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Abstract. In this study we discuss how to enable grid sites for the support of
data-intensive workflows. Usually, within grid sites, tasks and resources are admin-
istrated by local resource managers (LRMs). Many of LRMs have been designed
for managing compute-intensive applications. Therefore, data-intensive workflow
applications might not perform well on such environments due to the number and
size of data transfers between tasks. To improve the performance of such kind of
applications it is necessary to redefine the scheduling policies integrated on LRMs.
This paper proposes a novel scheme for efficiently supporting data-intensive work-
flows in LRMs within grid sites. Such scheme is partially implemented in our grid
middleware LOGOS and used to improve the performance of a well known LRM:
HTCondor. The core of LOGOS is a novel communication-aware scheduling algo-
rithm (PPSA) capable of finding near-optimal solutions. Experiments conducted
in this study showed that our approach leads to performance improvements up to
52 % in the management of data-intensive workflow applications.
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1 INTRODUCTION

In the last years, several scientific areas based their experimentation and simulation
processes using distributed computing technologies. In silico experiments became
very popular extending their presence on many fields like astronomy, bioinformat-
ics, earth sciences, high energy physics, health sciences and so on. Workflows were
adopted in many of such research areas [1, 2, 3, 4] for guiding the experimental pro-
cesses. The main reason for their acceptance is that workflows ease the design and
management of applications. On the one hand, workflows permit the reuse of com-
ponents (a.k.a. tasks) on different applications reducing the time and effort required
during the development process. On the other hand, the identification of separate
components facilitates the employment of distributed computing technologies for
improving the global performance of applications. The latter possibility becomes
crucial when the size of the applications is large.

Grid computing became a widely accepted technology for executing large-scale
scientific applications [5, 6]. In recent times an increase in the amount of data to be
processed by such type of applications has been observed. The growth of the volume
of data to process (referred as data deluge in the literature) is affecting the way to do
science, leading to the emergence of a new, data-intensive science, paradigm [2]. The
actual efforts on data-intensive computing are focused on techniques for data stream-
ing [7], data placement policies [8], quality of service requirements [9], and so on.

To ensure good performance of data-intensive scientific workflows it is required
to develop data-aware management techniques not only focused on the Grid global
level, but also within the existent grid sites. However, most of the application
managers apply communication optimization techniques on an inter grid-site level
disregarding the optimization of transfers within the sites.

In a grid site, executable tasks and resources are usually administrated by
a local resource manager (LRM). Among the most known LRMs HTCondor [10],
Torque [11] and GridEngine [12] can be cited. In general, LRMs apply load bal-
ancing and/or performance optimization policies, which only consider the impact of
the computation workload of tasks. Such policies lead LRMs to perform well in the
management of compute-intensive applications with loosely coupled or independent
tasks; but, in the management of data-intensive applications where multiple de-
pendencies are involved, LRMs might have a poor performance. Regardless of this
limitation, LRMs are still very good for discovering resources, monitoring tasks,
matchmaking tasks and resources, etc. Therefore, it is convenient to take advantage
of these features and redefine the scheduling policies for supporting data-intensive
applications efficiently.

The rest of this paper is organized as follows. In Section 2 we provide a review
of the most salient works in the area of data-intensive computing in grid environ-
ments. In Section 3 we provide a review of the standard resource management
policies within a well known LRM: HTCondor. In this section, we also describe the
functioning of the DAGMan workflow manager. In Section 4 we describe our ap-
proach for improving the management of data-intensive workflows using HTCondor
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DAGMan. In other words, we explain how to enable compute-intensive grid sites
for efficient data-intensive computing. The details of the experimental environment
are described in Section 5. Results are presented and analyzed in Section 6. Finally,
conclusions and future work are given in Section 7.

2 RELATED WORK

There is a considerable amount of work in the area of data-intensive applications
management in grid environments [5, 13, 14] as well as in the area of workflow based
applications [15, 16]. In this section we provide a review of some strategies for
supporting data-intensive applications in grid environments. We classify the related
works into three categories: MapReduce applications, service-based workflows and
component-based workflows.

MapReduce is programming model developed by Google [17] for processing of
large-scale datasets across computer clusters. Such model consists of the definition of
an application in terms of a pair of functions adopted from the functional programing
paradigm: map and reduce. Apache Hadoop [18] is one of the most widespread
implementations of the MapReduce model. There are also implementations for Grid,
some of them are GridGain [19], an extension for the Kepler workflow system [20]
and G-Hadoop [13]. MapReduce has proved to be an efficient programming model
for data intensive applications. However, many scientific applications do not fit on
this model and thus they cannot be expressed in terms of MapReduce. A second
drawback of this model is that legacy systems are difficult to incorporate as part of
the scientific application to develop. Therefore the developer is forced to design ad
hoc mechanisms for such purposes.

The second approach for the development and execution of scientific applications
is through the use of service-based workflows. Taverna [21] is a workflow engine part
of the myGrid Project [22] for supporting experiments in the field of bioinformatics.
Taverna is oriented to the design and execution of data-intensive and service-oriented
workflows for grid. It provides a set of high level web services which can be used for
the composition of workflows. There are some other initiatives for service-oriented
scientific workflows [23]. However, in many research areas (e.g. those with high
performance and scalability requirements to meet) it is not acceptable to express
the applications in terms of services due to the overheads of the invocations. The
second drawback is that in service workflows the data must be transfered to the
resource where the code (i.e. services) is located. As the code cannot be moved and
the data has to be transferred inevitably, the overall performance may suffer with
data-intensive workflows.

Finally, the last approach to define and run scientific applications is using
component-based workflows. This kind of workflows overcame some of the limi-
tations of the above-mentioned approaches (e.g. it can include legacy components
almost transparently, allow any structure of the tasks, can optimize the performance
through code and data allocation, and so on).
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Pegasus [24] is one of the most prominent workflow management systems and is
part of the GriPhyN project [25]. Pegasus uses a partitioning and deferred planning
scheme for the execution of large-scale workflows [26, 27]. It simplifies the structure
of the application assuming that the generation of a data object is computationally
more expensive than accessing to already processed results. Then, each partition is
scheduled and submitted to DAGMan for execution. Among other workflow man-
agers, ASKALON [28], or Swift [29] can be cited. In general, this kind of workflow
managers focuses only on data optimizations at the Grid global level. Conversely,
the work described on this paper focuses on data transfer optimizations within the
grid sites.

Deelman [30] shows that there are a number of challenges associated to the
management of scientific workflows. Among them, two important issues are the
efficient scheduling of workflow tasks onto batch systems and the management of
data transfers and storage. These are the two issues addressed by this study.

This paper proposes a data-aware near-optimal scheduling strategy for enabling
LRMs in the management of data-intensive workflows in an efficient way. Unlike
other work done in the area, we focus on optimizing the management of the data
within the context of grid sites, rather than optimizations between grid sites. Such
strategy is partially materialized in a new grid workflow system called LOcal Grid
wOrkflow Scheduler (LOGOS). This work extends preliminary tests performed in
previous studies of the authors [31, 32]. To compare our approach we selected
the HTCondor DAGMan workflow manager that is used standalone in many grid
settings and also as execution engine in other workflow systems such as Pegasus.
Some recent applications can also be cited such as Bisque [4], a system that uses
HTCondor for executing bioimage-analysis workflows.

3 RESOURCES MANAGEMENT WITH HTCONDOR DAGMAN

This section describes how resources and tasks are managed nowadays in a de facto
standard LRM: the HTCondor middleware [10] (formerly Condor). It provides
a high throughput computing (HTC) environment for the execution of applications
in a distributed way. HTCondor defines a set of universes that make possible the
management of different type of applications (e.g. scripts, binary executables, Java
applications, MPI applications, etc.). HTCondor can also interact with the Globus
Toolkit [33] for the submission of jobs to remote grid resources [34]. In addition,
HTCondor is able to run workflow-based applications with tasks organized as nodes
within a directed acyclic graph (DAG). The Directed Acyclic Graph Manager (DAG-
Man) [35] is a meta-scheduler capable of handling inter-task dependencies.

When a workflow is received, DAGMan submits the sub-tasks to HTCondor
according to the precedence order defined in the DAG file. The process is as follows:
DAGMan submits all the ready-to-execute tasks (i.e. tasks with all their predecessor
tasks completed) to the HTCondor queue. Then, HTCondor schedules each task in
the queue to the most adequate of the available resources. As tasks complete their
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execution, DAGMan checks if there are more ready tasks and submits them to the
HTCondor queue. This process continues until all the tasks in the DAG have been
completed. This strategy is known as myopic scheduling and it is also implemented
in other grid workflow managers like ASKALON [28].

There are two usual schemes for transferring data between HTCondor resources.
The first one is using the Network File System (NFS). A typical deployment of NFS
includes a central server that shares disk storage to a number of clients nodes. When
running a workflow in DAGMan using the NFS scheme, tasks read the input data
and write the data produced using a shared partition. Each read (write) operation
performed by a client node implies the transfer of data from (to) the NFS server
node. Therefore, if data transfers are not optimized, NFS may have communication
overheads when the amounts of data to manage are big.

The second option for transferring data is using the scheme of pre and post
scripts supported by DAGMan. In this case, the user is responsible for the data
stage-in and stage-out operations for each task in the workflow. With this scheme,
the data transfer optimizations are in charge of the user.

It is worth noting that, independently of the scheme used for data transfers,
during the scheduling process the impact of communication times in the global
performance is not considered at all. Such strategy may lead to resource assignments
that bring with it transfers of large amount of data handicapping the total running
time of the applications. This issue can be addressed by performing scheduling
optimizations with emphasis on minimizing the communication times beside the
computation times. In the next section we describe our strategy for addressing this
concern.

4 ENABLING SITES FOR THE DATA GRID

In this section we present a workflow management strategy for enabling the support
of data-intensive applications in LRMs. Such strategy is implemented in a new
workflow engine: LOcal Grid wOrkflow Scheduler (LOGOS). LOGOS adopts the
idea of workflow partitioning [26, 27] for execution within grid sites. In addition, it
implements a near-optimal and communication-aware scheduling strategy designed
to overcome the limitations of LRMs in the management of data-intensive workflows.
Each site on the grid participates through a grid site workflow manager (GSWM)
node, which serves as local agent for handling the execution of workflows. According
to this scheme, it is possible to design cooperative management schemes based on the
interaction of several GSWMs. Within a grid site, the GSWM node uses LOGOS for
workflow scheduling, and the LRM for gathering resources information and executing
the tasks. The general scheme for enabling grid sites for supporting data-intensive
workflows is shown in Figure 1.

LOGOS has three components:

1. the scheduling algorithm,

2. the problem pre-processing component, and
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3. the performance predictor.

The first component is the core of LOGOS, and it is represented by the perfor-
mance prediction scheduling algorithm (PPSA). PPSA is a novel Branch and Bound
scheduling algorithm which searches near optimal schedules. Section 4.1 describes
the characteristics of this algorithm. The problem pre-processing (PP) component
is in charge of preparing the scheduling problem for the scheduler. It includes fea-
tures for workflow partitioning and resources selection, which are used to simplify
the complexity of the original scheduling problem and therefore to accelerate the
scheduling process. Regardless of the fact that the pre-processing of the problem is
performed before the scheduling phase takes place, it is discussed later in Section 4.2
to clarify the explanation of both components (PPSA and PP). The last component
is the performance estimation module (PEM). PEM provides the performance es-
timations that PPSA requires for constructing the task-resource mappings. The
performance estimation process is explained in Section 4.3.

LOGOS works on the top of a LRM, which is in charge of retrieving informa-
tion of resources availability, managing the tasks execution, monitoring tasks and
resources, etc. In this study we use HTCondor DAGMan as the underlying platform
for such purposes.

Figure 1. Block diagram of our scheme for scheduling data-intensive workflows on grid
sites

4.1 Scheduling Strategy

This section presents the Performance Prediction Scheduling Algorithm (PPSA)
integrated in LOGOS. PPSA belongs to the family of Branch and Bound algo-
rithms. In general terms, it performs a tree-based search in the space of feasible
schedules. This implies that the search is performed over all the possible combi-
nations of task-resource mappings. As the optimal workflow-scheduling problem in
grid is NP-complete, the explicit enumeration of all such combinations is impossible.
As a consequence, PPSA is designed to explore portions of the search space only
implicitly. This implicit exploration is performed by computing an estimated cost of
the best solution that can be found within the current portion of the search space.
Then, if the estimated cost is worse than the cost of the best schedule obtained



LOGOS: Enabling LRMs for Data-Intensive Workflows in Grid Sites 115

so far, the search process focuses on other portion of the space. Otherwise, if the
estimation indicates that there is a possibility of finding good solutions, the search
continues exploring such portion. Algorithm 1 shows the pseudocode of PPSA.

Algorithm 1 Pseudocode of PPSA

function PPSA(workflow, matches) returns a schedule
inputs: workflow, a workflow DAG definition;

matches, a list of matching resources per task in workflow ;
global: solution.mappings, the solution mappings;

solution.cost, the estimated cost of solution;

solution.mappings ← sequential solution on the best resource
solution.cost ← cost of solution.mapping
PPSA-Step({}, workflow, matches)
return solution.mappings

procedure PPSA-Step(mappings, workflow, matches)
inputs: mappings, a set of task-resource mappings; workflow ; matches ;
global: solution.mappings; solution.cost ;

task ← select unmapped task
resources ← order resources in matches [task ]
foreach resource in resources

cost ← estimate workflow makespan
if cost < solution.cost then

register mapping (task,resource) in mappings
if there are no more unmapped tasks in workflow then

solution.mappings ← mappings
solution.cost ← cost

else
PPSA-Step(mappings, workflow, resources)

unregister (task,resource) from mappings

The PPSA function receives as inputs a description of the workflow to schedule
and a list of the resources (matches list) able to run each task of the workflow. The
algorithm starts by setting an initial solution and its related cost. We set as initial
solution the serial schedule of the tasks in the fastest machine.

The algorithm has a recursive structure that explores the search space by ex-
panding nodes of a tree in a depth-first order. Node expansions are performed
through recursive calls of the PPSA-Step procedure. Each node is associated with
a partial mapping of tasks and resources. Expanded nodes are evaluated to decide
how the search process must continue.

For expanding a new node the algorithm selects an unmapped task (i.e. a task
without resources assigned). The selection process is performed based on a policy
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called Prior Critical Tasks (PCT). This policy prioritizes those tasks which are closer
to the beginning of the workflow and have less lax time before delaying subsequent
tasks. The selection process is performed by choosing to the unmapped task that
has the highest priority value. The priority of a task i is computed according to:

priorityPCT
i =

1

start i + slack i

, (1)

where start i is the start time of the task i, and slack i is the amount of time that the
task i can be delayed without delaying any subsequent task. Tasks with a slack =
0 are critical. It means that such tasks cannot be delayed without delaying the
finishing time of the workflow. It is worth noting that slack values and start times
may change during the execution of PPSA because they are recomputed dynamically
on each new generated mapping. Therefore, task priorities may also change between
different scheduling steps.

Once a task is selected, it is necessary to set the evaluation order of the matched
resources. The ordering is performed based on a policy named Maximum Capacity
Resource (MCR). Such policy gives more priority to the most powerful resources.
This ordering is established to evaluate first those mappings in which tasks finish
earlier.

Once a new task mapping is selected, the partial schedule (node) is evaluated
in terms of the estimated execution time of the entire workflow (hereafter estimated
makespan). The makespan of a workflow is later finish time among all the tasks on
it. Section 4.3 explains how makespan is computed. The estimated makespan of
the node is used in combination with the cost of the best solution obtained so far to
guide the search. If the estimated makespan exceeds the cost of the best solution,
the search on such branch is abandoned because it will not lead to a better solution.
This process in which portions of the search space are discarded without previous
exploration is known as pruning. This characteristic is one of the most important
points of PPSA, because it accelerates the search process. However, in some cases,
the running time of PPSA may be long, attempting against the overall management
time. In the next section we explain how to deal with this issue.

4.2 Algorithm and Problem Complexity

In general, Branch and Bound algorithms present exponential time complexity. In
the case of PPSA, the general time complexity is given by O(rn), where r is the
number of resources and n is the number of workflow sub-tasks. The exponential
growth imposes a limit on the size of problems that PPSA can address before be-
coming computationally expensive (i.e. before the algorithm running time becomes
longer than the gain obtained in the execution stage).

For preventing the downfall of general performance due to long running times
of PPSA, we apply some strategies for reducing the complexity of the scheduling
problem. The key for addressing this issue lies on the reduction of the number of
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tasks and the number of resources. Our strategy consists of finding the solutions for
a set of lower complexity problems instead of addressing one with high complexity.

The complexity reduction process is performed by the problem pre-processing
module before the scheduling algorithm is invoked. The pre-processing module
applies 3 actions:

1. partitioning of workflows,

2. resources selection, and

3. generation of pre-assignments:

• Partitioning of workflows is important to generate a set of sub-workflows of
manageable size. This action is performed only when the workflow to man-
age is large. There is a two-fold reason for workflow partitioning. In the
first place, workflows are partitioned to reduce the complexity o the schedul-
ing problem as mentioned in the above paragraph. In the second place, by
partitioning the workflow it is possible to alternate the scheduling and execu-
tion phases of the resulting sub-workflows, making the management process
aware of the dynamism of the resources [24]. It is worth mentioning that
the actual version of LOGOS does not implement any partitioning method;
but we are considering the use of the Newman-Girvan algorithm for graph
clustering [36].

• For each (sub-)workflow, a set of adequate resources is selected. The re-
sources selection process consists on the definition of the adequate number
of computers to consider in the scheduling of a given workflow. The proper
size of the resources set is such that allows the execution of the maximum
number of parallel tasks of the workflow. Within this stage only the resources
that are compatible with the tasks are considered.

• Finally, the generation of pre-assignments consists on the reduction of the
number of resources for a subset of the workflow tasks. For all the critical
tasks in the workflow, the set of candidate machines is reduced to the most
powerful ones. The generation of such pre-assignments reduces the num-
ber of task-resource mappings to be considered during scheduling, this way
improving the running time of PPSA.

After applying the 3 actions introduced above, LOGOS has converted a high
complexity problem into one or more sub-problems of lower complexity suitable for
the characteristics of PPSA. It is worth mentioning that sub-workflows resulting
from the partitioning stage could be managed in parallel on different grid sites if it
is convenient.

4.3 Performance Estimation

As mentioned in Section 4.1, PPSA computes the workflow makespan for each partial
or complete resources mapping to determine how the search process will continue.
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As a consequence, PPSA requires accurate performance information for making
proper resources selection. The performance estimation module (PEM) provides
such information to PPSA.

The workflow makespan is computed by considering the duration of tasks and of
data transfers. For the experiments in this paper, we use an analytical performance
model that computes

1. the execution time of a task in a resource, and

2. the transfer time of data between two different tasks.

The model computes the execution time according to:

Tex(i, r) = κi/PC(r), (2)

where κi is the computation workload of the task i, and PC(r) is the processing
capacity of the resource r. Measurement units of κi and PC(r) must be compatible
(e.g. million of instructions and MIPS).

Transfer time is computed according to:

Ttx(i, j, ri, rj) =

{
µij/TR(ri, rj) if ri 6= rj

0 if ri = rj
, (3)

where µij is the size of the data to transfer from task i to task j, and TR(ri, rj) is
the available transfer rate between the resources ri and rj (which execute tasks i
and j, respectively). The transfer time is assumed to be 0 when both tasks are
mapped to the same resource.

Equations (2) and (3) can be applied only when the resources where tasks will be
executed have been already selected. However, during the computation of workflow
makespan, some tasks may not be assigned to resources. As a consequence, the
processing capacities (PC) and transfer rates (TR) cannot be determined Tex or Ttx
either. In such cases the algorithm computes estimated values of the execution time
(T̄ex) and the transfer time (T̄tx).

The estimated execution time of an unmapped task i is computed as follows:

T̄ex(i) = κi/P̄Ci, (4)

where P̄Ci is the average processing capacity of the resources compatible with such
task, and κi is the computation workload of the task i.

The estimated transfer time of a message from an unmapped task i to an un-
mapped task j is computed as follows:

T̄tx(i, j) = α× µij/T̄Rij, (5)

where T̄Rij is the average transfer rate considering the resources compatible with
tasks i and j, and α is the ratio between the number of tasks mappings that involve
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different resources and the total number of them (i.e. the probability of mapping
different resources for tasks i and j).

It is worth noting that this strategy computes average execution and transfer
time estimations whereby the computed workflow makespan of a partial resources as-
signment might be over estimated. According to the literature this type of heuristics
is non-admissible. The use of a non-admissible heuristics converts the optimization
problem into an approximation one, and then the algorithm cannot ensure the opti-
mal solution, but as a positive side effect, the running time of PPSA is considerably
improved due to pruning.

5 EXPERIMENTAL ENVIRONMENT

This section describes the characteristics of the experiment conducted as part of
this study. The experiment consists on measuring the performance of the workflow
management schemes presented on this paper: the standalone HTCondor DAGMan
(hereafter DAGMan), and the one that implements LOGOS in combination with
DAGMan (hereafter LOGOS). In Section 5.1 the characteristics of a set of testing
workflows are described. In Section 5.2 a description of the grid site is given. Then,
in Section 5.3 the metrics for the evaluation of the results are explained.

5.1 Workflow Applications Description

For measuring the effectiveness of both schemes, we designed a set of workflows,
which emulate the characteristics of real ones. Each workflow is represented by
a directed acyclic graph W = (Γ,∆), where Γ is the set of tasks, and ∆ is the set of
data dependencies between them.

Workflows used in this study comprise synthetic tasks that simulate real work-
load. Each task receives a single argument that indicates the number of operations
to perform. Such operations consist of a set of numerical calculations. Tasks also
produce output data used as inputs of subsequent child tasks. Such data do not con-
tain any intelligible information but are adequate for the simulation of real transfers.
Figure 2 presents a sample workflow.

Figure 2. Workflow with 5 tasks and 4 data dependencies. Rectangles represent tasks
indicating the number of operations to perform and edges represent data transfers
indicating the sizes in MB
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Because LOGOS still does not count with any partitioning method, workflows
were generated with a proper size for their management. Therefore, it can be as-
sumed that such workflows are the result of some partitioning method. Workflows
were randomly generated according to the set of parameters explained below:

Number of tasks, n: the number of tasks comprised in the workflow. It defines
its size.

Density factor, δ: it is a ratio that represents the relation between the number
of dependencies in a workflow and their maximum possible number. Formally,
it is computed as δ = d/dmax

n , where d is the number of dependencies of the
workflow, and dmax

n is the number of edges of a complete DAG of size n (i.e. the
maximum number of dependencies of a workflow with n tasks). The latter value

is computed as dmax
n = n×(n−1)

2
.

During the generation of a workflow of size n, the δ parameter is used to compute
the number of data dependencies d. According to n and δ, the number of data
dependencies d in the workflow is computed as d = dmax

n × δ.
The δ parameter is closely related with the degree of parallelism of the work-
flow. Higher values of δ produce workflows with more inter-task dependencies
and tasks arranged in more linear structures. Higher values for δ also produce
applications with more data to transfer. On the other hand, lower values of δ
produce more parallel applications with less data to transfer.

Computation workload, κ: the computation workload is an integer parameter
that describes the number of synthetic operations of a task.

Message size, µ: the µ parameter stands for the size of the messages to transfer
between workflow tasks. Each message is generated with a µ value within the
range defined in Table 1. The size of messages is measured in MB.

Table 1 summarizes the values of the parameters explained above used in workflow
generation. Such values were selected to produce workflows with a structure of
dependencies similar to those which can be found on the Standard Task Graph Set
(STG) workflow repository [37].

Generation parameter Value

Number of tasks (n) 5, 10, . . . , 50
Density factor (δ) 0.4, 0.6, 0.8
Computation workload (κ) [10 000, 60 000]
Message size (µ) [9.5, 28.6]

Table 1. Set of parameters used for the generation of the 150 testing workflows

To analyze the characteristics of the generated workflows, we use the commu-
nication to computation ratio (CCR). The CCR is a typical metric used for de-
scribing parallel and distributed applications. This metric represents the proportion
between the communication and the computation load of an application. In the
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case of a workflow with n tasks and d dependencies, the CCR is computed as fol-
lows:

CCR =

d∑
i=1

µi/T̄R

n∑
j=1

κj/P̄C
, (6)

where µi is the size of the message that corresponds to the dependency i of the
workflow, T̄R is the average transfer rate of the infrastructure used, κj represents
the computation workload of the task j of the workflow, and P̄C stands for the
average processing capacity of the infrastructure measured in number of synthetic
operations per second. The numerator of this quotient represents the total trans-
fer time of the messages on the workflow; and, the denominator stands for the
total execution time of all the tasks. Note that the values of CCR are not only
dependent on the characteristics of the workflow, but also on the underlying infras-
tructure.

5.2 Grid Site Description

The grid site used in this study comprises resources from 3 different types. There
is a central node serving as Grid Site Workflow Manager (GSWM). The GSWM
node uses LOGOS for the scheduling of workflows and HTCondor DAGMan for
resources management. The size of the set of computing resources was set to 6,
which is the maximum number of parallel tasks in the set of generated workflows
(determined by the resources selection process). The resources were selected for
keeping the heterogeneity within the grid site. The characteristics of the computing
infrastructure are described in Table 2.

The information presented in individual columns is: resource type, processor
type, memory, and processing capacity (PC). The values for PC of each node are the
result of a benchmark process. This process consists of measurement of the average
number of synthetic operations per second on each resource. The interconnection
network has a nominal transfer rate of 1 Gbps. These values of PC and the nominal
transfer rate are used as input for the performance model presented in Section 4.3.

Resource type Processor Memory PC [op./s]

GSWM node* Intel Core2 Duo 3.0 GHz 4 GB -
Twister Intel Core2 Duo 3.0 GHz 4 GB 1 784.18
Reloaded Intel P4 HT 3.0 GHz 1 GB 598.61
Reloaded Intel P4 HT 3.0 GHz 1 GB 598.95
Reloaded Intel P4 HT 3.0 GHz 1 GB 598.87
Opteron AMD Opteron 242 1.6 GHz 2 GB 995.16
Opteron AMD Opteron 242 1.6 GHz 2 GB 1 079.47

*node with HTCondor DAGMan and LOGOS.

Table 2. Grid site computing infrastructure
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5.3 Evaluation Metrics

To evaluate the performance of both execution schemes, we used the total execution
time and the speedup metrics explained below:

• In the case of the LOGOS scheme, the total execution time (TLOGOS) is the sum
of the running time of 1. the scheduling algorithm, and 2. the effective execution
time (i.e. the time required to manage the application) of a workflow using
HTCondor DAGMan. In the case of the standalone DAGMan the total execution
time (TDAGMan) is equal to the effective execution time of the workflow.

• For comparing the performance of both approaches, we use the speedup metric.
It is defined as the ratio of the total execution times obtained through the
standalone DAGMan and the LOGOS strategies. The speedup Si obtained in
the execution of a workflow i, is computed according to:

Si =
TDAGMan
i

T LOGOS
i

, (7)

where TDAGMan
i is the total execution time of the workflow using DAGMan

standalone and T LOGOS
i is the total execution time of the workflow using PPSA

for scheduling. A speedup value S can be also expressed as the percentage of
improvement S% computed as S% = 100%× (1− 1/S).

6 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present the results obtained from the performed experiment.
150 different workflows were executed using the scheduling schemes described in
Sections 3 and 4, DAGMan and LOGOS, respectively. Results are presented and
discussed separately for both metrics used.

6.1 Total Execution Time

Figures 3 a), 3 b) and 3 c) present the total execution time obtained for workflows
with density factors of 0.4, 0.6 and 0.8, respectively. Bars show the average execution
time and the standard deviation for sets of workflows with the same number of
tasks. It can be seen that the results show very small standard deviations. The
low variability on these results indicates that both schemes present a predictable
behavior.

It can be observed from the analysis that LOGOS overcomes the DAGMan
scheme in terms of total execution time. These improvements are achieved because
of two factors. In the first place, PPSA (i.e. the scheduling algorithm of LOGOS)
considers the cost of transfers during scheduling, conversely to its counterpart which
only considers the cost of computation. In the second place, PPSA performs a search
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Figure 3. Total execution time for different workflow densities (less is better): workflows
with density factor a) δ = 0.4; b) δ = 0.6; c) δ = 0.8
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of near-optimal schedules. Conversely, HTCondor DAGMan performs an oppor-
tunistic scheduling of tasks which considers only one of them at a time. These two
aspects of the myopic scheme favor the bad performance on the execution of data-
intensive workflows. In contrast, PPSA is free of these limitations and is able to
achieve better performance on such kind of applications.

6.2 Speedups

Figure 4 a) presents average speedups for workflows with the same size and density.
Results are grouped according to the values of the density factor δ for each workflow.
It can be seen that the minimum speedups obtained were for workflows comprising 5
and 10 tasks. For such set of workflows, it is also noticeable that there is a small
difference between speedups obtained for the different density factors. For workflows
larger than 15–20 tasks the difference of speedup among workflow densities becomes
more evident. Maximum speedups were obtained for the largest workflows (45–50
tasks). For such workflows, the difference of speedups among densities is the biggest.

Table 3 summarizes the minimum, maximum and average percentual speedups
per workflow density. Minimum percentual speedups correspond to workflows with
a number of tasks between 5 and 10. Maximum percentual speedups correspond to
workflows with a number of tasks between 45 and 50.

Density Smin
% Smax

% S
avg
%

0.4 8.7 % 31.0 % 24.5 %
0.6 14.6 % 41.2 % 31.5 %
0.8 11.3 % 52.2 % 39.3 %

Table 3. Percentual speedups for each workflow density

In general, it can be observed that higher speedups are obtained when workflows
have larger size. Such behavior is caused by the existence of more improvement
possibilities in larger size workflows. PPSA explores a spectrum of solutions and
therefore can get better schedules than those acquired by the myopic scheme which
progressively constructs the final schedule.

It can also be observed that better speedups were obtained for workflows that
have higher density factors. In general, higher density workflows present tasks ar-
ranged in quasi-linear structures. For such kind of workflows, the optimal schedule
is similar to the sequential execution of the tasks in the fastest resource; and, due to
the fact that the myopic algorithm is prone to map dependent tasks onto different
resources, it forces unnecessary data transfers. Such kind of selection has very neg-
ative effects when critical tasks are affected because makespan is delayed inevitably.
This effect is less important in the management of more parallel workflows because
critical paths comprise a smaller number of tasks.

Figure 4 b) shows the relation between the CCR of workflows and the speedup
obtained for each one. It can be seen from the regression analysis that better
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speedups are obtained for workflows with larger values of CCR (i.e. larger amounts
of data to process). This behavior corresponds to the characteristics of the two
scheduling policies applied. In the case of the myopic scheme (DAGMan), transfer
times are not considered during the selection of the resources. Therefore, when the
number of data dependencies is increased (and thus the value of CCR increases), the
performance of HTCondor DAGMan decreases. Conversely, PPSA performs data
transfer optimizations and as a consequence it is able to find better schedules as
the amount of data grows. Said in other words, when more data is involved in the
workflow, PPSA performs well but the performance of DAGMan decays resulting in
an increase of the speedup values computed.
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Figure 4. Speedup analysis: a) average speedups obtained for different workflow densities;
b) regression between the communication to computation ratio (CCR) and the
speedup computed for each workflow
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7 CONCLUDING REMARKS AND DISCUSSION

In this paper we proposed a scheme for enabling local resource managers for sup-
porting data-intensive workflows in grid sites. Such scheme is implemented in our
middleware for workflow management called LOGOS. We also presented a novel
scheduling algorithm which considers tasks execution and transfer times. Tests were
performed using HTCondor DAGMan for resources management, which is a widely
used middleware in actual grid sites and workflow management systems. It was
proven that our approach can achieve improvements on the running time that range
from 8.7 % in the case of the smallest data-intensive workflows, and to 52.2 % for
the largest ones. It was also determined that our algorithm is capable of finding
better schedules for workflow applications where the communication workload pre-
dominates over the computation workload.

Despite of the good results obtained in this study, it is worth noting that given
the computational complexity of the proposed scheduling algorithm (PPSA), in some
cases its running time might deteriorate the overall performance. To tackle this issue
it becomes critical to use a proper workflow partitioning method in order to reduce
the complexity of the addressed problems.

Our future work includes incorporation and analysis of such adequate partition-
ing method for managing large-size workflow applications. We are planning the
comparison of PPSA with other state-of-the-art scheduling strategies in the context
of data grids. The Pegasus workflow system seems to be one of the most suitable
candidates for such comparison. In particular, we aim to adapt PPSA for working
with Pegasus and to compare it with the other algorithms included on it. In ad-
dition, the performance of LOGOS in the management of an actual data-intensive
workflow application will be studied in the future.
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Hluchý, L.—Kopp, P.—Lupian, E.: The Data Fusion Grid Infrastructure:
Project Objectives and Achievements. Computing and Informatics, Vol. 29, 2010,
No. 2, pp. 319–334.

[7] Zhang, W.—Cao, J.—Zhong, Y.—Liu, L.—Wu, C.: Grid Resource Manage-
ment and Scheduling for Data Streaming Applications. Computing and Informatics,
Vol. 29, 2010, No. 6+, pp. 1193–1220.

[8] Amer, M. A.—Chervenak, A.—Chen, W.: Improving Scientific Workflow Per-
formance Using Policy Based Data Placement. In Proceedings of the 13th IEEE In-
ternational Symposium on Policies for Distributed Systems and Networks (POLICY
2012), Chapel Hill, NC, USA, 2012, pp. 86–93.

[9] S lota, R.—Nikolow, D.—Ska lkowski, K.—Kitowski, J.: Management of
Data Access with Quality of Service in PL-Grid Environment. Computing and Infor-
matics, Vol. 31, 2012, No. 2, pp. 463–479.

[10] Thain, D.—Tannenbaum, T.—Livny, M.: Distributed Computing in Practice:
The Condor Experience. Concurrency and Computation: Practice and Experience,
Vol. 17, 2005, pp. 323–356.

[11] Torque Resource Manager: Available on: http://www.adaptivecomputing.com/

products/open-source/torque/.

[12] Oracle Grid Engine: Available on: http://www.oracle.com/us/products/tools/

oracle-grid-engine-075549.html.

[13] Wang, L.—Tao, J.—Ranjan, R.—Marten, H.—Streit, A.—Chen, J.—
Chen, D.: G-Hadoop: MapReduce Across Distributed Data Centers For Data-
Intensive Computing. Future Generation Computer Systems (to appear).

[14] Skillicorn, D.—Talia, D.: Mining Large Data Sets on Grids: Issues and Pro-
spects. Computing and Informatics, Vol. 21, 2002, No. 4, pp. 347–362.

[15] Deelman, E.—Chervenak, A.: Data Management Challenges of Data-Intensive
Scientific Workflows. In Proceedings of the 2008 8th IEEE International Symposium
on Cluster Computing and the Grid, Washington, DC, USA, May 2008, pp. 687–692.



128 D. A. Monge, C. Garćıa Garino
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