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Abstract. A new approach of the string theory called the Prediction Model Based
on String Invariants (PMBSI) was applied here to time-series forecast. We used
2-end-point open string that satisfies the Dirichlet and Neumann boundary condi-
tions. The initial motivation was to transfer modern physical ideas into the neigh-
boring field called econophysics. The physical statistical viewpoint has proved to be
fruitful, namely in the description of systems where many-body effects dominate.
However, PMBSI is not limited to financial forecast. The main advantage of PMBSI
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includes absence of the learning phase when large number of parameters must be
set. Comparative experimental analysis of PMBSI vs. SVM was performed and the
results on artificial and real-world data are presented. PMBSI performance was in
a close match with SVM.
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1 INTRODUCTION

A new approach of the string theory called the Prediction Model Based on String
Invariants (PMBSI) was applied here to time-series forecast. This paper focuses on
comparative experimental analysis aimed to identify strengths and weaknesses of
PMBSI and to compare its performance to a benchmark, Support Vector Machine
(SVM) in this case. PMBSI is based on the approaches described in [9] and extends
the previous work. PMBSI also represents one of the first attempts to apply the
string theory in the field of time-series forecast and not only in high energy physics.
The string theory was developed over the past 25 years and it has achieved a high
degree of popularity and respect among the physicists [12]. The initial idea was to
transfer modern physical ideas into the neighboring field called econophysics. The
physical statistical viewpoint proved the ability to describe systems where many-
body effects dominate. However, bottom-up approaches are cumbersome to follow
the behavior of the complex economic systems, where autonomous models encounter
intrinsic variability. Modern digital economy is founded on data. The primary moti-
vation comes from the actual physical concepts [10, 11]; however, the implementation
presented here differs from the original attempts in various significant details.

The time-series forecasting is a scientific field under continuous active develop-
ment covering an extensive range of methods. Traditionally, linear methods and
models are used. Despite their simplicity, linear methods often work well and may
well provide an adequate approximation for the task at hand and are mathematical-
ly and practically convenient. However, the real life generating processes are often
non-linear. Therefore plenty of non-linear forecast models based on different ap-
proaches has been created (e.g. GARCH [8], ARCH [7], ARMA [6], ARIMA [5] etc).
Presently, the perhaps most used methods are based on Artificial Neural Networks
(ANN, covering a wide range of methods) and Support Vector Machines (SVM).
A number of research articles compares ANN and SVM to each other and to other
more traditional non-linear statistical methods. Tay and Cao ([4]) examined the fea-
sibility of SVM in financial time series forecasting and compared it to a multilayer
Back Propagation Neural Network (BPNN). They showed that SVM outperforms
the BP neural network. Kamruzzaman and Sarker [3] modeled and predicted cur-
rency exchange rates using three ANN based models and a comparison was made
with ARIMA model. The results showed that all the ANN based models outperform
ARIMA model. Chen et al. [2] compared SVM and BPNN taking auto-regressive



Experimental Analysis of the Prediction Model Based on String Invariants 1133

model as a benchmark in forecasting the six major Asian stock markets. Again,
both the SVM and BPNN outperformed the traditional models.

While the traditional ANN implements the empirical risk minimization principle,
SVM implements the structural risk minimization ([1]). Structural risk minimization
is an inductive principle for model selection used for learning from finite training
data sets. It describes a general model of capacity control and provides a trade-off
between hypothesis space complexity and the quality of fitting the training data
(empirical error). For this reason SVM is often chosen as a benchmark to compare
other non-linear models to and it was also the benchmark of choice here.

2 PREDICTION MODEL BASED ON STRING INVARIANTS

2.1 String Maps

The original time-series p(τ) is converted as follows

p(τ + h)− p(τ)

p(τ + h)
, (1)

where h denotes the lag between p(τ) and p(τ + h), τ is the index of the time series
element. On financial data, e.g. on the series of the quotations of the mean currency
exchange rate, this operation would convert the original time-series onto a series of
returns.

Using the string theory let us first define the 1-end-point open string map

P (1)(τ, h) =
p(τ + h)− p(τ)

p(τ + h)
, h ∈ 〈0, ls〉 (2)

where the superscript (1) refers to the number of endpoints and ls to the length of
the string (string size). ls is a positive integer.

Here the variable h may be interpreted as a variable which extends along the
extra dimension limited by the string size ls. A natural consequence of the transform,
Equation (2), is the fulfillment of the boundary condition

P (1)(τ, 0) = 0, (3)

which holds for any τ . To highlight effects of the rare events a power-law Q-deformed
model is introduced

P (1)(τ, h) =

1−
[

p(τ)

p(τ + h)

]Q , Q > 0. (4)

The 1-end-point string has defined the origin and it reflects the linear trend in p(.)
at the scale ls.
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The presence of a long-term trend is partially corrected by fixing P (2)(τ, h) at
h = ls. The open string with two end points is introduced via the nonlinear map
which combines information about trends of p at two sequential segments

P (2)(τ, h) =

1−
[

p(τ)

p(τ + h)

]Q1−
[
p(τ + h)

p(τ + ls)

]Q , h ∈ 〈0, ls〉. (5)

The map is suggested to include boundary conditions of Dirichlet type

P (2)(τ, 0) = Pq(τ, ls) = 0, at all ticks τ. (6)

In particular, the sign of P (2)(τ, h) comprises information about the behavior differ-
ences of p(.) at three quotes (τ, τ + h, τ + ls). The P (2)(τ, h) < 0 occurs for trends
of the different sign, whereas P (2)(τ, h) > 0 indicates the match of the signs.

2.2 String Invariants

The meaning of invariant is that something does not change under transformation,
e.g. such as some equations from one reference frame to another. This idea is to
be extended on the time-series forecast by finding invariants in the data and utilize
them to predict the future values. Similar research aimed to find invariant states
of a financial market is described in [16]. Let us introduce a positive integer lpr

denoting the prediction scale of how many steps ahead of τ0 lies the predicted value.
Let us introduce an auxiliary positive integer Λ and a condition

Λ = ls − lpr, ls > lpr. (7)

The power of the nonlinear string maps of time-series data is to be utilized
to establish a prediction model similarly as in [13, 14, 15]. We suggest a 2-end-
point mixed string model where one string is continuously deformed into the other.
The approach to define the string invariants was published before and here it is
described in the Appendix (Section 6). The family of invariants is written using the
parametrization

C(τ,Λ) = (1− η1)(1− η2)
Λ∑
h=0

W (h)

×

1−
[

p(τ)

p(τ + h)

]Q1−
[
p(τ + h)

p(τ + ls)

]Q
+ η1(1− η2)

Λ∑
h=0

W (h)

1−
[

p(τ)

p(τ + h)

]Q
+ η2

Λ∑
h=0

W (h)

1−
[
p(τ + h)

p(τ + ls)

]Q , (8)
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where η1 ∈ (−1, 1), η2 ∈ (−1, 1) are variables (variables which may be called homo-
topy parameters), Q is a real valued parameter, and the weight W (h) is chosen in
the bimodal single parameter form

W (h) =

{
1−W0, h ≤ ls/2,
W0, h > ls/2,

(9)

and

W0 =
1∑ls

h′=0 e
−h′/Λ

. (10)

The above is not the only nor the ideal setting of the weight parameters and modi-
fications are planned.

2.3 Making Prediction

p(τ0 + lpr) is expressed in terms of the auxiliary variables

A1(Λ, τ) = (1− η1)(1− η2)
Λ∑
h=0

W (h)

1−
[

p(τ)

p(τ + h)

]Q , (11)

A2(Λ, τ) = −(1− η1)(1− η2)
Λ∑
h=0

W (h)

1−
[

p(τ)

p(τ + h)

]Q pQ(τ + h), (12)

A3(Λ, τ) = η1(1− η2)
Λ∑
h=0

W (h)

1−
[

p(τ)

p(τ + h)

]Q , (13)

A4(Λ, τ) = η2

Λ∑
h=0

W (h), (14)

A5(Λ, τ) = −η2

Λ∑
h=0

W (h)pQ(τ + h). (15)

Thus the expected prediction form reads

p(τ0 + lpr) =

[
A2(Λ, τ ′) + A5(Λ, τ ′)

C(τ0 − ls,Λ)− A1(Λ, τ ′)− A3(Λ, τ ′)− A4(Λ, τ ′)

]1/Q

, (16)

where τ ′ = τ0 + lpr − ls, (τ ′ = τ0 − Λ). The derivation is based on the invariance

C(τ, ls − lpr) = C(τ − lpr, ls − lpr), (17)

and the model will be efficient if

C(τ0,Λ) ' C(τ0 + lpr,Λ). (18)

The model’s free parameters are ls, lpr, η1, η2 and Q. These must be set during
the optimization phase. PMBSI does not require learning phase in the traditional
sense.
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PMBSI requires the time-series being processed to be non-negative. Otherwise
the forecasts will not be defined (NaN). Even so PMBSI sometimes returns NaN
values. This problem was fixed here by substitution of the NaN forecast by the most
recent input for lpr = 1 (naive prediction) and by the last valid forecast recorded for
lpr > 1.

3 EXPERIMENTAL ANALYSIS

3.1 Experimental Setup

The experiments were performed on two time-series. The first series represented
artificial data, namely a single period of a sinusoid sampled by 51 regularly spaced
samples. The second time series represented proprietary financial data sampled
daily over the period of 1295 days. The performance of PMBSI was compared to
SVM and to naive forecast. There were two error measures used, mean absolute
error (MAE) and symmetric mean absolute percentage error (SMAPE) defined as
follows:

MAE =
1

n

n∑
t=1

|At − Ft|, (19)

SMAPE =
100

n

n∑
t=1

|At − Ft|
0.5(|At|+ |Ft|)

, (20)

where n is the number of samples, At is the actual value and Ft is the forecast value.

Each time-series was divided into three subsets: training, evaluation and vali-
dation data. The time ordering of the data was maintained; the least recent data
were used for training, the more recent data were used to evaluate the performance
of the particular model with the given parameters’ setting. The best performing
model on the evaluation set (in terms of MAE) was chosen and made forecast for
the validation data (the most recent) that were never used in the model optimization
process. Experimental results on the evaluation and validation data are presented
below.

The parameters of the models were optimized by trying all combinations of
parameters sampled from given ranges with a sufficient sampling rate. Naturally,
this process is slow but it enabled to get an image of the shape of the error surface
corresponding to the given settings of parameters and ensured that local minima
are explored. The above approach was used for both, PMBSI and SVM.

The SVM models were constructed so that the present value and a certain
number of the consecutive past values comprised the input to the model. The input
vector corresponds to what will be referred to here as the time window with the
length ltw (representing the equivalent of the length of the string map ls by PMBSI).
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3.2 Experimental Results on the Artificial Time-Series

The sigmoid data were divided into subsets so that the positive half of the period
was used for training and evaluation and the negative half for validation. This was
done to assess the ability of PMBSI to extrapolate and generalize. For PMBSI the
time series was shifted above zero by adding a positive constant. The constant was
then subtracted from the forecast. SVM with linear kernel was used as a benchmark.
The positive half of the period was divided 7/3 for training/validation. Predictions
of 1, 2 and 3 steps ahead were made. It became obvious that PMBSI performs well
in one step ahead prediction but for multiple steps ahead predictions its performance
drops rapidly. Therefore, iterated prediction using the one step prediction model was
made, improving the PMBSI results significantly. For illustration, Figure 1 shows
the comparison of iterated versus the direct prediction using PMBSI. Table 1 shows
the experimental results. The results of the best performing models are highlighted.

Method lpr MAE MAE SMAPE
eval valid valid

PMBSI
1 0.000973 0.002968 8.838798
2 0.006947 0.034032 14.745538
3 0.015995 0.161837 54.303315

Iterated PMBSI
1 – – –
2 0.003436 0.011583 10.879313
3 0.008015 0.028096 14.047025

SVM
1 0.011831 0.007723 10.060302
2 0.012350 0.007703 10.711573
3 0.012412 0.007322 11.551324

Naive forecast
1 – 0.077947 25.345352
2 – 0.147725 34.918149
3 – 0.207250 41.972591

Table 1. Experimental results on artificial time-series

The optimal ltw for SVM was 3 for all predictions. Table 2 shows the optimal
settings found for PMBSI. For lpr = 1 when PMBSI outperformed linear SVM the
optimal length of the string map was shorter than the optimal time window for
SVM; in the remaining cases it was significantly longer.

lpr ls Q η1 η2

1 2 0.30 0.80 −0.20

2 5 0.10 0.80 −0.60

3 8 0.10 0.80 −0.60

Table 2. Optimal PMBSI parameters
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Figure 1. Iterated and direct prediction using PMBSI on artificial data

3.3 Experimental Results on the Financial Time-Series

The financial time-series was divided into subsets so that the most recent 40 % of the
data was used for validation and the remaining data were used for training/validation
divided in the ratio of 6/4. While extrapolation of sigmoid was a relatively simple
task, the financial time-series was highly non-linear and chaotic. SVM with Gaus-
sian RBF kernel was used as the benchmark. Predictions 1–10 steps ahead were
made. Table 3 shows a selection of the experimental results. The results of the best
performing models are highlighted. Table 4 summarizes the optimal parameters
found and states the percent count of NaNs forecast by PMBSI. Interestingly, SVM
preferred long time windows reaching the upper limit on the length while PMBSI
utilized much less of the past data to make a forecast.

Again, the prediction accuracy of PMBSI was deteriorating significantly for
longer forecasts and the results have improved significantly with iterated prediction.
The longest prediction of 10 steps ahead was chosen to depict the experimental
results on the financial data graphically (Figures 3, 4, 5).

3.4 Analysis

There was a preliminary experimental analysis of the PMBSI method performed.
The goal was to evaluate the prediction accuracy, the generalization performance,
the convenience of the method in terms of the operators effort needed to prepare
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Figure 2. MAE corresponding to various settings of ls and Q on the financial data. The
white square is the global minimum of MAE

0 100 200 300 400 500 600
time (days)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

v
a
lu
e

PMBSI forecast 10 steps ahead

actual
forecast

Figure 3. Forecast 10 steps ahead, PMBSI vs. the financial time-series
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Figure 4. Forecast 10 steps ahead, iterated PMBSI vs. the financial time-series
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Figure 5. Forecast 10 steps ahead, SVM vs. the financial time-series
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Method lpr MAE MAE SMAPE
eval valid valid

PMBSI
1 0.023227 0.023595 7.380742
2 0.037483 0.036335 11.378275
4 0.048140 0.046381 14.876330
6 0.054556 0.049755 16.094349
8 0.057658 0.056097 18.546008
10 0.060192 0.058216 18.752986

Iterated PMBSI
1 – – –
2 0.032706 0.031940 9.953547
4 0.043134 0.042414 13.250729
6 0.049916 0.047784 15.102693
8 0.055326 0.051355 16.306971
10 0.057802 0.052353 16.552731

SVM
1 0.021383 0.025546 8.046289
2 0.027721 0.031878 10.046793
4 0.036721 0.039702 12.578553
6 0.041984 0.044450 14.157343
8 0.044525 0.047175 15.036534
10 0.046166 0.050236 15.898355

Naive forecast
1 0.023273 7.287591
2 0.031486 9.822408
4 0.041811 13.078883
6 0.047238 14.958371
8 0.050788 16.148619
10 0.051923 16.428804

Table 3. Experimental results on the financial time-series

a working model, computational time and other aspects of the PMBSI method that
may have became obvious during the practical deployment. The prediction capabi-
lity of PMBSI was proven and it was shown that it can match and even outperform
SVM in some cases (see the results on the artificial data). On the financial data both
methods, SVM and PMBSI, struggled to match the naive forecast. The reason for
this is probably the complexity, intrinsic variability and chaotic nature of the system
the time-series is describing. Although the tests of PMBSI method on a larger set
of time-series are on the way, the presented results have proven that PMBSI can be
successfully used for single step forecast. The problem is that the more chaotic is
the time series the shorter is the period when the invariant Equation (18) is fulfilled.
Therefore PMBSI is effective for the single step prediction because the probability of
a significant change in the time series is lower. The situation is different for multiple
steps prediction leading to small efficiency in such cases.

The way to improve the performance in multiple steps predictions is to chose
more appropriate weighting coefficients (Equations (9), (10)). The optimized weights
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SVM PMBSI
lpr ltw ls Q η1 η2 NaN (%)

1 51 2 20.3 0.0 0.0 20.43

2 51 5 15.5 0.0 −0.05 14.6

4 51 8 11.9 0.0 0.0 19.25

6 51 10 14.3 0.1 −0.05 21.42

8 51 18 16.4 0.4 0.10 25.69

10 51 14 11.9 0.3 0.05 21.32

Table 4. Optimal parameters on the financial time-series and percent of NaNs forecast by
PMBSI

should considerably extend the interval where Equation (18) is fulfilled. Therefore
this is planned in the future development.

PMBSI predictor does not undergo a training process that is typical for ANN
and SVM where a number of free parameters must be set (synaptic weights by
ANN, α coefficients by SVM). PMBSI features a similar set of weights (W ) but
often very small and calculated analytically. The parameters to be optimized are
only four: ls, Q, η1, η2. This, clearly, is an advantage. On the other hand the
optimal setting of the parameters is not easy to be found as there are many local
minima on the error surface. In this analysis the optimal setting was found by
testing all combinations of parameters sampled from given ranges. Figure 2 shows
the Mean Absolute Error (MAE) of the 5-steps ahead forecast of the financial time
series corresponding to various settings of ls and Q (η1, η2 = 0); but the figure makes
also obvious that PMBSI’s performance is approximately the same for a wide range
of settings, making it unnecessary to explore the whole error surface. Because of
this PMBSI can be fast to construct and to deploy.

4 FUTURE WORK

Beside the further test of PMBSI we consider that fast methods for optimization
of parameters must be developed. Because of the character of the error surface we
have chosen to use evolutionary optimization as the method of choice. After a fast
and successful parameters’ optimization method is developed, optimization of the
weighting parameters (Equations (9), (10)) will be included into the evolutionary
process. Further extensive experimental testing is to be performed.

5 CONCLUSION

A new prediction method PMBSI based on the string theory was described and
tested on artificial and real-world data. The experimental results are shown. It has
been proven that PMBSI is viable and further development was outlined. Finally we
can conclude that PMBSI is applicable with a good efficiency for iterative prediction
using a single step forecast when it matches and sometimes outperforms SVM. The
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main advantage of PMBSI is the low number of free parameters compared to learning
methods such as SVM and ANN.
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6 APPENDIX: CORRELATION FUNCTION AS INVARIANT

A correlation function is a statistical correlation between random variables at two
different points in our case the strings in time series. For simplicity in the Appendix
we used only one point strings (Equation (4)) with parameter Q = 1. Usually the
correlation function is defined as C(τ, l0) = 〈P 1(τ, l0)P 1(τ + 1, l0)〉. We suppose the
invariant in the form of the correlation function

C(τ, l0) =
h=l∑
h=l0

W (h)

(
1− p(τ − h)

p(τ − 1− h)

)(
1− p(τ − 1− h)

p(τ − 2− h)

)
, (21)

with weight W (h) defined as in Equation (9). We assume the condition of the
invariance between close strings in τ and at the next step τ + 1 in time series (exact
meaning of the one step prediction) in the form

C(τ, l0) = C(τ + 1, l0). (22)

Now we want to find exact expression for the one step prediction p(τ+1). Therefore
we evaluate one step correlation invariant Equation (22) with initial condition l0 = 0

W (0)

(
1− p(τ)

p(τ − 1)

)(
1− p(τ − 1)

p(τ − 2)

)
=
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W (0)

(
1− p(τ + 1)

p(τ)

)(
1− p(τ)

p(τ − 1)

)
+

W (1)

(
1− p(τ)

p(τ − 1)

)(
1− p(τ − 1)

p(τ − 2)

)
, (23)

which can be rewritten in the more compact form

C(τ, 0) = W (0)

(
1− p(τ + 1)

p(τ)

)(
1− p(τ)

p(τ − 1)

)
+ C(τ + 1, 1) (24)

and (
1− p(τ + 1)

p(τ)

)
=
C(τ, 0)− C(τ + 1, 1)

W (0)
(
1− p(τ)

p(τ−1)

) . (25)

We finally obtain the prediction

p(τ + 1) = p(τ)

1 +
C(t+ 1, 1)− C(t, 0)

W (0)
(
1− p(τ)

p(τ−1)

)
 , (26)

valid for p(τ) 6= p(τ − 1). These are general definitions for the one step prediction
correlation invariants. A similar way (Equation (16)) can be found for 2-end-point
and 1-end-point mixed strings model with Q > 0.
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[9] Horváth, D.—Pincak, R.: From the Currency Rate Quotations Onto Strings
and Brane World Scenarios. Physica A: Statistical Mechanics and Its Applications.
Volume 391, 2012, Issue 21, pp. 5172–5188.

[10] McMahon, D.: String Theory Demystified. The McGraw-Hill Companies, Inc.,
2009.

[11] Zwiebach, B.: A First Course in String Theory. Cambridge university press, 2009.

[12] Polchinski, J.: String Theory. Cambridge University Press, 1998.

[13] Christiansen, J. D.: The Journal of Prediction Market 1, 17. 2007.

[14] Chang, Ch. Ch.—Hsieh Ch. Y.—Lin, Y. Ch.: Applied Economics Letters iFirst,
1. 2011.

[15] Wolfers, J.—Zitzewitz, E.: Prediction Markets. Journal of Economic Perspec-
tives, Vol. 18, 2004, No. 107.
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