
Computing and Informatics, Vol. 33, 2014, 1–34

TOWARDS AN UNSUPERVISED METHOD
FOR NETWORK ANOMALY DETECTION
IN LARGE DATASETS

Monowar Hussain Bhuyan, Dhruba K. Bhattacharyya

Department of Computer Science and Engineering
Tezpur University
Napaam, Tezpur-784028
Assam, India
e-mail: {mhb, dkb}@tezu.ernet.in

Jugal K. Kalita

Department of Computer Science
University of Colorado at Colorado Springs
CO 80933-7150, USA
e-mail: jkalita@uccs.edu

Abstract. In this paper, we present an effective tree based subspace clustering tech-
nique (TreeCLUSS) for finding clusters in network intrusion data and for detecting
known as well as unknown attacks without using any labelled traffic or signatures
or training. To establish its effectiveness in finding the appropriate number of clus-
ters, we perform a cluster stability analysis. We also introduce an effective cluster
labelling technique (CLUSSLab) to label each cluster based on the stable cluster set
obtained from TreeCLUSS. CLUSSLab is a multi-objective technique that employs
an ensemble approach for labelling each stable cluster generated by TreeCLUSS to
achieve high detection rate. We also introduce an effective unsupervised feature
clustering technique to identify the dominating feature set from each cluster. We
evaluate the performance of both TreeCLUSS and CLUSSLab using several real
world intrusion datasets to identify known as well as unknown attacks and find
that results are excellent.

Keywords: Cluster, unsupervised, cluster stability, ensemble, anomaly detection

2 M. H. Bhuyan, D. K. Bhattacharyya, J. K. Kalita

1 INTRODUCTION

Advances in networking technology have enabled us to connect distant corners of
the globe through the Internet for sharing vast amounts of information. However,
along with this advancement, the threat from spammers, attackers and criminal
enterprises is also growing at multiple speed [1]. As a result, security experts use
intrusion detection technology to keep secure large enterprise infrastructures. In-
trusion detection systems (IDSs) are divided into two broad categories: misuse de-
tection [2] and anomaly detection [3] systems. Misuse detection can detect only
known attacks based on available signatures. Thus, dynamic signature updating
is important and therefore, new attack definitions are frequently released by IDS
vendors. However, misuse based systems cannot incorporate most or even all of the
rapidly growing number of vulnerabilities and exploits. On the other hand, anomaly
based detection systems are designed to capture any deviation from profiles of nor-
mal behavior. They are more suitable than misuse detection systems for detecting
unknown or novel attacks without any prior knowledge. However, they normally
generate a large number of false alarms.

There are three commonly used approaches for detecting intrusions [4, 5]:

1. supervised (i.e., both normal and attack instances are used for training),

2. semi-supervised (i.e., only normal instances are used for training) and

3. unsupervised (i.e., without using any prior knowledge).

The first two cases require training on the instances for finding anomalies; but
getting a large amount of labelled normal and attack training instances may not
be feasible for a particular scenario. In addition, generating a set of true normal
instances with all the variations is an extremely difficult task. Hence, unsupervised
network anomaly detection, which does not require any prior knowledge of network
traffic instances, is more suitable in this situation.

1.1 Motivation

To overcome obstacles faced by supervised and semi-supervised network anomaly
detection methods, unsupervised network anomaly detection methods aim to detect
known as well as unknown intrusions without using any prior knowledge of exist-
ing network traffic instances. Clustering is an established unsupervised network
anomaly detection technique that can be used to identify unknown attacks. How-
ever, a common limitation of some clustering approaches is that they require the
number of clusters a priori, which often can be difficult to provide. In such cases,
stability analysis of the cluster results can be of great help. Validity of the cluster
results in terms of real life and benchmark datasets is important to establish the
effectiveness of the results. In high-dimensional data, many features are irrelevant
to form a specific set of clusters when a full space clustering technique is applied.
These are the reasons why we develop an unsupervised method for identification of
known and unknown attacks with minimum false alarms.

Towards an Unsupervised Method for Network Anomaly Detection in Large Datasets 3

1.2 Contributions

We aim to provide an unsupervised solution for identifying network attacks with
high detection rate. The main contributions of this paper are stated below.

• We introduce a tree based clustering technique (TreeCLUSS) to identify net-
work anomalies in high dimensional datasets. The following are some of the
advantages of the proposed TreeCLUSS algorithm.

– The number of clusters is not required as input parameters.

– It is free from the use of a specific proximity measure.

– It requires a minimum number of input parameters and the results are not
heavily dependent on them.

– It is able to identify both known as well as unknown attacks.

• We present a cluster stability analysis to obtain a stable set of results generated
by TreeCLUSS. It uses majority voting based decision for cluster stability to get
a stable set of clusters.

• We introduce a cluster labelling technique (CLUSSLab) for labelling the clusters
generated by TreeCLUSS as normal or attack. It uses a majority voting based
decision fusion technique of the results of various cluster indices, cluster sizes
and dominating features sets.

• Finally, we develop an effective unsupervised feature clustering technique to
identify a dominating feature subset for each stable cluster that is used for cluster
labelling. It is important to identify a relevant feature set for a particular set of
clusters to match with a previously identified feature set during cluster labelling.

1.3 Organization of the Paper

The rest of the paper is organized as follows. Section 2 provides a review of ex-
isting unsupervised network anomaly detection methods. The problem formulation
is introduced in Section 3. Section 4 describes our unsupervised network anomaly
detection framework in two parts: TreeCLUSS and CLUSSLab. Section 5 describes
experimental results and comparison with competing algorithms. Finally, conclud-
ing remarks are presented in Section 6.

2 RELATED WORK

The problem of unsupervised detection of network attacks and intrusions has been
studied for many years with the goal of identifying unknown attacks in high-speed
network traffic data. Most network-based intrusion detection systems (NIDSs) are
misuse- or signature-based. For example, SNORT [6] and BRO [7] are two well-
known open source misuse-based NIDS. To overcome the inability of such systems
to detect unknown attacks, novel anomaly-based NIDSs have been introduced in the

4 M. H. Bhuyan, D. K. Bhattacharyya, J. K. Kalita

past decade. A detailed study can be found in [8, 9]. Here, we briefly discuss some
recent unsupervised network anomaly detection methods.

2.1 Clustering-Based Network Anomaly Detection

Clustering is an important technique used in unsupervised network intrusion detec-
tion. A majority of unsupervised network anomaly detection techniques are based
on clustering and outlier detection [10, 11, 12]. Leung and Leckie report a grid-based
clustering algorithm to achieve reduced computational complexity [11]. An unsuper-
vised intrusion detection method by computing cluster radius threshold (CBUID) is
proposed by [13]. The authors claim that CBUID works in linear time with respect
to the size of datasets and the number of features. Song et al. report an unsuper-
vised auto-tuned clustering approach that optimizes parameters and detects changes
based on unsupervised anomaly detection for identifying unknown attacks [14]. Noto
et al. present a new semi-supervised anomaly detection method (FRaC) [15] that
builds an ensemble of feature models based on normal instances, and then identi-
fies instances that disagree with these models as anomalous. Casas et al. present
a novel unsupervised outlier detection approach based on combining subspace clus-
tering and multiple evidence accumulation to detect several kinds of intrusions [16].
They evaluate the method using KDDcup99 and two other real-time datasets.

2.2 Cluster Stability Analysis

Several cluster stability analysis techniques have been proposed in the literature [17,
18, 19, 20]. We analyze cluster stability for identifying the actual number of clusters
generated by our clustering algorithm using stability calculation. Lange et al. intro-
duce a cluster stability measure to validate clustering results [17]. It determines the
number of clusters by minimizing the classification risk of their measure. An exper-
imental analysis of cluster stability measures for the identification of the number of
clusters is discussed by [18]. Ben-David et al. provide a formal definition of cluster
stability with specific properties [19]. They conclude that stability can be deter-
mined based on the behavior of the objective function. If the objective function is
a unique global optimizer, the algorithm is stable. Das and Sil also present a cluster
validation method for stable cluster generation using stability analysis [20].

2.3 Cluster Labelling

Cluster labelling is a challenging issue in unsupervised network anomaly detection.
Most common cluster validity measures are summarized in [21, 22, 23]. Validity
measures are usually based on internal and external properties of clustering results.
Normally, internal validity measures obtain the compactness, connectedness and
separation of the cluster partitions. External validity measures assess agreement
between a new clustering solution and the reference clusters: the measure of interest

Towards an Unsupervised Method for Network Anomaly Detection in Large Datasets 5

to us is the approach by [21]. Jun [23] presents an ensemble method for cluster
analysis. It uses a simple voting mechanism for making decision from the results
obtained by using several cluster validity measures. Labelling of a cluster is a must
in case of cluster-based unsupervised network anomaly detection. Our proposed
cluster labelling technique works based on the cluster size, compactness and the
dominating feature set.

2.4 Discussion

We provide a generic comparison of some published papers on network anomaly
detection [10, 11, 13, 12, 14, 16, 15] in Table 1. Based on a review of existing tech-
niques for clustering-based anomaly detection, cluster stability analysis and cluster
labelling, we observe the following.

• Although many clustering-based network intrusion detection techniques have
been reported in the literature [10, 11, 13, 12], only a few have full features of
an unsupervised intrusion detection system [13]. Many methods use only cluster-
ing techniques for network anomaly detection without having cluster labelling
strategies. Hence, there is still room to develop a full-featured unsupervised
network anomaly detection technique.

• Existing stability analysis techniques have been mostly applied to analyze non-
intrusion data; but network traffic data is high-dimensional and voluminous.
Thus, there is scope for further enhancement in the network anomaly detection
domain.

• Only a very few labelling techniques are available in the literature [21, 22, 23]. An
appropriate use of indices can help in developing an effective labelling technique,
which can support unsupervised anomaly detection to a great extent.

Due to these reasons, we see an opportunity to develop an integrated unsuper-
vised network anomaly detection method.

3 PROBLEM FORMULATION

Our work analyzes large amounts of network traffic data over an optimal and relevant
feature space without any prior knowledge to identify anomalous or non-conforming
test instance(s) with minimum false alarm. The problem is defined as follows. Let
D be a collection of network traffic data with n data objects, where each object
has f features. The problem is to analyze D over an optimal and relevant feature
subspace nf , where 1 ≤ nf ≤ f to identify groups of similar instances, Ci, where
each Ci is labeled either as normal or anomalous.

The proposed method works in two phases:

1. TreeCLUSS creates k clusters, i.e., C1, C2, . . . , Ck from dataset D using a subset
of relevant features, nf , where each Ci is evaluated in terms of stability by using
the function StableCLUSS, and

6 M. H. Bhuyan, D. K. Bhattacharyya, J. K. Kalita

Author(s) Method Offline/
Online

Packet/
Flow
level

Data Type Unknown
attack
handled

Detection
criteria

Full/Re-
duced
space

Portnoy et
al. [10],
2001

Clustering
based

offline packet numeric yes cluster
size,
distance

Full

Leung and
Leckie [11],
2005

Clustering
based

offline packet numeric no distance,
boundary
value

Full

Jiang et al.
[13], 2006

Clustering
based

offline packet categorical yes distance Full

Bhuyan et
al. [12],
2011

Outlier
based

offline packet numeric yes distance Full

Song et al.
[14], 2011

Clustering
based

offline packet numeric yes distance Full

Casas et al.
[16], 2012

Clustering
based,
UNIDS

offline flow numeric yes distance Reduced

Noto et al.
[15], 2012

Model
based

offline other numeric no distance Full

Table 1. Unsupervised network anomaly detection methods: a comparison

2. CLUSSLab labels each cluster, Ci based on the two assumptions:

(a) The majority of network connections are normal, and

(b) Intra-similarity among the attack traffic instances is high.

CLUSSLab exploits cluster size, compactness, dominating feature subset and outlier
scores to label each cluster.

4 UNSUPERVISED NETWORK ANOMALY DETECTION:
THE FRAMEWORK

The main aim of this work is to detect network anomalies using an unsupervised
approach with a minimum amount of false alarms. It can detect network anoma-
lies without relying on existing signatures, training or labeled data. The proposed
approach runs in two consecutive phases for analyzing network traffic in contiguous
time slots of fixed length. Figure 1 provides a conceptual framework of the proposed
anomaly detection method.

In the first phase, we introduce a tree based subspace clustering technique
(TreeCLUSS) for generating clusters in high-dimensional large datasets. It is well
known that network intrusion dataset is high-dimensional and large. We apply our
technique over a subset of features. TreeCLUSS uses the MMIFS technique [24]
for finding a highly relevant feature set. It uses a subset of features during cluster
formation while not using any class labels. We analyze the stability of the cluster
results obtained. Cluster stability analysis for real life data is not a trivial task. It
is performed using an ensemble of several index measures, viz., Dunn index [25],
C-index (C) [26], Davies Bouldin index (DB) [27], Silhouette index (S) [28] and
Xie-Beni index (XB) [29]. We choose a stable set of clusters when a certain num-

Towards an Unsupervised Method for Network Anomaly Detection in Large Datasets 7

In
te

rn
et

Capturing
Network Traffic

v	
v	 v	 v	 v	 C

om
pu

te
 re

le
va

nt

fe
at

ur
es

Final
Decision

Cluster stability analysis

TreeCLUSS

Dunn C DB S XB

Cluster
size

Compactness DFS OS

CLUSSLab

Labelled
clusters

D' with relevant
feature subset

Stable clusters

Summary

If not
satisfied

with features

Figure 1. High-level description of the unsupervised network anomaly detection method

ber of clusters produces better result after multiple execution of this module. In
the second phase, we apply a cluster labelling technique (CLUSSLab) to label the
stable clusters using a multi-objective approach. CLUSSLab takes into account the
following features: cluster size, compactness obtained from the ensemble of five in-
dex measures, dominating feature subset (DFS) obtained for each cluster based on
unsupervised feature clustering technique discussed in Section 4.3, and outlier score
(OS) obtained based on the RODD technique [42]. Finally, we label each cluster
as normal or anomalous based on the described measures. The symbols used to
describe the unsupervised network anomaly detection method are given in Table 2.

4.1 TreeCLUSS: The Clustering Technique

TreeCLUSS is a tree based subspace clustering technique for high-dimensional data.
It is especially tuned for unsupervised network anomaly detection. It uses the
MMIFS technique [24] to identify a subset of relevant features. TreeCLUSS de-

8 M. H. Bhuyan, D. K. Bhattacharyya, J. K. Kalita

Symbol Meaning

D dataset
n total number of data objects
C set of clusters
f feature set
sim proximity measure between two objects Oi and Oj
α threshold for L1 cluster
β threshold for L2 cluster
γ threshold for class-specific feature selection
ε a factor for step down ratio
k number of clusters
l level
xi ith data object
θ height of the tree
nf total number relevant features
minRankf minimum rank value found w.r.t. MMIFS algorithm [24]
Ni ith node in tree
CL class label
P matching probability of dominant feature set

Table 2. Symbols used

pends on two parameters, viz., initial node formation threshold (α) and a step down
ratio (ε) to extend the initial node, depth-wise. Both parameters are computed us-
ing a heuristic approach. We now present notations, definitions and a lemma which
help in the description of the TreeCLUSS algorithm.

Definition 1 (Data Stream). A data stream D is denoted as {O1, O2, O3 . . . , On}
with n objects, where Oi is the ith object described with a d-dimensional feature
subset, i.e., Oi = {xi1, xi2, xi3, . . . , xid}.

Definition 2 (Neighbor of an object). An object Oi is a neighbor of Oj over a sub-
set of relevant features f , w.r.t. a threshold α, iff simf (Oi, Oj) ≤ α, where sim is
a distance measure.

Definition 3 (Connected objects). If object Oi is a neighbor of object Oj and Oj

is a neighbor of Ok w.r.t. α, then Oi, Oj, Ok are connected.

Definition 4 (Node). A node Ni in the lth level of a tree is a non-empty subset
of objects x′, where for any object Oi ∈ Ni there must be another object Oj ∈ x′,
which is a neighbor of Oi, and Oi is either a) itself an initiator object or b) is within
the neighborhood of another initiator object Oj ∈ Ni.

Definition 5 (Degree of a node). The degree of a node Nj w.r.t. α is defined as
the number of objects in Nj that are within α-neighborhood of any object Oj ∈ Nj.

Towards an Unsupervised Method for Network Anomaly Detection in Large Datasets 9

Definition 6 (Lf,α1,i cluster). It is a set of connected objects Ci at level 1 w.r.t. α,
where for any two objects Oi, Oj ∈ Ci, the neighbor condition (Definition 2) is true
with reference to fi.

Definition 7 (Lf,β2,i cluster). It is a set of connected objects Cj at level 2 w.r.t. β,
where for any two objects Oi, Oj ∈ Cj the neighbor condition (Definition 2) is true

with reference to fi and β ≤ (α
2

+ ε). Also, Lf,β2,i ⊆ Lf,α1,i .

Definition 8 (Outlier). An object Oi ∈ D is an outlier if Oi is not connected with
any other object Oj ∈ D, where Oj ∈ Lf,α1,i . In other words, Oi is an outlier if there
is no Oj ∈ D, so that Oi and Oj are neighbors (as per Definition 2).

Lemma 1. Two objects Oi and Oj belonging to two different nodes are not similar.

Proof. Let Oi ∈ Ni, Oj ∈ Nj and Oi be a neighbor of Oj. According to Definition
2 and Definition 4, Oi and Oj should belong to same node. Therefore, we come to
a contradiction and hence the proof. �

We present our TreeCLUSS algorithm for network anomaly detection in Algo-
rithms 1 and 2. TreeCLUSS starts by creating a tree structure in a depth-first
manner with an empty root node. The root is at level 0 and is connected to all the
nodes in level 1. The nodes in level 1 are created based on a maximal subset of rele-
vant features by computing proximity within a neighborhood w.r.t. an initial cluster
formation threshold α. The tree is extended depth-first by forming lower level nodes
w.r.t. (α

2
+ ε), where ε is a controlling parameter of the step down factor, i.e. α

2
.

α and ε are computed using a heuristic approach. A proximity measure sim is used
in TreeCLUSS during cluster formation. Although sim is free from the restriction
of using a specific proximity measure, we used Euclidean distance to construct the
tree from D.

The algorithm is illustrated using an example. Let D be a dataset of d di-
mensions with details given in Table 3. Let D = {O1, O2, . . . , O16} and f =
{f1, f2, . . . , f10}. The extracted relevant feature set is given in Table 4. The class
specific relevant features are identified from D w.r.t. a threshold γ. We achieved
best results when γ ≥ 1 for class C1, γ ≥ 0.918 for class C2 and γ ≥ 0.917 for class
C3, as shown in Table 4. An example tree obtained from D is shown in Figure 2
with reference to the reduced feature space as given in Table 4.

4.2 Cluster Stability Analysis

We analyze the stability of clusters obtained from TreeCLUSS and several other
clustering algorithms, viz., k-means, fuzzy c-means, and hierarchical clustering.
A general stability comparison among these clustering algorithms w.r.t. detection
rate using the TUIDS datasets is given in Figure 3. The TUIDS datasets were
built by us using our own testbed with a variety of attacks (more details are given
in 5.1.2). We propose an ensemble based cluster stability analysis technique based

10 M. H. Bhuyan, D. K. Bhattacharyya, J. K. Kalita

Algorithm 1 : Part 1 TreeCLUSS (D,α, β)

Input: D, the dataset; α, threshold for L1 cluster formation; β, threshold for L2

cluster formation;
Output: set of clusters, C1, C2, C3, . . . , Ck
1: initialization: node id ← 0
2: function BuildTree(D,node id)
3: for i← 1 to D do
4: if (Di.classified ! = 1 and check ini feat(MMIFS(Di)) == true) and
sim(Oi, Oj) ≤ α then

5: CreateNode(Di.no, p id, temp, nodecount, node id, l)
6: while (nf - (l - 1)) ≥ θ do
7: l++
8: for i← 1 to D do
9: if Di.classified ! = 1 then

10: p id = check parent(Di.no, l)
11: if (p id > -1 and check ini feat(MMIFS(Di)) == true)

then
12: CreateNode(Di.no, p id, temp, nodecount, node id, l)
13: end if
14: end if
15: end for
16: end while
17: l = 1
18: end if
19: end for
20: end function
21: function CreateNode(no, p id, temp, nodecount, id, l)
22: node id = new node()
23: node id.temp = temp
24: node id.nodelcount = nodecount
25: node id.p node = p id
26: node id.id = id;
27: node id.level = l
28: ExpandNode(no, id, node id.temp, nodecount, l)
29: temp = NULL;
30: nodecount = 0;
31: node id++
32: end function
33: function ExpandNode(no, id, temp, nodecount, l)
34: if Dno.classified == 1 then
35: return
36: else
37: Dno.classified = 1;
38: Dno.node id = id
39: for i← 1 to D do

Towards an Unsupervised Method for Network Anomaly Detection in Large Datasets 11

Algorithm 2 : Part 2 TreeCLUSS (D,α, β)

40: if (Di.classified ! = 1) then
41: minRankf = find minRank(MMIFS(Di))
42: if (nf - minRankf) ≥ θ then
43: minRankf++ until get a specific cluster; otherwise stop.
44: ExpandNode(Di.no, id, temp, tempcount, l)
45: end if
46: end if
47: end for
48: end if
49: end function
50: function StableCLUSS(Ck)
51: for i← 1 to k do
52: for j ← 1 to 5 do
53: V Ic[j] = compute(Ici)
54: if (V Ic[j] ≥ σ or V Ic[j] ≤ τ) then
55: V Ic[j] = 1
56: else
57: V Ic[j] =0
58: end if
59: end for
60: if (Ci = Max(V Ic[i])) then
61: stable cluster, Ci
62: Return Max(V Ic[i])
63: else
64: go to step 2
65: end if
66: end for
67: end function

on Dunn index [25], C-index (C) [26], Davies Bouldin index (DB) [27], Silhouette
index (S) [28] and Xie-Beni index (XB) [29] (shown in Figure 1). Thus, we choose
several well known cluster validity measures for stability analysis. We analyze each
cluster based on distance to reduce computational overhead. All our measures are
distance-based. We briefly discuss each measure along with the values expected for
good clusters in Table 5.

We pass each cluster Ci to a function StableCLUSS to measure stability. It
computes all the indices for each of the clusters C1, C2, . . . , Ck. If it judges that the
result is good for an index, it stores a 1, otherwise assigns 0. It computes 1 or 0 for
each of the indices as given below. σ and τ are threshold parameters.

Vi =

{
1, Ii ≥ σ or Ii ≤ τ

0, otherwise.

12 M. H. Bhuyan, D. K. Bhattacharyya, J. K. Kalita

Object ID f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 CL

O1 9.23 0.71 2.43 0.60 104 2.80 3.06 0.28 2.29 5.64 1
O2 22.53 6.51 6.64 4.96 72.79 2.60 11.63 0.80 9.00 36.97 8
O3 16.37 5.76 1.16 11.88 95 5.50 1.10 0.49 6.87 20.45 5
O4 10.37 1.95 9.50 0.80 110 1.85 2.49 0.64 3.18 9.80 2
O5 14.67 4.85 1.92 11.94 96 4.10 1.79 0.12 4.73 10.80 4
O6 9.20 0.78 2.14 0.20 103 2.65 2.96 0.26 2.28 4.38 1
O7 12.37 0.84 1.36 11.60 95 3.98 1.57 0.98 1.42 10.95 3
O8 9.16 1.36 9.67 0.60 110 1.80 2.24 0.60 3.81 9.68 2
O9 16.17 5.86 1.53 11.87 93 5.89 1.75 0.45 6.73 20.95 5
O10 18.81 6.31 4.40 4 70 2.15 8.09 0.57 7.83 27.70 6
O11 14.64 4.82 1.02 11.80 94 4.02 1.41 0.13 4.62 10.75 4
O12 20.51 6.24 5.25 4.50 70.23 2 9.58 0.60 8.25 32.45 7
O13 12.33 0.71 1.28 11.89 96 3.05 1.09 0.93 1.41 10.27 3
O14 20.60 6.46 5.20 4.50 71 2.42 9.66 0.63 8.94 32.10 7
O15 18.70 6.55 5.36 4.50 73.24 2.70 8.20 0.57 7.84 27.10 6
O16 22.25 6.72 6.54 4.89 69.38 2.47 10.53 0.80 9.85 36.89 8

Table 3. Sample dataset, D and CL in the last column is the class label

Class Object ID Relevant feature set Feature rank value

C1 O1, O4, O6, O8 f5, f6, f2, f3, f9, f10, f7, f8 1, 1, 1, 1, 1, 1, 1, 1
C11 O1, O6 f5, f6, f2, f3, f9, f10, f7 1, 1, 1, 1, 1, 1, 1
C12 O4, O8 f5, f6, f2, f3, f9, f10 1, 1, 1, 1, 1, 1
C2 O3, O5, O7, O9, O11, O13 f1, f2, f6, f9, f8, f10 1.585, 1.585, 1.585, 1.585, 1.585, 0.918
C21 O3, O9 f1, f2, f6, f9, f8 1.585, 1.585, 1.585, 1.585, 1.585
C22 O5, O11 f1, f2, f6, f9 1.585, 1.585, 1.585, 1.585
C23 O7, O13 f1, f2, f6, f8 1.585, 1.585, 1.585, 1.585
C3 O2, O10, O12, O14, O15, f7, f1, f10, f8, f9, f4, f3 1.584, 1.584, 1.584, 1.584, 1.584,

O16 0.917, 0.917
C31 O2, O16 f7, f1, f10, f8, f9, f4 1.584, 1.584, 1.584, 1.584, 1.584, 0.917
C32 O10, O15 f7, f1, f10, f8, f9 1.584, 1.584, 1.584, 1.584, 1.584
C33 O12, O14 f7, f1, f10, f8, f4 1.584, 1.584, 1.584, 1.584, 0.917

Table 4. Relevant feature set (nf) and attribute rank values

Finally, we take the maximum number of occurrences of 1 to decide if a cluster
is stable or not. If a cluster Ci is not stable, it sends control back to TreeCLUSS to
regenerate another set with a different number of clusters. We choose the best set
of stable clusters after we execute the module multiple times.

4.3 CLUSSLab: The Cluster Labelling Technique

CLUSSLab is a multi-objective cluster labelling technique for labelling the clusters
generated by TreeCLUSS. It decides the label of the instances of a cluster based on
a combination of the following measures:

1. cluster size,

2. compactness,

3. dominating feature subset and

4. outlier score of each instance.

Each measure is described next.

1. Cluster size: It is the number of instances in a cluster.

Towards an Unsupervised Method for Network Anomaly Detection in Large Datasets 13

C33
C32 C31 C23

C22
C21 C12

C11

C3
C1 C2

R

4,8

2,10,12,
14,15,16

2,16 10,15 12,14

3,5,7,
9,11,13

3,9 5,11 7,13

1,4,6,8

1,6

Figure 2. Tree obtained from D, given in Table 3

0	

20	

40	

60	

80	

100	

120	

k-means Fuzyy C-
means

Hierarchical Proposed
method

D
et

ec
tio

n
R

at
e

Clustering methods

Normal

DoS

Probe

Figure 3. Comparison of stability analysis with various algorithms using TUIDS packet
level intrusion dataset

2. Compactness: To find the compactness of a cluster Ci, obtained from Tree-
CLUSS, we use the five very well known indices as given in Table 5 and discussed
earlier in Section 2.2.

3. Dominating feature subset: The subset of features which mostly influences the
formation of the clusters is referred to as the dominating feature set. We identify
the dominating features by using an adaptive unsupervised feature clustering
technique (UReFT) based on Renyi’s entropy [30]. Renyi’s entropy performs
non-parametric estimation by avoiding the problems of the traditional entropy
metric. Renyi’s entropy with probability density function (pdf) fx for a stochas-
tic variable x and Renyi’s constant λ is given by

HR(x) =
1

1− λ
ln

∫
fλx dx, λ > 0, λ 6= 1. (1)

14 M. H. Bhuyan, D. K. Bhattacharyya, J. K. Kalita

Stability
measures

Definition Features

Dunn
index
(Dunn)

dmin
dmax

, where dmin denotes the smallest dis-
tance between two objects from different
clusters and dmax is the largest distance
between two elements within the same
cluster.

(a) Computed for finding
compact and well separated
clusters. (b) Larger val-
ues of Dunn indicates bet-
ter clustering, i.e., the range
is (0,∞).

C-index
(C)

S−Smin
Smax−Smin

, where S is the sum of distances
over all pairs of objects form the same
cluster, n is the number of such pairs,
Smin and Smax are the sum of n smallest
distances and n largest distances, respec-
tively.

(a) Used to find cluster qual-
ity when the clusters are
similar sizes. (b) Smaller
values of C indicate better
clusters, i.e., the range is
(0, 1).

Davies
Bouldin
index
(DB)

1
n

∑n
i=1,i 6=j max(

σj+σj
d(ci,cj)), where n is the

number of clusters; σi is the average dis-
tance of all patterns in cluster i to their
cluster center, ci; σj is the average dis-
tance of all patterns in cluster j to their
cluster center, cj ; and d(ci, cj) represents
the proximity between the cluster centers
ci and cj .

(a) Lower value of DB in-
dicates better clusters, i.e.,
the range is (0,∞). (b) It
has low computational cost
and can find better clusters
of spherical shape.

Silhouette
index (S)

bi−ai
max{ai,bi} , where ai is the average dissim-

ilarity of ith object to all other objects in
the same cluster; bi is the minimum of av-
erage dissimilarity of the ith object to all
objects in other clusters.

(a) Computed for a cluster
to identify tightly separated
groups. (b) Better if the in-
dex value is near 1, i.e., the
range is (−1, 1).

Xie Beni
index
(XB)

π
N.dmin

, where π = σi
ni

, is called compact-
ness of cluster i. Since ni is the number of
points in cluster i, σ is the average varia-
tion in cluster i; dmin = min ||ki − kj ||.

Smaller values of XB are
expected for compact and
well-separated clusters, i.e.,
the range is (0, 1).

Table 5. Cluster stability measure: definition, features and criteria for better clustering

Renyi’s quadratic entropy is defined by [31] when λ = 2 as follows, assuming
a Gaussian pdf:

HR(x) = − ln

∫
f 2
xdx

= − ln

(
1

N

N∑
i=1

G
(
x− xi, σ2

))(1

N

N∑
i=1

G
(
x− xj, σ2

))

= − ln
1

N2

N∑
i=1

N∑
j=1

G
(
xi − xj, 2σ2

)
(2)

Towards an Unsupervised Method for Network Anomaly Detection in Large Datasets 15

where G is the Gaussian kernel, σ is the smoothing parameter (we found better
results when σ = 0.9 to 0.12), xi and xj are the ith and jth features of N data
objects. We also note that

G
(
xi − xj, 2σ2

)
=

1

(2π)
d
2

√
2σ2

exp

(
−(xi − xj)2

4σ2

)
(3)

where d is the dimension of variable x. Assume that we obtain k feature clusters,
i.e., C = {C1, C2, . . . Ck}. A feature object x is assigned to a cluster Ci iff,

(H(Ci + x)−H(Ci)) < (H(Ck + x)−H(Ck)) , k 6= i (4)

where H(Ck) denotes the entropy of cluster Ck. This method is referred to
as differential entropy clustering [32]. We compute H(Ck) and H(Ci, Cj) for
within-cluster and between-cluster entropy as follows.

H(Ck) = − ln
1

N2
k

Nk∑
i=1

Nk∑
j=1

G
(
xi − xj, 2σ2

)
(5)

H(Ci, Cj) = − ln
1

NiNj

Ni∑
p=1

Nj∑
q=1

G
(
xp − xq, 2σ2

)
(6)

The main goal of our technique is to identify a dominating feature set with the
least redundancy and the most relevancy. Initially, we assume that each cluster
contains two feature subsets:

(a) the selected or relevant subset and

(b) the non-selected or irrelevant subset.

The selected cluster is the dominating feature set and the nonselected cluster is
the irrelevant feature set. The method starts with a single feature object Cs, and
assigns another object to it by computing Renyi’s entropy (using Equations (4),
(5) and (6)) w.r.t. a threshold η1, otherwise it creates a new cluster, Cns known
as the non-selected cluster. It adaptively assigns each candidate feature object
to Cs or Cns w.r.t. threshold η1 and the threshold for intra cluster entropy η2.
The threshold values of η1 and η2 are also chosen based on a heuristic approach.

4. Outlier score: Here, we use our own outlier identification algorithm, RODD [42]
to compute a score for each instance with reference to the normal profiles.
A graph is plotted based on sorted outlier ranking against those instances as
shown in Figure 4, and from the graph, a cutoff is decided to distinguish the
normal from anomalous instances. We see in the graph that for any two-class
combination such as (normal, DoS), (normal, probe), (normal,U2R), or (normal,
R2L) with various proportions, it is still possible to distinguish the normal from
the rest.

16 M. H. Bhuyan, D. K. Bhattacharyya, J. K. Kalita

0 10 20 30 40 50 60

0

1

2

3

4

5

6

Normal

S
co

re
 v

al
ue

s

Record ID

 Score values

Figure 4. Identification of normal ranges using outlier score ranking over intrusion datatset

On the basis of cluster size, compactness, dominating features identified using
UReFT and interval of outlier score rank values, we label each cluster as anomalous
or normal w.r.t. the thresholds. We obtained the best result for labelling each
cluster as anomalous with matching probability ≤ 0.63 w.r.t. the above measures.
The CLUSSLab algorithm is given as Algorithm 3. It is a multi-objective technique
to label each cluster as normal or anomalous. UReFT is the unsupervised Renyi’s
entropy based feature clustering technique to identify the relevant features set for
each cluster. It matches the existing class specific feature set while labelling.

4.4 Complexity Analysis

As discussed, the proposed method is works in two phases. The first phase is sub-
space clustering technique, i.e., the TreeCLUSS. We assume that k clusters are ob-
tained from n data objects. During cluster formation, TreeCLUSS takes O(n log k)
time and for stability analysis, it takes O(k log k) time. Hence, the total computa-
tional complexity of TreeCLUSS is O(n log k).

The second phase is multi-objective cluster labelling technique, i.e., the CLUS-
SLab. It is again comprised of four sub-modules viz., cluster size, compactness,
dominating feature subset (DFS) and outlier score (OS). To compute, compactness,
dominating feature subset and outlier score, it takes O(n log n), O(n), and O(kn)
time, respectively. Hence, the total time complexity of CLUSSLab is O(n log n+kn)

The time complexity for each stage of our unsupervised network anomaly detec-
tion method is linear w.r.t. the size of dataset, the number of features, the number of
clusters and the labelling of each clusters. Hence, it is effective in detecting known
as well as unknown attacks with the least amount of false alarms.

Towards an Unsupervised Method for Network Anomaly Detection in Large Datasets 17

Algorithm 3 : CLUSSLab(Ck, ξ1, ξ2, ξ3, ξ4)

Input: Ck represents a cluster obtained from TreeCLUSS, ξ1 is the number of in-
stances in a cluster, ξ2 is the cluster compactness score, ξ3 is the matching
probability of features of a cluster with a specific class and ξ4 is the outlier score
value of each instance of a cluster.

Output: Label clusters C1, C2, C3, . . . Ck as normal or anomalous.
1: for i← 1 to k do
2: S[i] = |Ci|
3: M[i] = call StableCLUSS(Ci)
4: end for
5: function UReFT(Ck)
6: for i← 1 to k do
7: for j ← 1 to Si do
8: if (H(Cs)) ≤ η1 && (H(Cs, Cns)) ≤ η2 then
9: Cs[z]← fz, z = 1, 2, . . . d

10: else
11: Cns[z]← fz, z = 1, 2, . . . d
12: end if
13: end for
14: end for
15: end function
16: for i← 1 to k do
17: if S[i] ≤ ξ1 && M [i] < ξ2 && Ci ≥ ξ4 then
18: if P (|Cs[z]|, |MMIFS[z]|) ≤ ξ3 then
19: anomalous← Ci
20: else
21: normal← Ci
22: end if
23: end if
24: end for

5 EXPERIMENTAL ANALYSIS

In this section, we present experimental analysis and results of the unsupervised
network anomaly detection method using several real world datasets from the UCI
machine learning repository and datasets prepared at the TUIDS testbed at both
packet and flow levels [33]. The network laboratory layout where we capture network
traffic for the TUIDS intrusion dataset is shown in Figure 5. The network has 32
subnets including a wireless network, 4 routers, 3 wireless controllers, 8 L3 switches,
15 L2 switches and 300 hosts. A DHCP server is set up inside the main network for
wireless network. Each router can be controlled to connect other networks as well
as to route packets to specific networks. The datasets used in this paper to evaluate
the proposed method and experimental results are discussed below.

18 M. H. Bhuyan, D. K. Bhattacharyya, J. K. Kalita

	 	
	 	

INTERNET

Subnet 1 Subnet 2

Subnet 5

Subnet 4 Subnet 3

Wireless

Monitoring
system

Attacker

VICTIM

Handler

Agent

WORKSTATION

SERVER

Wireless

Subnet 6

Access
points

Attacker

Figure 5. TUIDS testbed: All TUIDS datasets are prepared using this testbed with a
number of configurations for the network as well as capturing tools

5.1 Datasets Used

We use two sets of datasets, namely:

1. nonintrusion datasets taken from UCI ML repository for initial evaluation and
establishment of the proposed algorithms and

2. intrusion datasets.

5.1.1 Nonintrusion Datasets

We use ten nonintrusion datasets [34]: Zoo, Glass, Abalone, Shuttle, Wine, Lym-
phography, Heart, Pima, Vehicle and Poker Hand to initially validate clusters gener-
ated by TreeCLUSS. Table 6 describes the details of the nonintrusion datasets and
their characteristics.

5.1.2 Intrusion Datasets

We use five different real life intrusion datasets. These are

1. TUIDS coordinated scan dataset,

2. TUIDS intrusion dataset,

Towards an Unsupervised Method for Network Anomaly Detection in Large Datasets 19

Non-intrusion Datasets Dimension No. of instances No. of classes
Datasets (NID)

NID1 Zoo 18 101 7
NID2 Glass 10 214 6
NID3 Abalone 8 4 177 29
NID4 Shuttle 9 14 500 3
NID5 Wine 13 178 3
NID6 Lymphography 18 148 4
NID7 Heart 13 270 2
NID8 Pima 8 768 2
NID9 Vehicle 18 846 4
NID10 Poker Hand 10 25 010 10

Table 6. Characteristics of real-life nonintrusion datasets

3. TUIDS DDoS dataset,

4. NSL-KDD dataset and

5. KDDcup99 dataset.

The attacks used to generate traffic and prepare labeled intrusion datasets are shown
in Table 7. We capture, preprocess, and extract features in both packet and flow
level network traffic. GULP (Lossless Gigabit Remote Packet Capture With Linux)1

is used to capture the packet level traffic with launched attacks as well as normal
traffic while NFDUMP2 and NfSen3 are used to capture and visualize flow level
network traffic. The lists of extracted features in both packet and flow level intrusion
datasets are presented in Table 8 and Table 9, respectively. More details of the
TUIDS datasets can be found in [33]. Next, we describe each dataset in brief.

1. TUIDS real-time Coordinated scan dataset: We launched attacks numbered 12-
17 (as given in Table 7) in a coordinated mode using the rnmap4 tool to generate
the traffic including normal traffic. We captured the traffic in both packet and
flow levels to prepare the dataset. Characteristics of this dataset are given in
Table 11.

2. TUIDS real-time intrusion dataset: This dataset is prepared by launching 20
different attacks with normal traffic connections. It contains 15 DoS attacks and
5 probe attacks. Characteristics of this datasets are given in Table 11.

3. TUIDS real-time DDoS dataset: It is prepared using the same TUIDS testbed
with three different flooding attacks (viz., attacks numbered 18, 21 and 22 in
Table 7) launched in amplification mode while capturing the traffic at flow level

1 http://staff.washington.edu/corey/gulp/
2 http://nfdump.sourceforge.net/
3 http://nfsen.sourceforge.net/
4 http://rnmap.sourceforge.net/

20 M. H. Bhuyan, D. K. Bhattacharyya, J. K. Kalita

Attack Attack generation Attack Attack generation
name tools name tools

1. Bonk targa2.c 2. Jolt targa2.c
3. Land targa2.c 4. Saihyousen targa2.c
5. TearDrop targa2.c 6. Newtear targa2.c
7. 1 234 targa2.c 8. Winnuke targa2.c
9. Oshare targa2.c 10. Nestea targa2.c
11. SynDrop targa2.c 12. WindowScan Nmap/Rnmap
13. SynScan Nmap/Rnmap 14. XmassTreeScan Nmap/Rnmap
15. NULLScan Nmap/Rnmap 16. UDPScan Nmap/Rnmap
17. FINScan Nmap/Rnmap 18. Smurf smurf4.c
19. OpenTear opentear.c 20. LinuxICMP linux-icmp.c
21. Fraggle fraggle.c 22. Synflood synflood.c

Table 7. Attacks used with their tools in TUIDS dataset preparation

only. Characteristics of this dataset are given in Table 11. A brief description
of DDoS attacks we launched is given below.

• In Smurf attack, the attacker sends packets to a network amplifier (a system
supporting broadcast addressing), with the return address spoofed to the
victim’s IP address. It uses ICMP ECHO packets and as a result, the original
packet spoofs tens or even hundreds of times to the victim host.

• The Fraggle attack is similar to a Smurf attack in that the attacker sends
packets to a network amplifier but uses UDP ECHO packets instead of ICMP
ECHO packets. The UDP ECHO packets are sent to the port that supports
character generation (chargen, port 19 in Unix systems), with the return
address spoofed to the victim’s echo service (echo, port 7 in Unix systems)
creating an infinite loop.

• The SYN flooding attack exploits the TCP’s three-way handshake mecha-
nism and its limitation in maintaining half-open connections. So, it drops
more packets while sending from source to destination.

4. NSL-KDD intrusion dataset: NSL-KDD5 is an enhanced version of the KD-
Dcup99 dataset. This is a well-known dataset for intrusion detection system
evaluation. The dataset is described in Table 11.

5. KDDcup99 intrusion dataset: This is the most well-known and the most pop-
ular intrusion dataset used for evaluation of any intrusion detection system.
It contains training data processed into about five million network connection
records. A connection record is a sequence of TCP packets with well-defined
starting and ending times. Each connection record is unique in the dataset with
41 continuous and nominal features plus one class label. The features available

5 http://www.iscx.ca/NSL-KDD/

Towards an Unsupervised Method for Network Anomaly Detection in Large Datasets 21

Label/feature name Type* Description

Basic features
1. Duration C Length (number of seconds) of the connection
2. Protocol-type D Type of protocol, e.g., tcp, udp, icmp
3. Src-ip C Source host IP address
4. Dest-ip C Destination IP address
5. Src-port C Source host port number
6. Dest-port C Destination host port number
7. Service D Network service on the destination e.g., http, telnet
8. num-bytes-src-dst C The number of data bytes flowing from source to destination
9. num-bytes-dst-src C The number of data bytes flowing from destination to source
10. Fr-no C Frame number
11. Fr-len C Frame length
12. Cap-len C Captured frame length
13. Head-len C Header length of the packet
14. Frag-off D Fragment offset ‘1’ for the second packet overwrite everything ‘0’

otherwise
15. TTL C Time to live ‘0’ discards the packet
16. Seq-no C Sequence number of the packet
17. CWR D Congestion window record
18. ECN D Explicit congestion notification
19. URG D Urgent TCP flag
20. ACK D Acknowledgement flag value
21. PSH D Push TCP flag
22. RST D Reset TCP flag
23. SYN D Syn TCP flag
24. FIN D Fin TCP flag
25. Land D 1 if connection is from/to the same host/port; 0 otherwise
Content-based features
26. Mss-src-dest-requested C Maximum segment size from source to destination requested
27. Mss-dest-src-requested C Maximum segment size from destination to source requested
28. Ttt-len-src-dst C Time to live length from source to destination
29. Ttt-len-dst-src C Time to live length from destination to source
30. Conn-status C Status of the connection (e.g., ‘1’ for complete, ‘0’ for reset)
Time-based features
31. count-fr-dest C Number of frames received by unique destination in the last T seconds

from the same source
32. count-fr-src C Number of frames received by unique source in the last T seconds to

the same destination
33. count-serv-src C Number of frames from the source to the same destination port in

the last T seconds
34. count-serv-dest C Number of frames from destination to the same source port in the

last T seconds
35. num-pushed-src-dst C The number of pushed packets flowing from source to destination
36. num-pushed-dst-src C The number of pushed packets flowing from destination to source
37. num-SYN-FIN-src-dst C The number of SYN/FIN packets flowing from source to destination
38. num-SYN-FIN-dst-src C The number of SYN/FIN packets flowing from destination to source
39. num-FIN-src-dst C The number of FIN packets flowing from source to destination
40. num-FIN-dst-src C The number of FIN packets flowing from destination to source
Connection-based features
41. count-dest-conn C Number of frames to unique destination in the last N packets from

the same source
42. count-src-conn C Number of frames from unique source in the last N packets to the

same destination
43. count-serv-srcconn C Number of frames from the source to the same destination port in

the last N packets
44. count-serv-destconn C Number of frames from the destination to the same source port in

the last N packets
45. num-packets-src-dst C The number of packets flowing from source to destination
46. num-packets-dst-src C The number of packets flowing from destination to source
47. num-acks-src-dst C The number of acknowledgement packets flowing from source to des-

tination
48. num-acks-dst-src C The number of acknowledgement packets flowing from destination to

source
49. num-retransmit-src-dst C The number of retransmitted packets flowing from source to destina-

tion
50. num-retransmit-dst-src C The number of retransmitted packets flowing from destination to

source

Table 8. List of packet level features in the TUIDS intrusion dataset. C and D in the
second column represent continuous and discrete features, respectively.

22 M. H. Bhuyan, D. K. Bhattacharyya, J. K. Kalita

Label/feature name Type* Description

Basic features
1. Duration C Length (number of seconds) of the flow
2. Protocol-type D Type of protocol, e.g., TCP, UDP, ICMP
3. Src-ip C Source host IP address
4. Dest-ip C Destination IP address
5. Src-port C Source host port number
6. Dest-port C Destination host port number
7. ToS D Type of service
8. URG D TCP urgent flag
9. ACK D TCP acknowledgement flag
10. PSH D TCP push flag
11. RST D TCP reset flag
12. SYN D TCP SYN flag
13. FIN D TCP FIN flag
14. Src-bytes C Number of data byte transfer from source to destination
15. Dest-bytes C Number of data byte transfer from destination to source
16. Land D 1 if connection is from/to the same host/port; 0 otherwise
Time-based features
17. count-dest C Number of flows to unique destination IP in the last T seconds from

the same source
18. count-src C Number of flows from unique source IP in the last T seconds to the

same destination
19. count-serv-src C Number of flows from the source to the same destination port in the

last T seconds
20. count-serv-dest C Number of flows from the destination to the same source port in the

last T seconds
Connection-based features
21. count-dest-conn C Number of flows to unique destination IP in the last N flows from the

same source
22. count-src-conn C Number of flows from unique source IP in the last N flows to the same

destination
23. count-serv-srcconn C Number of flows from the source IP to the same destination port in

the last N flows
24. count-serv-destconn C Number of flows to the destination IP to the same source port in the

last N flows

Table 9. List of flow level features in the TUIDS intrusion dataset. C and D in the second
column represent continuous and discrete features, respectively.

in the KDDcup99 dataset are given in Table 10. A detailed description of the
dataset is also given in Table 11.

5.2 Results and Discussion

In this section, we report the performance of the proposed method using real-life and
benchmark datasets. The method does not use any class information when it pro-
cesses a dataset for anomaly detection. We measure the accuracy of the algorithms
using the following metric.

• Detection rate = True Positive/(True Positive + False Negative)

• False positive rate = False Positive/(False Positive + True Negative)

Towards an Unsupervised Method for Network Anomaly Detection in Large Datasets 23

Label/feature name Type* Description

Basic features
1. Duration C Length (number of seconds) of the connection
2. Protocol-type D Type of protocol, e.g., tcp, udp, etc.
3. Service D Network service on the destination, e.g., http, telnet etc.
4. Flag D Normal or error status of the connection
5. Src-bytes C Number of data bytes from source to destination
6. Dst-bytes C Number of data bytes from destination to source
7. Land D 1 if connection is from/to the same host/port; 0 otherwise
8. Wrong-fragment C Number of “wrong” fragments
9. Urgen C Number of urgent packets
Content-based features
10. Hot C Number of “hot” indicators (hot: number of directory accesses,

create and execute program)
11. Num-failed-logins C Number of failed login attempts
12. Logged-in D 1 if successfully logged-in; 0 otherwise
13. Num-compromised C Number of “compromised” conditions (compromised condition:

number of file/path not found errors and jumping commands)
14. Root-shell D 1 if root-shell is obtained; 0 otherwise
15. Su-attempted D 1 if “su root” command attempted; 0 otherwise
16. Num-root C Number of “root” accesses
17. Num-file-creations C Number of file creation operations
18. Num-shells C Number of shell prompts
19. Num-access-files C Number of operations on access control files
20. Num-outbound-cmds C Number of outbound commands in an ftp session
21. Is-host-login D 1 if login belongs to the “hot” list; 0 otherwise
22. Is-guest-login D 1 if the login is a “guest” login; 0 otherwise
Time-based features
23. Count C Number of connection to the same host as the current connection

in the past 2-second
24. Srv-count C Number of connections to the same service as the current connec-

tion in the past 2-second (same-host connections)
25. Serror-rate C % of connections that have “SYN” errors (same-host connections)
26. Srv-serror-rate C % of connections that have “SYN” errors (same-service connec-

tions)
27. Rerror-rate C % of connections that have “REJ” errors (same-host connections)
28. Srv-rerror-rate C % of connections that have “REJ” errors (same-service connec-

tions)
29. Same-srv-rate C % of connections to the same service (same-host connections)
30. Diff-srv-rate C % of connections to different services (same-host connections)
31. Srv-diff-host-rate C % of connections to different hosts (same-service connections)
Connection-based features
32. Dst-host-count C Count for destination host
33. Dst-host-srv-count C Srv count for destination host
34. Dst-host-same-srv-rate C Same srv rate for destination host
35. Dst-host-diff-srv-rate C Diff srv rate for destination host
36. Dst-host-same-src-port-rate C Same src port rate for destination host
37. Dst-host-srv-diff-host-rate C Diff host rate for destination host
38. Dst-host-serror-rate C Serror rate for destination host
39. Dst-host-srv-serror-rate C Srv serror rate for destination host
40. Dst-host-rerror-rate C Rerror rate for destination host
41. Dst-host-srv-rerror-rate C Srv rerror rate for destination host

Table 10. List of features in the KDDcup99 intrusion dataset. C and D in the second
column represent continuous and discrete features, respectively.

24 M. H. Bhuyan, D. K. Bhattacharyya, J. K. Kalita

Intrusion Connection Dimensions No. No.
Datasets (ID) type of instances of classes

ID1 TUIDS coordinated scan packet level
Normal 106 380 1
Probe 50 14 423 6
Total 120 803 7

ID2 TUIDS coordinated scan flow level
Normal 36 033 1
Probe 25 15 654 6
Total 51 687 7

ID3 TUIDS packet level
Normal 47 895 1
DoS 50 30 613 15
Probe 7 757 5
Total 86 265 21

ID4 TUIDS flow level
Normal 16 770 1
DoS 25 14 475 15
Probe 9 480 5
Total 40 725 21

ID5 TUIDS DDoS flow level
Normal 25 43 252 1
Flooding attacks 22 707 3
Total 65 959 4

ID6 NSL-KDD packet level
Normal 9 711 1
DoS 7 460 11
Probe 41 2 421 6
R2L 2 753 12
U2R 199 8
Total 22 544 38

ID7 KDDcup99 corrected packet level
Normal 60 593 1
DoS 229 853 12
Probe 41 4 166 6
R2L 16 189 12
U2R 228 6
Total 311 029 37

Table 11. Distribution of Normal and Attack connection instances in real time TUIDS
Coordinated scan (packet and flow), TUIDS (packet and flow), TUIDS DDoS flow
level, NSL-KDD packet level and KDDcup99 packet level intrusion datasets

5.2.1 Nonintrusion Datasets

The method was initially tested using nonintrusion datasets. We label each clus-
ter obtained by TreeCLUSS using our CLUSSLab cluster labelling technique. We
compare performance in terms of detection rate (DR) and false positive rate (FPR).
Detailed results are given in Table 12.

5.2.2 Intrusion Datasets

In these experiments, we test our method for network anomaly detection using
TUIDS, NSL-KDD and KDDcup99 network intrusion datasets. It converts all cate-
gorical attributes into numeric form and then computes logb(xij) to normalize larger
attribute values, where xij is a large attribute value and b depends on the attribute
values. Nominal features such as protocol (e.g., tcp, udp, icmp), service type (e.g.,

Towards an Unsupervised Method for Network Anomaly Detection in Large Datasets 25

Dataset No. of
clusters

Correctly
detected

Mis-
detected

Detection
rate (%)

False positive
rate (%)

NID1 8 95 6 94.06 0.0594

NID2 9 206 8 96.26 0.0373

NID3 22 4 002 175 95.81 0.0418

NID4 3 14 296 204 98.59 0.0141

NID5 3 174 4 97.75 0.0121

NID6 5 135 13 91.22 0.0471

NID7 2 266 4 98.51 0.0522

NID8 2 761 7 99.08 0.0125

NID9 5 809 36 95.62 0.0613

NID10 12 24 867 143 99.42 0.0018

Table 12. Experimental results with nonintrusion datasets

http, ftp, telnet) and TCP status flags (e.g., sf, rej) are converted into numeric
features. We replace other categorical values by numeric values also. For example,
in the protocol attribute, the value TCP is changed to 1, UDP is changed to 2 and
ICMP is changed to 3.

We initially apply TreeCLUSS on a subset of relevant features extracted using
the MMIFS algorithm [24] for all intrusion datasets to generate a stable number of
clusters and label each cluster using CLUSSLab as normal or anomalous. Experi-
ments used the following datasets:

1. TUIDS real-time Coordinated scan dataset,

2. TUIDS real-time intrusion dataset,

3. TUIDS real-time DDoS dataset,

4. NSL-KDD intrusion dataset and

5. KDDcup99 intrusion dataset.

Then, we apply the MMIFS algorithm to find the class specific relevant subspaces for
all datasets. These class specific feature subsets are used during cluster formation.
A list of relevant features for all datasets with their ranks in descending order are
given in Table 13. Finally, experimental results of all datasets are given in Table 14.

5.2.3 Discussion

We achieve better results than competing algorithms for network anomaly detection
in terms of detection rate and false positive rate. A comparison of our method
with several competing algorithms, viz., C4.5 [39], ID3 [40], CN2 [41], CBUID [13],
TANN [37], HC-SVM [38] using the TUIDS datasets and the KDDcup99 dataset is
given in Figures 6 and 7, respectively. It can be easily seen from the figures that
our method outperforms other competing algorithms [36, 13, 37, 38] in the terms

26 M. H. Bhuyan, D. K. Bhattacharyya, J. K. Kalita

Datasets #Features Selected features

ID1 packet level

Normal 10 8, 33, 7, 9, 14, 28, 45, 1, 48, 2
Probe 15 45, 8, 34, 33, 49, 7, 14, 50, 44, 41, 39, 20, 2, 22, 30

ID2 flow level

Normal 11 14, 7, 18, 15, 19, 2, 22, 21, 25, 1, 4
Probe 14 7, 14, 11, 9, 25, 21, 24, 18, 15, 2, 6, 1, 12, 13

ID3 packet level

Normal 9 8, 33, 7, 9, 14, 28, 45, 1, 48, 2
DoS 10 8, 33, 7, 40, 38, 9, 2, 41, 49, 2
Probe 13 45, 8, 34, 33, 49, 7, 50, 44, 41, 39, 20, 2, 30

ID4 flow level

Normal 11 14, 7, 18, 15, 19, 16, 2, 22, 21, 25, 1
DoS 10 14, 18, 7, 24, 25, 2, 12, 16, 19, 22
Probe 13 7, 14, 11, 9, 16, 25, 21, 24, 18, 15, 2, 6, 1

ID5 flow level

Normal 9 8, 33, 7, 9, 14, 28, 45, 1, 48
Flooding attacks 12 8, 9, 31, 14, 33, 43, 49, 47, 7, 42, 1, 11

ID6 packet level

Normal 7 5, 3, 23, 6, 35, 1, 29
DoS 10 5, 23, 6, 24, 2, 24, 36, 41, 3, 25
Probe 15 40, 5, 23, 33, 4, 28, 3, 41, 35, 29, 27, 32, 6, 12, 24
U2R 10 5, 1, 3, 33, 24, 23, 14, 6, 32, 21
R2L 14 3, 6, 5, 13, 22, 23, 10, 35, 37, 24, 4, 1, 39, 38

ID7 packet level

Normal 6 5, 23, 3, 6, 35, 1
DoS 8 5, 23, 6, 2, 24, 41, 36, 3
Probe 13 40, 5, 33, 23, 28, 3, 41, 35, 27, 32, 12, 24, 28
U2R 10 5, 1, 3, 24, 23, 2, 33, 6, 32, 4, 14, 21
R2L 15 3, 13, 22, 23, 10, 5, 35, 24, 6, 33, 37, 32, 1, 37, 39,

22, 38, 10, 3

Table 13. Feature ranks for all classes in intrusion datasets. See Table 11 for ID numbers.

of detection rate and false positive rate, especially in case of probe, U2R, and R2L
attacks.

TreeCLUSS depends on two main parameters, α and β, but users need to provide
α value only. β can be derived from the α. Each is chosen using a heuristic approach
for each dataset. Hence, our method is less dependent on input parameters compared
to competing algorithms [36, 13, 37, 38, 16].

5.3 Statistical Significance Test

In addition to the evaluation based on real-life intrusion data, we also test statistical
significance of our results using two well known statistical measures: chi-square test

Towards an Unsupervised Method for Network Anomaly Detection in Large Datasets 27

Type No. Correctly Mis- Detection False positive
of traffic of clusters detected detected rate (%) rate (%)

ID1 packet level

Normal 7 105 121 1 259 98.81 0.0164
Probe 7 14 292 131 99.09 0.0017
Overall 14 119 413 1 390 98.95 0.0091

ID2 flow level

Normal 5 35 668 365 98.99 0.0153
Probe 7 15 519 135 99.13 0.0015
Overall 12 51 187 500 99.06 0.0084

ID3 packet level

Normal 5 47 109 786 98.35 0.0164
DoS 16 29 997 616 97.99 0.0166
Probe 5 7 637 120 98.45 0.0014
Overall 26 84 743 1 522 98.26 0.0114

ID4 flow level

Normal 3 16 486 284 98.30 0.0169
DoS 16 14 381 101 99.35 0.0167
Probe 4 9 225 255 97.31 0.0149
Overall 23 40 092 640 98.32 0.0161

ID5 flow level

Normal 2 43 104 148 99.65 0.0034
Flooding attacks 4 22 272 435 98.08 0.0195
Overall 6 65 376 583 99.11 0.0089

ID6 packet level

Normal 3 9 573 138 98.57 0.0147
DoS 12 7 391 69 99.08 0.0052
Probe 6 2 356 65 97.32 0.0182
R2L 11 2 367 386 85.97 0.1493
U2R 7 131 68 65.83 0.2050
Overall 39 21 818 726 89.35 0.0784

ID7 packet level

Normal 5 59 901 692 98.85 0.0113
DoS 14 229 796 57 99.97 0.0016
Probe 5 4 018 148 96.45 0.0160
R2L 13 14 007 2 182 86.52 0.1335
U2R 5 151 77 66.23 0.1973
Overall 42 307 873 3 156 98.98 0.0102

Table 14. Results with intrusion datasets using the proposed method

28 M. H. Bhuyan, D. K. Bhattacharyya, J. K. Kalita

0	

20	

40	

60	

80	

100	

120	

Normal DoS Probe Normal DoS Probe Normal Flooding
attacks

D
et

ec
tio

n
R

at
e

Detection methods

ID3

CN2

C4.5

Proposed method

Packet Flow
Flow level DDoS

Figure 6. Comparison of our method with competing algorithms using TUIDS intrusion
dataset

0	

20	

40	

60	

80	

100	

120	

C4.5	 ID3	 CN2	 CBUID	 HC-‐SVM	 Proposed	
method	

De
te
c%
on

	 ra
te
	 	

Detec%on	 methods	

Normal	

DoS	

Probe	

R2L	

U2R	

Figure 7. Comparison of proposed method with competing algorithms using KDDcup99
intrusion datasets

and t-test. The chi-square test is used to compute how significantly the observed
values are different from the expected values of the distribution for a given sam-
ple [43]. We reject the null hypothesis if the chi-square value is greater than the
tabulated value w.r.t. the degree of freedom and level of significance. We tested
over seven network intrusion datasets mentioned above and obtained significance
level α = 0.05 in all datasets as shown Figure 8.

The t-test is used to find the difference between two means in relation to the
variation in the data. If the computed t-value exceeds the tabulated value, we say
that it is highly significant, so that we can reject the null hypothesis. We tested

Towards an Unsupervised Method for Network Anomaly Detection in Large Datasets 29

over seven intrusion datasets and obtained t-values as shown in Figure 9. Thus, for
both statistical significance tests, we achieved higher significance level for differences
between normal and anomalous samples.

ID1 ID2 ID3 ID4 ID5 ID6 ID7
0

50

100

150

200

250

300

350

C
hi

-s
qu

ar
e

va
lu

es

Intrusion datasets

 Chi-square values

Figure 8. Chi-square test statistics for seven different intrusion datasets with significance
level α = 0.05 (min = 4.86, max = 333.28)

6 CONCLUSION

In this work, we present a tree based subspace clustering technique for unsupervised
network anomaly detection in high dimensional datasets. It generates the appro-
ximate number of clusters without having any prior knowledge of the domain. We
analyze cluster stability for each cluster by using an ensemble of multiple cluster
indices. We also introduce a multi-objective cluster labelling technique to label
each stable cluster as normal or anomalous. The major attractions of our proposed
method are the following:

1. TreeCLUSS does not require the number of clusters a priori.

2. It is free from the restriction of using a specific proximity measure.

3. CLUSSLab is a multi-objective cluster labelling technique including an effective
unsupervised feature clustering technique for identifying dominant feature subset
for each cluster.

30 M. H. Bhuyan, D. K. Bhattacharyya, J. K. Kalita

ID1 ID2 ID3 ID4 ID5 ID6 ID7
0

100

200

300

400

500

600

700

800

900

t-
te

st
 v

al
ue

s

Intrusion datasets

 N-P,D,F
 N-P
 N-R
 N-U

Figure 9. t-test statistics for seven different intrusion datasets with significance level α =
0.05; N-P, D, F, R, U represents the normal, probe, DoS, flooding attacks, R2L
and U2R respectively

4. TreeCLUSS exhibits a high detection rate and a low false positive rate, especially
in case of probe, U2R, and R2L attacks.

Thus, we are able to establish the proposed method to be superior compared to
competing network anomaly detection techniques. We also demonstrate that the
results produced by our method are statistically significant. A faster, fuzzy incre-
mental semi-supervised version of the proposed technique is underway for mixed
type network intrusion data.

Acknowledgment

This work is supported by Department of Information Technology, MCIT and Coun-
cil of Scientific & Industrial Research (CSIR), Government of India. The research
is also funded by the National Science Foundation (NSF), USA under grants DUE-
1154342 and CNS-0851783. The authors are thankful to the funding agencies.

Towards an Unsupervised Method for Network Anomaly Detection in Large Datasets 31

REFERENCES

[1] Patcha, A.—Park, J. M.: An Overview of Anomaly Detection Techniques: Exist-
ing Solutions and Latest Technological Trends. Computer Networks, Vol. 51, 2007,
No. 12, pp. 3448–3470.

[2] Su, M. Y.: Using Clustering to Improve the KNN-Based Classifiers for Online
Anomaly Network Traffic Identification. Journal of Network and Computer Appli-
cations, Vol. 34, 2011, No. 2, pp. 722–730.

[3] Toosi, A. N.—Kahani, M.: A new Approach to Intrusion Detection Based on
an Evolutionary Soft Computing Model Using Neuro-Fuzzy Classifiers. Computer
Communication, Vol. 30, 2007, No. 10, pp. 2201–2212.

[4] Chandola, V.—Banerjee, A.—Kumar, V.: Anomaly Detection: A Survey.
ACM Computing Survey, Vol. 41, 2009, No. 3, 2009, pp. 15:1–15:58.

[5] Bhuyan, M. H.—Bhattacharyya, D. K.—Kalita, J. K.: An Effective Unsuper-
vised Network Anomaly Detection Method. In: Proceedings of the 1st International
Conference on Advances in Computing, Communications and Informatics, Chennai,
India 2012, pp. 533–539.

[6] SNORT: Open Source Network Intrusion Prevention and Detection System.
Availaible on: http://www.snort.org/, 2010.

[7] BRO: Unix-Based Network Intrusion Detection System. Availaible on: http://

broids.org/, 2011.

[8] Sperotto, A.—Schaffrath, G.—Sadre, R.—Morariu, C.—Pras, A.—
Stiller, B.: An Overview of IP FlowBased Intrusion Detection. IEEE Commu-
nications Surveys & Tutorials, Vol. 12, 2010, No. 3, pp. 343–356.

[9] Tavallaee, M.—Stakhanova, N.—Ghorbani, A.: Toward Credible Evaluation
of Anomaly-Based IntrusionDetection Methods. IEEE Transactions on Systems, Man,
and Cybernetics, Part C: Applications and Reviews, Vol. 40, 2010, No. 5, pp. 516–524.

[10] Portnoy, L.—Eskin, E.—Stolfo, S.: Intrusion Detection with Unlabeled Data
Using Clustering. In: Proceedings of ACM, CSS Workshop on Data Mining Applied
to Security, Philadelphia 2001, pp. 5–8.

[11] Leung, K.—Leckie, C.: Unsupervised Anomaly Detection in Network Intrusion
Detection Using Clusters. In: Proceedings of the 28th Australasian Conference on
Computer Science, Volume 38, Darlinghurst, Australia 2005, pp. 333–342.

[12] Bhuyan, M. H.—Bhattacharyya, D. K.—Kalita, J. K.: NADO: Network
Anomaly Detection Using Outlier Approach. In: Proceedings of the Interna-
tional Conference on Communication, Computing & Security, Rourkela (India) 2011,
pp. 531–536.

[13] Jiang, S.—Song, X.—Wang, H.—Han, J. J.—Li, Q. H.: A Clustering-Based
Method for Unsupervised Intrusion Detections. Pattern Recognition Letters, Vol. 27,
2006, No. 7, pp. 802–810.

[14] Song, J.—Takakura, H.—Okabe, Y.—Nakao, K.: Toward a More Prac-
tical Unsupervised Anomaly Detection System. Information Sciences, 2011, DOI:
10.1016/j.ins.2011.08.011.

32 M. H. Bhuyan, D. K. Bhattacharyya, J. K. Kalita

[15] Noto, K.—Brodley, C.—Slonim, D.: FRaC: A Feature Modeling Approach for
Semisupervised and Unsupervised Anomaly Detection. Data Mining and Knowledge
Discovery, Vol. 25, 2012, No. 1, pp. 109–133.

[16] Casas, P.—Mazel, J.—Owezarski, P.: Unsupervised Network Intrusion Detec-
tion Systems: Detecting the Unknown Without Knowledge. Computer Communica-
tions, Vol. 35, 2012, No. 7, pp. 772–783.

[17] Lange, T.—Roth, V.—Braun, M. L.—Buhmann, J. M.: Stability Based Vali-
dation of Clustering Solutions. Neural Computing, Vol. 16, 2004, No. 6, pp. 1299–
1323.

[18] Mufti, B. G.—Bertrand, P.—Moubarki, E. L.: Determining the Number of
Groups from Measures of Cluster Stability. In: Proceedings of the International
Symposium on Applied Stochastic Models and Data Analysis, ENST Bretagne, May
17–20, Brest (France) 2005, pp. 404–413.

[19] Ben-David, S.—von Luxburg, U.—Pál, D.: A Sober Look at Clustering Sta-
bility. Proceedings of the 19th Annual Conference on Learning Theory, June 22–25,
2006, LNCS Vol. 4005, Springer Verlag 2006, pp. 5–19.

[20] Das, A. K.—Sil, J.: Cluster Validation Method for Stable Cluster Formation. Cana-
dian Journal on Artificial Intelligence, Machine Learning and Pattern Recognition,
Vol. 1, 2010, No. 3, pp. 26–41.

[21] Halkidi, M.—Batistakis, Y.—Vazirgiannis, M.: On Clustering Validation
Techniques. Journal of Intelligent Information Systems, Vol. 17, 2001, No. 23, pp. 107–
145.

[22] Brock, G.—Pihur, V.—Datta, S.—Datta, S.: clValid: An R Package for Clus-
ter Validation. Journal of Statistical Software, Vol. 25, 2008, No. 4, pp. 1–22.

[23] Jun, S.: An Ensemble Method for Validation of Cluster Analysis. International Jour-
nal of Computer Science Issues, Vol. 8, 2011, No. 6, pp. 26–30.

[24] Amiri, F.—Yousefi, M. M. R.—Lucas, C.—Shakery, A.—Yazdani, N.: Mu-
tual Information-Based Feature Selection for Intrusion Detection Systems. Journal of
Network and Computer Applications, Vol. 34, 2011, No. 4, pp. 1184–1199.

[25] Dunn, J.: Well Separated Clusters and Optimal Fuzzy Partitions. Journal of Cyber-
netics, Vol. 4, 1974, pp. 95–104.

[26] Hubert, L.—Schultz, J.: Quadratic Assignment as a General Data Analysis Strat-
egy. British Journal of Mathematical and Statistical Psychology, Vol. 29, No. 2, 1976,
pp. 190–241.

[27] Davies, D. L.—Bouldin, D. W.: A Cluster Separation Measure. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, Vol. 1, 1979, No. 2, pp. 224–227.

[28] Rousseeuw, P. J.: Silhouettes: A Graphical aid to the Interpretation and Validation
of Cluster Analysis. Journal of Computational and Applied Mathematics, Vol. 20,
1987, No. 1, pp. 53–65.

[29] Xie, X. L.—Beni, G.: A Validity Measure for Fuzzy Clustering. IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 13, 1991, No. 4, pp. 841–847.

[30] Renyi, A.: On Measures of Entropy and Information. Berkeley Symposium Mathe-
matics, Statistics and Probability 1960, pp. 547–561.

Towards an Unsupervised Method for Network Anomaly Detection in Large Datasets 33

[31] Principe, J. C.—Xu, D.—Fisher, J.: Information Theoretic Learning. Chapter:
Unsupervised Adaptive Filtering. John Wiley and Sons 2000, pp. 265–319.

[32] Jenssen, R.—Ii, K. E. H.—Erdogmus, D.—Principe, J. C.—Eltoft, T.:
Clustering Using Renyi’s Entropy. In: Proceedings of the Joint International Confer-
ence on Neural Networks, Portland 2003, pp. 523–528.

[33] Gogoi, P.—Bhuyan, M. H.—Bhattacharyya, D. K.—Kalita, J. K.: Packet
and Flowbased Network Intrusion Dataset. In: Proceedings of the 5th Interna-
tional Conference on Contemporary Computing, LNCSCCIS Vol. 306, Springer 2012,
pp. 322–334.

[34] Frank, A.—Asuncion, A.: UCI Machine Learning Repository. http://archive.
ics.uci.edu/ml, University of California, School of Information and Computer Sci-
ences, Irvine, CA 2010.

[35] KDDCUP99: Winning Strategy in KDD99. http://kdd.ics.uci.edu/databases/
kddcup99/kddcup99.html, 1999.

[36] Beghdad, R.: Critical Study of Supervised Learning Techniques in Predicting At-
tacks. Information Security Journal: A Global Perspective, Vol. 19, 2010, No. 1,
pp. 22–35.

[37] Tsai, C. F.—Lin, C. Y.: A Triangle Area Based Nearest Neighbors Approach to
Intrusion Detection. Pattern Recognition, Vol. 43, 2010, No. 1, pp. 222–229.

[38] Horng, S. J.—Su, M. Y.—Chen, Y. H.—Kao, T. W.—Chen, R. J.—Lai,
J. L.—Perkasa, C. D.: A Novel Intrusion Detection System Based on Hierarchical
Clustering and Support Vector Machines. Expert Systems with Applications, Vol. 38,
2011, No. 1, pp. 306–313.

[39] Quinlan, J. R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers, San Francisco 1993.

[40] Quinlan, J. R.: Induction of Decision Trees. Mach. Learn., Vol. 1, 1986, No. 1,
pp. 81–106.

[41] Clark, P.—Niblett, T.: The CN2 Induction Algorithm. Mach. Learn., Vol. 3,
1989, No. 4, pp. 261–283.

[42] Bhuyan, M. H.—Bhattacharyya, D. K.—Kalita, J. K.: RODD: An Effective
Outlier Detection Technique for Large Datasets. In: Proceedings of the 1st Inter-
national Conference on Computer Science and Information Technology (LNCSCCIS
2010), Bangalore, India 2010, pp. 76–84.

[43] Daniel, W. W.: Biostatistics: A Foundation for Analysis in the Health Sciences.
John Wiley & Sons, New York 1987.

34 M. H. Bhuyan, D. K. Bhattacharyya, J. K. Kalita

Monowar Hussain Bhuyan received his M. Tech. in infor-
mation technology from the Department of Computer Science
and Engineering, Tezpur University, Assam, India in 2009. Cur-
rently, he is working towards his Ph. D. in computer science and
engineering at the same university. He is a life member of IETE,
India. His research areas include machine learning, computer
and network security. He has published fifteen papers in inter-
national journals and referred conference proceedings.

Dhruba Kr. Bhattacharyya received his Ph. D. in computer
science from Tezpur University in 1999. He is a Professor in
the Computer Science and Engineering Department at the same
university. His research areas include data mining, network se-
curity and content based image retrieval. He has published 150+
research papers in leading international journals and conference
proceedings. In addition, he has written/edited 8 books. He
is a Programme Committee/Advisory Body member of several
international conferences/workshops.

Jugal K. Kalita is a Professor of computer science at the Uni-
versity of Colorado at Colorado Springs. He received his Ph. D.
from the University of Pennsylvania. His research interests in-
clude natural language processing, machine learning, artificial
intelligence and bioinformatics. He has published 120 papers in
international journals and referred conference proceedings and
has written two books.

