of Associate Professor of
computer science at the Universitat Politècnica de València since
1999, where she has taught since 1986. She is co-founder of the
GTI-IA research group and Director of the Area of Research Pro-
grams and Initiatives at the UPV. Her research interests include
knowledge based systems, multi-agent systems (negotiation, pri-
vacy, platforms, adaptation), agreement technologies, real-time
artificial intelligence and real-time systems scheduling.

