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Abstract. A variety of important engineering and scientific tasks may be for-
mulated as non-linear, constrained optimization problems. Their solution often
demands high computational power. It may be reached by means of appropriate
hardware, software or algorithm improvements. The Evolutionary Algorithms (EA)
approach to solution of such problems is considered here. The EA are rather slow
methods; however, the main advantage of their application is observed in the case
of non-convex problems. Particularly high efficiency is demanded in the case of
solving large optimization problems. Examples of such problems in engineering
include analysis of residual stresses in railroad rails and vehicle wheels, as well as
the Physically Based Approximation (PBA) approach to smoothing experimental
and/or numerical data. Having in mind such analysis in the future, we focus our
current research on the significant EA efficiency increase. Acceleration of the EA
is understood here, first of all, as decreasing the total computational time required
to solve an optimization problem. Such acceleration may be obtained in various
ways. There are at least two gains from the EA acceleration, namely i) saving
computational time, and ii) opening a possibility of solving larger optimization
problems, than it would be possible with the standard EA. In our recent research
we have preliminarily proposed several new speed-up techniques based on simple
concepts. In this paper we mainly develop acceleration techniques based on si-
multaneous solutions averaging well supported by a non-standard application of
parallel calculations, and a posteriori solution error analysis. The knowledge about
the solution error is used to EA acceleration by means of appropriately modified
standard evolutionary operators like selection, crossover, and mutation. Efficiency
of the proposed techniques is evaluated using several benchmark tests. These tests
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indicate significant speed-up of the involved optimization process. Further concepts
and improvements are also currently being developed and tested.

Keywords: Evolutionary algorithms, calculations efficiency increase, a posteriori
error estimation, constrained optimization
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1 INTRODUCTION

1.1 Research Motivation

A variety of important engineering and scientific tasks may be formulated as non-
linear constrained optimization problems. Their solution often demands high com-
putational power. It may be reached by means od appropriate hardware, software or
algorithm improvements. The Evolutionary Algorithms (EA) approach to solution
of such problems is considered here. The EA are rather slow methods, however, the
main advantage of their application is observed in the case of non-convex problems.
Particularly high efficiency is demanded in the case of solving large optimization
problems. Let us mention two of such problems here, namely railroad transport
safety and experimental data smoothing. Evaluation of railway transport safety
requires determination of service life and fracture mechanism both in railroad rails
and vehicle wheels. Results of the extensive research problem carried out for the
US DOT [11] clearly show that cracks nucleation and their development are mainly
driven by residual tensile stress, the axial one in rails and the hoop one in wheels.
Residual stresses analysis may be done using theoretical [12] and/or experimental
approach [11]. Various experimental methods (like strain gauge techniques, neu-
tronography, moire methods) may be applied in order to obtain the necessary data.
Moreover, in a variety of experiments (not only referring to residual stresses) han-
dling and smoothing of experimental data is needed. High quality final results may
be obtained when using the Physically Based Approximation (PBA) method [6].

The PBA simultaneously uses all information available for the considered prob-
lem, in a way dependent on its credibility. All experimental data obtained by means
of various measurement techniques may be used in the analysis at the same time
then, taking into account their statistics, as well as our theoretical and/or heuristic
knowledge about the problem in question. In this way smoothing of experimental
data is done rather on physical than on mathematical basis. The same approach
may be also applied to a discrete data obtained from any rough numerical solution
of the boundary value problem.

Both residual stresses analysis (theoretical approach) and the PBA method,
like many other problems, are formulated as non-linear constrained optimization
ones [6, 12]. Their solution may be sought either by means of the deterministic
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or by the stochastic methods, including the Artificial Intelligence (AI) approach,
and in particular the EA methods [5]. In the case of the convex problems the
deterministic methods (like the feasible directions or penalty methods) are faster,
but their efficiency is significantly lower for problems of the other type. On the other
hand, the speed of the EA, though relatively low, is not much diminished for the non-
convex optimization problems. Several preliminary tests [13] indicate a reasonable
hope that in the case of such problems the EA, especially when accelerated, may
turn out to be faster than the deterministic methods. The considered problems
are formulated as optimization of functionals, where a function u(x),x ∈ RN is
sought, usually in the discrete form of the vector u = {ui} consisting of nodal values
ui, i = 1, 2, 3, . . . , n. These are defined on a mesh that may be formed by arbitrarily
distributed nodes. Here N is the dimension of the physical space (usually 1D, 2D or
3D), and n is a number of decision variables. In such case, usually a large number
of decision variables is sought, so high efficiency of solving algorithm is strongly
demanded.

1.2 Related Work

Having in mind the features of the optimization problems mentioned above, our
research is focused, first of all, on efficiency increase of the EA. In general, it may be
obtained by development of new algorithms, software improvements, and/or hard-
ware acceleration (e.g. distribution and parallelization of calculations on multipro-
cessor systems, using GPUs or FPGA devices). Our research is mainly concentrated
now on the first approach. Distributed and parallel computations are also used here,
but in a non-standard way, as a support for new acceleration techniques.

Significant algorithmic acceleration of the optimization process may be obtained
in several ways including introduction of new evolutionary operators, e.g. cloning
or gradient mutation [4, 5], developing hybrid methods [4] like combinations of
stochastic and deterministic approaches, application of standard parallelization and
distribution of calculations [5, 7, 8], proceeded by a choice of the most efficient
combination of particular variants of selection, crossover and mutation operators,
and evaluation of the best values of the EA parameters [13].

In our recent research [13] we have preliminarily proposed several new acceler-
ation techniques based on simple concepts such as step by step mesh refinement,
a posteriori smoothing and balancing of rough results, solution averaging and a pos-
teriori solution error analysis, supported by non-standard use of parallel and dis-
tributed calculations carried on a cluster. In this paper we mainly develop techniques
based on using knowledge about a posteriori solution error in order to speed-up the
optimization process involved. In the future, the existing, well known acceleration
techniques, especially hybrid approach and standard parallelization of calculations,
will also be combined with our accelerated EA. Moreover, other improvements of
the EA, e.g. [10], will be analysed.

In the case of deterministic methods, the error estimation is well developed and
widely used [1, 2, 9]. Our objective is to develop relevant efficient error estimation
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technique for the EA, taking into account some concepts from the deterministic
approach and some new ones. We may verify such approach using e.g. the residual
stresses analysis and problems resulting from application of the PBA method. These
are large optimization problems, that were successfully solved so far, however, only
by means of the deterministic methods (e.g. feasible directions methods) [12, 15]. Use
of the EA for the same problems provides means for examination of their efficiency.

1.3 Scientific Objective

The general objective of our research carried out in the recent years is development of
highly efficient EA approach for solving large, non-linear, constrained optimization
problems. Essential acceleration of the classic EA solution process is based on
various simple concepts, some of them already preliminarily discussed [13].

In this paper, however, we mainly focus our attention on using our knowledge
about the magnitude and distribution of a posteriori solution error for this purpose.
In order to reach this goal we want to find possibly the most efficient modifications
of the standard operators such as selection, crossover, and mutation.

2 PROBLEM SOLUTION DESCRIPTION

2.1 Optimization Problem Formulation

Considered is a wide class of large, non-linear constrained optimization problems,
posed as follows:

Find a function u = u(x), that yields the stationary point of the functional Φ(u)
satisfying the equality

A(u) = 0 (1)

and inequality constraints

B(u) ≤ 0. (2)

The PBA approach [6] is a specific example of the above general formulation.
In the PBA all information available about the considered problem may be used.
The functional is defined as the following combination:

Φ = λΦ
E

+ (1− λ)Φ
T
, λ ∈ [0, 1] . (3)

Here, Φ
E

(u) and Φ
T

(u) are the experimental and theoretical parts of the functional,
scaled to be dimensionless quantities, u is the required solution, and λ ∈ [0, 1] is
a dimensionless scalar weighting factor. Equality constraints A(u) = 0 are mostly of
theoretical nature, while inequality constraints B(u) ≤ e are usually of experimental
nature (e is an admissible tolerance, e.g. two standard deviations).
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2.2 Error Analysis

Contemporary solutions of various engineering and scientific problems need reliable
error analysis. Nowadays, in the case of the deterministic solution approach methods
of such analysis and error estimation are well developed (e.g. [1, 2, 9]) especially for
linear problems. These methods are mainly based on their ability to determine
a high quality reference solution u. Instead of the true local solution error

e = ũ− u (4)

we consider an estimated error
e = ũ− u (5)

where u, ũ, u are functions (or vectors when discretized) representing the true,
a rough, and an improved (used as the reference) solutions, respectively. Moreover,
in the case of the local formulation of boundary value (b.v.) problems, involving the
differential equation Lu = g in the domain Ω ⊆ RN , the residual error

r̃ = Lũ− g and r = Lu− g (6)

could be used.
These local errors may be also used in order to evaluate the global ones. The

following global error norms η = ‖e‖ are mostly applied:

averaged mean square ηL2 =

√
1

Ω

∫
Ω
e2 dΩ, (7)

energy ηE =
√
b(e, e), (8)

maximum ηM = max
Ω
|e| , (9)

where b(e, e) is the bilinear form dependent on the problem type considered. Inte-
gration is performed either over the whole domain Ω or over a chosen subdomain
only (e.g. finite element).

The quality of the error estimation depends on the quality of the reference
solution used. There are several types of the error estimators, like hierarchic (p –
type, h – type or mixed), smoothing (zz), and residual (explicit, implicit) ones. So
far the highest quality reference solutions have been obtained by means of the higher
order (2p – approximation order for pth order operators) meshless finite difference
method applied to the hierarchic type estimator, though a relevant version of finite
element method could be also used [9].

However, all the above-mentioned considerations about the a posteriori error
estimation are related to the deterministic type solutions of b.v. problems. In the
case of the EA solutions such error analysis cannot be applied in exactly the same
way. Though the similar general concept of a posteriori error analysis may also be
used then, the reference solutions should be found in another way, taking advantage
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of the EA specific features. The particular ways of generating reference solutions
will be proposed in the next chapter.

In the case of benchmark problems, when the exact solution is known, the quality
of all error estimators may be evaluated by means of the effectivity index

i = 1 +
|‖e‖ − ‖ē‖|
‖e‖

, (10)

that compares the true ‖e‖ and estimated ‖ē‖ error norms.

3 APPLIED ALGORITHMS AND METHODS

The EA form a wide group of AI methods, such as the Genetic Algorithms (GA),
Genetic Programming, Evolutionary Strategies, and others [5]. In this paper the EA
are precisely understood as the GA with decimal (floating-point) chromosomes. The
standard EA include three basic operators: selection, crossover, and mutation [4, 5].
So far many various operators have been developed. In our research we analyse and
use only few standard, popular operators.

The EA are stochastic methods; therefore, the best chromosomes obtained from
various independent populations may differ from each other. For convex optimiza-
tion problems a weighted averaged solution is expected to have a better chance to
be closer to the exact one than any of particular solutions contributing to such av-
erage. Moreover, it may also be used as the reference solution for a posteriori error
estimation. Knowledge about the magnitude and distribution of errors may be used
in various ways in order to intensify calculations in large error zones.

3.1 Generation of Reference Solutions in the EA Method – Formulation

In the EA, high quality reference solutions may be obtained by weighted averaging
of chromosomes followed by a data smoothing process. However, averaging may be
successfully applied when there is only one maximum (minimum) in the considered
domain. Thus, in the case of non-convex problems, the whole domain ought to be
divided first into subdomains with only one maximum (minimum) in each. Some
concepts of such domain division using the EA and data clustering algorithms [3]
have been preliminarily tested. However, they are not discussed in this paper. In
the future, a general approach for the generation of the EA reference solutions for
non-convex optimization problems will be considered.

There are many ways how to average the EA results (chromosomes). For exam-
ple, the following may be averaged:

1. all available data,

2. all data within each population,

3. all n% of the best chromosomes taken together from each independent popula-
tion,
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4. collection of such chromosomes, that each one of them presents the best solution
in its population.

For averaging the standard arithmetic average, as well as a weighted (e.g. based on
the fitness function values or on errors) one may be used. Moreover, the quality of
a reference solution may be raised by means of an appropriate smoothing method.
Assuming e.g. the case 4 for generation of reference solutions in the EA, the following
procedure may be applied:

Use m independent populations simultaneously. After every a priori defined
number of iterations, generate a new population of m solutions – find the best
chromosomes taken from independent populations:[

u1
1, u

1
2, u

1
3, . . . , u

1
n

]
,
[
u2

1, u
2
2, u

2
3, . . . , u

2
n

]
, . . . , [um1 , u

m
2 , u

m
3 , . . . , u

m
n ] , (11)

where:

• n – the number of decision variables,

• m – the number of independent solutions,

• uik – the kth decision variable from the ith solution, i = 1, 2, . . . ,m, and k =
1, 2, . . . , n.

Next, calculate the weighted average solution of these results over the whole new
population:

[u1, u2, u3, . . . , un] , (12)

where:

• uk = 1
W

∑m
i=1 wiu

i
k, W =

∑m
i=1wi, k = 1, 2, . . . , n,

• wi – weighting factor for the ith solution, wi may be assumed e.g. as the fitness
function value for each chromosome.

In the space of chromosomes each of them represents a point, while [u1, u2, . . . ,
un] may be interpreted as a weighted center of gravity of the set of all m points
(chromosomes). High quality postprocessing (higher order smoothing) may be ap-
plied next to this averaged discrete solution, e.g., by means of the Moving Weighted
Least Squares [6, 14] approximation or the PBA [6, 14] approach.

Such averaged and smoothed solution may be used as a reference in order to
estimate a posteriori error of each chromosome, and to calculate error maps in all
populations:

Ej =
[
ej1, e

j
2, e

j
3, . . . , e

j
n

]
, ejk =

∣∣∣ujk − uk∣∣∣ , j = 1, 2, . . . , J, (13)

where J – number of all chromosomes in all populations (j – index of chromosome).
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3.2 Research Strategy for A Posteriori Error Analysis

The following research strategy of a posteriori error analysis has been applied:

• use of the true solution error first, in order to find the most efficient modifications
of the standard EA operators (selection, crossover, mutation) with influence of
the quality and precision of the error evaluation excluded; this may be done
when dealing with benchmark problems where the exact solutions are known,

• use of the best operator modifications found above, and repetition of the same
analysis. However, this time the true solution error is replaced by its a posteriori
evaluation based e.g. on the smoothed averaged solution assumed as the reference
one.

3.3 Use of A Posteriori Error Analysis Results for Modification
of the Standard EA Operators

3.3.1 Selection

The standard selection operator uses the fitness function f value to eliminate weak
chromosomes. Beside this standard criterion, another one, based on solution error
value e, may be also introduced. It may be used in several ways. Possible approaches
include:

• alternate use of both criteria,

• choice of n chromosomes providing the smallest errors out ofm > n chromosomes
with the best fitness function values,

• one resultant criterion composed of the normalized fitness function F and global
error H such as

find max(F 2 +H−2)q, q > 0. (14)

This approach may be applied to selection operators of any type.

3.3.2 Mutation

Knowledge about the distribution and magnitude of solution errors may influence
the mutation probability. Increased probability may be proposed:

• in regions where error is larger than e.g. 1/2 maximum error (Figure 1 a)), or

• following the error level function, e.g. (Figure 1 b)–c)), where ε is local error
value.

Mutation probability may be increased in any mutation operator.
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Figure 1. Function of the error level: a) Step function, b) Linear function, c) Any growing
function

3.3.3 Crossover

Similarly to modification of mutation probability, also crossover probability may be
increased in large-error zones. However, this time also other improvements are done
in particular types of crossover operators. For instance, modification of heuristic
crossover is presented here.

The standard heuristic crossover generates one offspring Z from two parents X,
and Y in the following way:

If f(X) > f(Y) : Z = a(X−Y) + X, a ∈ [0, 1] , (15)

where f – fitness function.
In such case, the new chromosome is created in the direction of better parent.

The following modifications are applied:

• crossover in the direction of the best of three chromosomes: two parents and
mean chromosome (averaged and smoothed),

• increasing value of the parameter a in large-error zones.

Other types of crossover operators, especially more complex ones, will also be
analysed and modified in order to take advantage of the knowledge about the solution
errors.

3.4 Other Chosen Acceleration Techniques

Acceleration may also be achieved by collecting the best chromosomes, taken from
all populations, and generating new population of “representatives” (this may be
done in several ways). New representatives are gathered constantly in a period of
time.

The weighted averaged and smoothed solution is expected to have a better
chance to be closer to the exact one than any of particular solutions contributing to
such average. In order to speed up the optimization process a cloning strategy may
also be used. Cloning may be applied to the weighted mean chromosome and/or to
the best representatives. For instance, 20 % chromosomes in each population may
be replaced by clones.
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The possibility of carrying out efficient computations in multiple independent
populations, applying solution error estimation and other related techniques is pro-
vided by multiprocessor systems and special software using parallel and distributed
paradigm.

3.5 Hardware and Software Used

The results of calculations presented in this paper were obtained on a standard
multiprocessor system with distributed memory (cluster). The authors prepared
their own implementation of the EA and proposed acceleration techniques. Soft-
ware was written using C++ (with standard libraries) and MPI library for parallel
and distributed calculations. For pseudo-number generation the Mersenne-Twister
algorithm was used.

4 RESULTS

Efficiency of the proposed techniques has been evaluated using several, carefully
chosen benchmark problems. This chapter presents formulation of these problems
and typical results obtained from their analysis.

The convergence rate of the standard EA is strongly dependent on the type of
the evolutionary operators (selection, crossover, mutation) used, and the EA pa-
rameters values chosen for them (e.g. probability, population size). It is also worth
mentioning here that we may deal with various variants, and combinations of the
standard operators when switching from the binary representation of numbers to
the decimal ones. In our recent work [13] we have preliminarily analysed several
standard operators using six various, demanding benchmark tests, including prob-
lems formulated below. The following operators were considered: the ranking and
tournament selection, arithmetic and heuristic crossover, uniform, non-uniform and
border mutation, as well as various combinations of them. According to the results
obtained, combination of the ranking selection, heuristic crossover, and non-uniform
mutation was considered. These operators have been used therefore, in further re-
search on investigation of the EA acceleration techniques.

This paper presents selected typical results of the tests executed in order to
find the best acceleration of the convergence process. Variants and parameters of
the a posteriori solution error estimation technique, as well as the methods related
to non-standard distributed and parallel calculations were analysed. These results
are compared with those obtained by using other acceleration techniques proposed
in [13].

In order to evaluate the proposed acceleration techniques a speed-up factor S
was defined [13] in four variants corresponding to four types of results presentation
(Figure 2)

Se,n =
nref

n

∣∣∣∣
e=const

, SF,n =
nref

n

∣∣∣∣
F=const

, (16)
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Se,t =
tref
t

∣∣∣∣
e=const

, SF,t =
tref
t

∣∣∣∣
F=const

. (17)
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Figure 2. Definitions of speed-up factor: a) Se,n, b) SF,n, c) Se,t, d) SF,t

4.1 Formulation of the Benchmark Problems

Residual stresses analysis in a bar subject to cyclic bending is considered. Elastic –
perfectly plastic material and rectangular cross-section of the bar are assumed. Main
features of this benchmark include:

• formulation as constrained optimization problem,

• possibility of 1D or 2D analysis (bar model, and plate model),

• any number of decision variables may be chosen,

• the exact solution is known (Figure 3 c)).

This benchmark, formulated as a constrained optimization problem [15], has
already been solved by means of deterministic methods [15]. However, the objective
of the tests presented here is a comparison of various variants of the accelerated EA
with the standard one, rather than with the deterministic methods. However, such
comparison will also be done in future, especially for numerical solutions of complex
optimization problems, where the exact results are not known.
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Figure 3. Benchmark problem: a) bending model, b) elastic-perfectly plastic material,
c) the exact 1D solution, d) discrete 1D solution

4.1.1 1D Model – Formulation of the Optimization Problem

Find stresses σ = σ(z) satisfying minimum of the total complementary energy [15]

min
σ

∫ H

0
σ2 dz (18)

and constraints

• global self-equilibrium equation

M =
∫ H

0
σz dz = 0, (19)

• yield condition for total stresses

|σ + σe| ≤ σY , (20)

where σY – yield stress (plastic limit), σe – purely elastic solution of the problem.

Due to symmetry, only half of the cross-section is considered. After discretiza-
tion, where the searched normal stress σ = σ(z) is replaced by the piecewise linear
function (Figure 3 d)) spanned over the nodal values σi, the following formulation is
obtained:

Find stresses σ1, σ2, . . . , σn satisfying

min
σ1,σ2,...,σn−1

(
n−1∑
k=1

σ2
k +

1

2
σ2
n

)
, σn = − 2

zn

n−1∑
k=1

σkzk, (21)

and inequality constraints

−σY ≤ σk + σek ≤ σY , k = 1, 2, . . . , n. (22)
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Though the simplest rectangle method for numerical integration is used in the above
formulation, we used other methods in real calculations, giving the exact results for
linear functions.

4.1.2 2D Model – Formulation and Discretization

In 2D model the fitness function (total complementary energy) is defined as follows:

I =
∫ b/2

−b/2

∫ H

−H
σ2 dz dy ≈ h2

9

(
n∑
k=1

σ2
kαk

)
, (23)

where αk are Simpson integration coefficients.
The sought solution has to satisfy the following constraints:

1. Global self-equilibrium equation

M =
∫ b/2

−b/2

∫ H

−H
σz dz dy ≈ h2

9

(
n−1∑
k=1

σkzkαk + σnznαn

)
= 0→ (24)

σn = − (znαn)−1
n−1∑
k=1

σkzkαk. (25)

2. Yield condition for the total stresses

−σY ≤ σk + σek ≤ σY , k = 1, 2, . . . , n. (26)

4.2 Typical Results

Using solutions of these two benchmark tasks several problems were investigated,
briefly summarized in Table 1.

Test Bench. Test objective
No. No.

1 1 Investigation of the best modifications of the mutation and
crossover operators taking advantage of the knowledge about
a posteriori solution error

2 1 Analysis of the impact of the number of iterations between subse-
quent refreshments of the reference solution

3 1 Comparison of various additional acceleration techniques related
to the error estimation

4 1, 2 Analysis of the impact of the number of independent populations
on the error estimation quality and the optimization process

5 1 Comparison of the results of all proposed acceleration techniques:
mesh refinement, smoothing and balancing, error estimation

Table 1. Typical results – contents
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Tests No. 1–4 present the results averaged over 10 independent solutions. Results
in test No. 5 are averaged over 100 processes.

4.2.1 Modifications of the Mutation and Crossover Operators Based
on a Posteriori Solution Error Analysis

The following approaches are chosen and compared:

• the standard algorithm (probability of mutation: 0.1, probability of crossover:
0.9),

• M – modification of mutation (probability of mutation is increased 5-times in
regions, where the error is larger than 50 % of the maximum error in the chro-
mosome examined),

• C1 – modification of the heuristic crossover type 1 (random value of the para-
meter a is increased twice in regions, where the error is larger than 50 % of its
maximum value in the chromosome),

• C2 – modification of heuristic crossover type 2 (modification of direction of the
crossover),

• combinations of the above two ones.

Figure 4 presents results obtained when using both the exact error maps (Fig-
ure 4 a)), and estimated errors (Figure 4 b)).
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Figure 4. Comparison of various modifications of the mutation and crossover operators
due to: a) the exact errors, b) estimated errors (estimation based on the best
12 independent solutions)

Each of the modifications proposed improves the convergence process. However,
some of them do this only in the first stage of iterations. In the case of the estimated
errors, the best results were obtained for the M + C2 case (Figure 4 b)). However,
the same algorithm when using the exact errors (Figure 4 a)), very quickly reaches
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certain, low level of errors, but later on it does not give further improvement of
the solution process. The same situation occurs in the case of algorithm with C2
modification only; but if we join C1 with C2 we get the best results (for larger
number of iterations) in the case of the exact errors, and not much worse than the
best ones in the case of estimated errors.

4.2.2 Impact of the Number of Iterations Between Subsequent
Refreshments of the Reference Solution

The objective of this test was to investigate the influence of refreshment of the ref-
erence solution on the convergence rate. The correlation found is simple – the more
frequently the mean chromosome is updated and sent to all populations, the better
results are obtained. However, the differences between results obtained for processes
communicating each 5 to 25 iterations are not significant; therefore, 25 seems to be
the most reasonable number. The results are shown as a function of time (Figure 5).
Each process was executed for the same total number of iterations.
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Figure 5. Impact of the number of iterations between subsequent refreshments of the re-
ference solution

4.2.3 Comparison of Various Acceleration Techniques Related
to the Error Estimation

Solution error estimation and operators modifications are compared here (Figure 6)
with the other techniques supported by the parallel and distributed calculations.
The best results were obtained for a simple technique, namely cloning of the av-
eraged solution in all populations (cloning, and replacing 20 % of the worst chro-
mosomes in each population by the mean one). The early stage of this research
allows for the following preliminary conclusion: the standard operators working on
improved populations give better results than modified operators. However, many
other modifications of operators are still possible. Some of them will be investigated
in our further research.



On Acceleration of EA Taking Advantage of A Posteriori Error Analysis 169

0 500 1000 1500 2000 2500 3000

0,01

0,1

1

10
M

ea
n 

so
lu

tio
n 

er
ro

r

Number of iterations

 standard algorithm
 modification of operators M + C2
 population of "representatives"
 cloning of mean solution

         in each population
 all techniques simultaneously

Figure 6. Comparison of various acceleration techniques related to the a posteriori error
estimation

4.2.4 Impact of the Number of Independent Populations on the Error
Estimation Quality and the Optimization Process

The impact of the number of independent populations involved in calculations on
the convergence process is presented (for each population one processor is allocated,
the standard parallelization, in which more than one processor is used for one popu-
lation is also possible). This number influences the quality of the averaged solution
used for the true solution error estimation. Besides, the results obtained in two
benchmark problems are compared (Figure 7 a)–b)). Conclusions resulting from
both benchmarks are similar. In the case of benchmark 2 the convergence of the
fitness function is also presented (Figure 8). It is shown clearly how the analysed
number of populations influences the optimization process. This is because of better
quality of the reference solution resulting in better solution error estimation. The
results are compared to those obtained in the process with the exact error map
(uppermost left curve).

4.2.5 Results and Comparison of all Proposed Acceleration Techniques:
Mesh Refinement, Smoothing and Balancing, Error Estimation

All speed-up techniques mentioned in this paper may be used simultaneously (this
has already been shown in Figure 6). Such algorithm, using the solution error esti-
mation, the additional population of representatives, and cloning of averaged chro-
mosomes, was compared to other recently developed acceleration algorithms [13],
such as mesh refinement, smoothing and balancing, and some combinations of them
(Figure 9 a)). The variable speed-up factor corresponding to these results is shown
in Figure 9 b).

The algorithm using the solution error estimation reached the acceleration factor
about 2–4 times. With additional smoothing, the speed factor was about 7.5. This
is not much when compared to mesh refinement. However, it is worth noticing that
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Figure 7. Impact of the number of independent populations involved on the convergence
process: a) Benchmark 1 (1D model), b) Benchmark 2 (2D model)
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excellent results obtained with that technique (combined speed up factor over about
650 times) may be a consequence of the specific features of the analysed problem
(solution of the problem is a piecewise linear function). Error estimation technique
proposed here does not take advantage of this feature.

Numerical benchmark tests considered in order to evaluate the acceleration in-
dicate significant speed-up of the optimization process. The authors expect that the
proposed techniques of taking advantage of the knowledge about errors may still
be improved. Therefore, further modifications will be also examined and new con-
cepts considered in order to achieve the very best acceleration of the optimization
process.
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Figure 9. a) Comparison of the convergence process for all techniques, b) Comparison
of the acceleration obtained for all techniques (speed-up factor calculated for the
convergence of a mean solution error in a function of time)

5 FINAL REMARKS

5.1 Summary

Many scientific and technical tasks may be formulated in terms of non-linear, con-
strained optimization problems. In a wide class of such problems the objective is to
find unknown function, mostly in a discrete form. They may be solved by means of
either deterministic or probabilistic methods. The first ones are very efficient when
dealing with the convex problems as opposed to usually slowly convergent proba-
bilistic, type the EA methods, especially for large optimization problems. However,
the EA efficiency does not change much for non-convex problems as opposed to the
case of the deterministic methods.

Following engineering and scientific demands, the objective of this research is
development of essential acceleration of the EA optimization method. Particular
attention is paid here to use our knowledge about a posteriori solution error for such
purpose. The proposed concepts are tested on various carefully selected benchmark
problems, using the true solution error first, replaced later on by estimated errors.
The strategy assumed relies on a modification of the standard selection, crossover,
and mutation operators in a way relevant to the a posteriori solution error level and
distribution.

Preliminary results of these tests are encouraging (speed-up factor about 2–4
for use of the error knowledge was reached). Together with previously tested mesh
refinement concepts, as well as with solution smoothing and balancing, the overall
factor up to about 650 times was reached.
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5.2 Further Research

Further research is needed. It will be mostly concentrated on:

• continuation of various efforts oriented towards increasing of the EA efficiency,
especially further development of a posteriori error analysis,

• analysis of further benchmarks,

• real engineering problems of residual stress analysis in railroad rails and vehicle
wheels,

• analysis of large, non-linear, constrained optimization problems (convex and
non-convex) resulting from the PBA applied to experimental measurements [6,
14].
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