
Computing and Informatics, Vol. 33, 2014, 35–60

A SPEMONTOLOGY FOR SOFTWARE PROCESSES
REUSING

Fadila Aoussat

LSI Laboratory, University of Sciences and Technology Houari Boumediene
BP 32, Bab Ezzouar, Algeria
e-mail: a zahoua@yahoo.fr

Mourad Oussalah

LINA Laboratory, University of Nantes, CNRS UMR 6241
2, Rue de la Houssinière,BP 92208, 44322, Nantes, France
e-mail: Mourad.oussalah@univ-nantes.fr

Mohamed AhmedNacer

LSI Laboratory, University of Sciences and Technology Houari Boumediene
BP 32, Bab Ezzouar, Algeria
e-mail: anacer@mail.cerist.dz

Abstract. Reusing the best practices and know-how capitalized from existing soft-
ware process models is a promising solution to model high quality software processes.
This paper presents a part of AoSP (Architecture oriented Software Process) for
software processes reuse based on software architectures. The solution is proposed
after the study of existing works on software process reusing. AoSP approach
deals with the engineering “for” and “by” reusing software processes, it exploits the
progress of two research fields that promote reusing in order to improve the software
process reusing: domain ontologies and software architectures. AoSP exploits a do-
main ontology to reuse software process know-how, it allows retrieving, describing
and deploring software process architectures. This article details the engineering
“for” reusing SPs step of AoSP, it explains how the software process architectures
are described and discusses the software process ontology conceptualization and
software process knowledge acquisition.

36 F. Aoussat, M. Oussalah, M. Ahmed Nacer

Keywords: Software process (SP) reuse, SP connectors, SP architecture, SP styles,
domain ontology, System and Software Process Engineering Metamodel (SPEM),
ATL transformations, SP knowledge acquisition

Mathematics Subject Classification 2010: 68U99, 68T30

1 INTRODUCTION

The quality of a software product depends on the quality of the software process
models that are used for the development and maintenance of this software pro-
duct [21].

Software Process (SP) models are complex structures used to define the steps
performed during software development. Many kinds of information must be in-
tegrated to describe these steps (resources, roles, input and output products. . .).
Therefore, an important number of concepts, paradigms and languages are identi-
fied to cover the different software development aspects. However, there are always
difficulties to model SPs that deal with software development preoccupations such
as flexibility, dynamicity and evolution [9].

Reuse SPs is one of the promised approaches used to improve SPs. Reusing ap-
proaches allows to exploit best practices and know-how capitalized from the prece-
dent SP modeling and enactment experiments. However, diversity and wide range
of SP models, in addition to SP rigidity, make the SP model reusing very diffi-
cult. A number of studies are being conducted nowadays in order to provide better
support regarding SP reuse. Unfortunately, no reusing approach has emerged as
reference in the SP reusing domain.

This article presents a part of an approach for reusing SPs: AoSP (Architecture
oriented Software Process); this approach focuses on the insufficiencies of the existing
solutions for reusing SPs and suggests pertinent ones.

In order to cover engineering “by” reusing SPs, we focus our researches on the
SP reuse approaches based on software architectures. We believe that reusability,
flexibility and abstraction of the software architectures combined with software ar-
chitecture deployment techniques are relevant characteristics that can be used to
provide a pertinent reusing approach to model high quality SPs. Thus, we describe
and deploy SP architectures.

Moreover, in order to cover the engineering “for” reusing SPs, we focus our
researches on the SP reuse approaches based on domain ontology. Our aim is to share
common understanding among stakeholders by capitalizing the best practices and
know-how extracted from different SP models. We think that using a domain onto-
logy can offer a pertinent SP repository that can not only manage the heterogeneity
of the SP models in terms of concepts and terminologies, but can also provide better
support for logical inference that allows the emergence of new solutions for the SP
improvement.

A SPEMOntology for Software Processes Reusing 37

To suggest a standard solution the domain ontology must be coherent, not am-
biguous, and commonly accepted by the SP community. It must not only capitalize
knowledge extracted from heterogeneous SP models, but also retrieve the required
comprehensible SP architecture knowledge in order to deploy the SP architectures.

To present the engineering “for” reusing step of AoSP approach, our article
is organized as follows: Section 2 presents AoSP approach and the adopted steps
to model reusable SPs. AoSP describes SP architectures, thus, Section 3 provides
the adopted semantics to describe SP architectures. We present briefly the explicit
connectors and architectural styles defined for the SP architectures. Section 4 details
how our domain ontology is designed. The SPEMOntology generation is detailed
in section 5. To describe and deploy SP architectures, our ontology must capitalize
different kinds of knowledge; thus, section 6 details how heterogeneous SP knowledge
are capitalized. Section 7 presents a first evaluation of our contribution and details
the remaining works. Section 8 concludes the article and announces the future work.

2 AOSP (ARCHITECTURE ORIENTED SOFTWARE PROCESS)
APPROACH

AoSP exploits the progress of two research fields to improve the SPs reusing: onto-
logy and software architectures. The proposed approach has two steps [4]:

• Knowledge capitalization by reverse engineering applied to existing SP models.
For this aim we use domain ontology that capitalizes the pertinent SP knowledge.
The capitalized knowledge is used to do the SP pre-modeling.

• Effective SP knowledge reusing by describing and deploying the extracted SP
knowledge as software architectures. This step constitutes the SP final modeling.

The main objectives of AoSP are as follows:

• Suggest a general solution: that can be applied for different kinds of SP models.

• Increase the SP reuse: by exploiting the precedent SP modeling and enactment
experiences.

• Increase the SP re-usability: by modeling reusable SP models and dealing with
the SP models complexity and rigidity.

• Increase the SP quality: by giving the essential characteristics, such as compre-
hension, modeling and analyzing facilities, agility and evolution. These char-
acteristics are often difficult to obtain as SPs are described as complex and
depend on the kind of the used Process Modeling Language (PML) and the
adopted terminology.

Architecture oriented Software Process (AoSP) approach suggests a new vision
to model SPs; describing SP architectures offers the possibility to separate the SP
preoccupations such as the execution control, the interaction and the SP model
structure. Also, it allows greater flexibility: separating the process content from the

38 F. Aoussat, M. Oussalah, M. Ahmed Nacer

process structure and exploiting the deployment mechanisms reduce the SP models
dependency on their environments and PMLs.

The objective of AoSP is not to suggest a new PML but to reuse existing tools
and PMLs. According to software architectures specificities, the SP modeling is
decomposed into two steps:

• Pre modeling: In this step we model the different SP preoccupations separately
(structure, interaction and treatment). This step increases SP model compre-
hension and has a direct impact on SP modeling and analyzing facilities.

• Final modeling: In this step we deploy the SP architecture that can be done
with different PMLs specific to different SP kinds. The deployment must be in
an automatic way by developing code generators. This possibility gives a general
aspect to our approach and increases the SP reusability.

3 SOFTWARE PROCESS ARCHITECTURE DESCRIPTION

To describe SP architectures, we study existing approaches that exploit architec-
tural elements to model SPs. Our SP architectural concepts identification is based
on ADL (Architecture Description Language) approach [24, 2], as the ADLs have
more pertinent semantics than the traditional architecture description approaches.
The ADLs introduce explicitly architectural concepts, techniques and tools that al-
low describing the software architectures rigorously. Our motivation is to exploit
existing software architectures tools to describe our SP architectures. Thus, in our
work, we study the architectural elements commonly accepted by the software archi-
tecture community [25]: component, connector, configuration, interface component,
interface connector and architectural style.

3.1 Insufficiencies of the Reusing Approaches Based
on Software Architectures

In most reusing approaches based on software architectures [6, 8, 12, 14] the central
concept is the SP Component. A SP component in an activity (Works Unit) or
an activities sequence. The SP Component is explicit in most approaches. The SP
component interface is the work product required or given by the SP component [26,
12]. Configuration is in general implicit and not exploited formally, particularly, in
the approaches based on components. Formal rules that describe the SP components
and SP connectors assembling are not defined explicitly [26, 12, 1, 14]. For the
connector concept there is no consensus on its interpretation, the SP connector can
be:

• implicit and describes a dependency between activities, it can be a precedence
link or a delegation link [12];

• predefined and depends the used PML [23, 14];

A SPEMOntology for Software Processes Reusing 39

• explicit but considered as software connector and not specific to the SP domain
(communication unit, communication protocols) [11].

Approach Category The used architectural element

PYNODE [6] Component
oriented.

Component, interface component, implicit
connector.

APEL [15] Component
oriented.

Component, interface component (signa-
ture), implicit connectors.

RHODES [12] Component
oriented.

Component, interface component, com-
posite component, implicit connectors
(function call).

SPEM [26] Component
oriented.

Component (Activity), interface compo-
nent (Work Product Ports), implicit con-
nectors (Work Product Port Connectors).

Connectors for bridging
SP models [23]

Connector
oriented.

Three predefined connectors, implicit
component (SP models).

Supporting sensitive
SPs [1]

Connector
oriented.

Component, explicit connector, implicit
configuration.

Acquisition and simula-
tion of process architec-
tures [11]

Architecture
oriented.

Component (SP model), interface compo-
nent, explicit connector (communication
module), implicit configuration.

App. based on evo-
lution process compo-
nents [14]

Architecture
oriented.

Component, predefined connectors (con-
current, selection, sequence), configura-
tion.

Table 1. Architectural elements of the studied approaches based on software architectures

Table 1 summarizes the architectural elements used in the existing approaches
for reusing SPs based on software architectures. The objective of these approaches
is to reuse their own SP components with their own PMLs, thus, the proposed
semantics are specific to each approach and depend on the used PMLs; this explains
the personal interpretations and the lack of consensus on the architectural elements.
We summarize the insufficiencies of these approaches as follows:

• Limited reuse: The reusable elements such as SP components and SP connectors
are defined for internal use, they are described with particular PMLs and cannot
be reused by other environments.

• Under exploitation of architectural elements: Configuration and assembling con-
straints are not exploited; architectural styles and explicit reusable connectors
specific to SP models are not defined.

• No general solution: Every approach deals with a particular problem and uses
a particular PML (simulation [11], evolution [14], distribution [15], interac-
tion [1]), there is no generic solution that can be applied for a large range of
SPs.

40 F. Aoussat, M. Oussalah, M. Ahmed Nacer

• No SP architecture deployment: No deployment mechanisms or code generation
are proposed, even if there is some assistance [12]; the final version of the SP
model is modeled by the SP developer.

3.2 Software Process Architecture Description

Based on existing SP reusing approaches insufficiencies, combining with ADL ap-
proaches, we define a complete semantic to describe SP architectures. Our aim is to
describe the SP model as software architecture and exploit the advantages offered
by the software architecture domain but by respecting the SP characteristics such as
human dimension [29] and unexpected events during the SP execution. Thus a SP
Architecture is set as software architecture of SP components that interact through
SP connectors, it describes the principles and guidelines that govern there design
and evolution.

The interactions have a central place in the SP model [1]; moreover, the SP is
human centered; thus, it is important to manage the different kinds of interactions.
Our analysis is oriented to give a solution to handle the different kinds of SP inter-
actions. Defining SP connectors that can adapt and facilitate the SP interactions
is the adopted solution. We define our SP connector as an activity that facilitates
and controls the transmission flow between the SP activities. A SP connector does
not create new products, but adapts, evaluates and controls existing products. The
distinction between “creation” activities and “adaptation and control” activities is
the basis of the SP architectural concepts interpretations; thus, we define our SP
architectural elements as follows:

• SP component: the SP component is a treatment done on input work products
to “create” out work products.

• SP port: The SP component interface is a set of SP ports. It represents connec-
tion points that allow sending or receiving the flow (data flow or control flow)
of the SP component. Two kinds of SP ports are defined: data flow ports and
control flow ports.

• SP connector: The SP connector is an activity that assures and adapts the
SP data transmissions. It also allows evaluation and control of the execution
flow. It is independent from the used developement method but depends on the
execution and the structure of the SP model.

• SP connector role: The SP connector interface is set of SP connector roles.
It represents connection points that allow sending or receiving the flow (data
flow or control flow) of the SP connector. Two kinds of SP connector roles are
defined: data flow connector roles and control flow connector roles.

• SP configuration: as software configuration, it describes an assembly of SP
components and SP connectors by determining explicitly the connection and
the assembly constraints that must be respected.

A SPEMOntology for Software Processes Reusing 41

• SP style: The SP architecture style is defined as a structural style that the
execution policy can be formalized by combining an adequate execution style.
SP architectural styles allow not only to capture recurrent structures, but also
to capture recurrent execution policies.

System ISPW6 = {
 Component Schedure_and_Assign_tasks = {
 Port Notification_of_tasks_assignment_Dates_Port_out = {}
 Port Flow_Control__Port_out_1 = {}
 }
 Component Modify_Design = {
 Port FlowControl1 = {}
 Port Notification_of_tasks_assignment_Dates_Port_in = {}
 Port Flow_Control_Port_out_2 = {}
 }
 Connector Diffusion_Connector = {
 Role Notification_of_tasks_assignment_Dates_Role__in = {}
 Role Notification_of_tasks_assignment_Dates_Role_out = {}
 Role Notification_of_tasks_assignment_Dates_Role_out_2 = {}
 }
 Connector Precedence_Connector_1 = {
 Role Flow_Control_Role_in_1 = {}
 Role Flow__Control_role_out_1 = {}
 }
Attachment Schedure_and_Assign_tasks.
Notification_of_tasks_assignment_Dates_Port_out to
Diffusion_Connector.Notification_of_tasks_assignment_Dates_Role__in;
Attachment Modify_Design.Notification_of_tasks_assignment_Dates_Port_in to
Diffusion_Connector.Notification_of_tasks_assignment_Dates_Role_out;
Attachment Schedure_and_Assign_tasks.Flow_Control__Port_out_1 to
Precedence_Connector_1.Flow_Control_Role_in_1;
Attachment Modify_Design.FlowControl1 to
Precedence_Connector_1.Flow__Control_role_out_1;
 }

	

Figure 1. Partial ISPW-6 example [20] described with ACME studio according to AoSP
approach

As the adopted semantics is based on ADL reasoning, we can use existing ADL
tools to describe our SP architectures. Figure 1 depicts the partial view of ISPW6
example [20] described with ACME ADL [18]. As there are no ADLs specific to SP
architectures we use ACME ADL, as ACME ADL is a generic ADL not specific to
a particular domain, it allows the description of explicit connectors and architectural
styles.

3.3 Explicit Connectors for SP Architectures

By analyzing the SP models behaviors, we notice that some adaptation activities
are recurrent. Work product adaptation activities like work products fusion or
work products fragmentation [15] are independent from the SP model type; these
activities can be identified and reused. Thus, the data flow connector manages the
data transmissions between SP components; it represents an activity that adapts
the work product to be used by the connected SP components.

On the other hand, project management activities are defined to manage and
evaluate the SP model execution; these activities can be also considered as SP
connectors: the control flow connector is an activity that manages and controls the
execution flow (order and quality). It allows controlling execution deviations by

42 F. Aoussat, M. Oussalah, M. Ahmed Nacer

evaluating the SP execution flow. As shown in Figure 2, there are three kinds of
control flow connectors:

1. connectors that provide only the execution order,

2. connectors that provide the execution order and evaluate the execution time,
cost or quality result, and

3. connectors that evaluate and make decision about the SP execution progress.

Figure 2. Software process connectors’ taxonomy

The SP connector can be a manual adaptation activity; in fact, some activities
such as fusion or fragmentation cannot be done automatically. The distinction
between automatic and manual activities is important; we can formalize the human
interactions and anticipate the execution deviations that can be caused by human
errors. To identify the human centered execution, we define the property “execution
kind” for each SP connector that can have tow values: “human” or “automatic”.

3.4 Architectural Styles for SP Architectures

For better modeling, existing approaches focus mainly on capturing recurrent SP
structures and identifying best activities sequences. To improve the SP architec-
ture description we can exploit these recurrent structures (lifecycles and process
patterns [7]) to define our SP architectural styles.

However, the SP has a characteristic that the software product lacks: an SP
model can be executed in different ways according to the development conditions.
Development priorities (time, cost, quality of the result) in addition to the unex-
pected events directly affect the SP model execution policy. Consequently, the same
SP model can have multiple executions instances without being able to differentiate
bad execution well.

Without a clear vision on the desired execution policy, it is difficult to control
the SP model execution and to make the right adaptation decisions. The problem is

A SPEMOntology for Software Processes Reusing 43

that the execution policy is not explicitly described in the SP; the execution policies
are neither capitalized nor reused. In our work SP architectural styles must allow
not only the capture of recurrent structures, but also of recurrent execution policies.

Figure 3. Description of SP structural style with ACME studio

An architectural style is a coordinated set of architectural constraints that re-
stricts the role of architectural elements and the allowed relationships among those
elements within any architecture that conforms to that style [17]. In our work, this
definition remains valid; SP component types, SP connector types and constraints
that are used to describe an architectural style are also used to describe our SP
architectural style. However, to formalize the execution style, the SP architectural
style is defined as structural style that the execution policy can be identified by
combining a particular execution style. As a result, every structural style can have
different execution styles. We summarize the structural and the execution styles as
follows:

• The structural styles describe recurrent SP structures. They focus on the work
products treatments and transmissions and are independent from an execution
policy. A standard execution is assured by using the “precedence connector”. We

44 F. Aoussat, M. Oussalah, M. Ahmed Nacer

inspire from the existing life cycles and process patterns to define our structural
styles; however, we can define particular structural styles that capture recurrent
but unknown structures.

• The execution styles describe recurrent SP execution policies. Every execution
style is defined by the control flow connectors only. The SP component types
have no incidence on the SP execution policy.

The SP architectural style can be described with ACME studio. Figure 3 depicts
a partial view of the structural style UP described with ACME studio, we depict
the components types and the connectors types of the structural style. Assembling
rules and some constraints are also described.

4 OUR SOFTWARE PROCESS DOMAIN ONTOLOGY

Using a domain ontology has multiple advantages:

• It offers a repository that share the SP knowledge extracted from precedent
successful SP models. The SP knowledge can be extracted from heterogeneous
SP models; the domain ontology provides a unified representation for both SP
models.

• It allows to reuse SP models that were not dedicated for reusing (not oriented
components for example) and that are reused manually via reports for example,
that increases the SP model reusing.

• Ontologies are well-suited to combine information from various sources; it allows
reasoning and inferring new facts based on this, and contributes to analyzing
and emerging of new solutions for improving SP models.

• Ontology is designed to retrieve SP architectures; however, reasoning can be
applied to reuse this knowledge for other purposes.

Our SP ontology must:

• be coherent, not ambiguous and commonly accepted;

• offer a conceptualization to store and retrieve SP architectures knowledge;

• manage the SP concept heterogeneity: the ontology must have a conceptu-
alization that can be exploited for different SP models, without focusing on
a particular SP kind;

• manage the heterogeneity at the instance level: capitalizing knowledge from
various SP models can create ambiguities, indeed, even if there is consensus on
the used terminology in the software development, the developers can use their
own vocabulary;

• restore a comprehensible knowledge: a vocabulary reference that represents the
vocabulary of the final user must be defined and stored;

A SPEMOntology for Software Processes Reusing 45

• provide a tool for the analysis and the emergence of new solutions for improving
SP models.

To develop a domain ontology, one of the first steps is the study the existing
ones and considering their extension, fusion or adaptation. Many SP modeling
approaches based on domain ontology are defined [19, 22, 27, 10]. These approaches
use one or many ontologies to represent the SP knowledge. However, these solutions
are specific and deal with particular SP models. They do not suggest a general
solution that can be applied for a large range of SPs.

Appoach Objective Ontology structure

OnSSPKR Framework [19] Deal with CMM, CMMI,
ISO/IEC15504, ISO9001
models.

Three ontologies (Pro-
cess experiences, Personal
skills, Knowledge artifacts)

SPO (Software Process
Ontology)[22]

Mapping between CMMI
models and the ISO/IEC
15504 models

SP basic concepts

PCE based ontology [30] Generate SP plans Two ontologies (artifacts
and activities)

Approach based descrip-
tive logic [27]

Framework for software
maintenance

Concepts that affect the
software maintenance

Flexible PML based ontol-
ogy [28]

Flexible SP models Basic process elements

Table 2. Approaches for reusing SPs based on domain ontology

Table 2 summarizes the objectives and the structures of the existing ontologies.
The ontologies defined by these approaches do not give answer to our expectations;
they do not deal with the concepts and terminology heterogeneity, thus we cannot
exploit these ontologies in our approach.

4.1 Software Process Ontology Conceptualization

To suggest a SP domain ontology that deals with our preoccupations, we exploit
SPEM (Systems and Software Process Engineering Metamodel)[26] conceptualiza-
tion. SPEM is a standard metamodel adopted by the OMG (Object Management
Group) to describe the concepts of a large range of SPs. This choice is justified by
many reasons:

• SPEM is a standard accepted by the SP community.

• SPEM covers a large range of SP concepts without focusing on a particular SP.

• SPEM is a UML profile so we can use existing tools and techniques such as
model transformation in order to generate our ontology.

However, to describe and deploy SP architectures SPEM lacks important archi-
tectural concepts such as “explicit connector”, “configuration” and “style”. SPEM

46 F. Aoussat, M. Oussalah, M. Ahmed Nacer

allows reusing based on components, but does not deal with reusing based on SP
architectures. Consequently, SPEM must be extended with the required SP archi-
tectural elements.

4.2 SPEM Profile Extension

Having a complete semantics to describe a SP architecture the extension of SPEM
profile can be done; for this purpose, we introduce new stereotypes to describe the
required architectural elements.

The added stereotypes are organized into two categories: stereotypes that de-
scribe the SP style elements and the stereotypes that describe the SP configuration
elements. Consequently, two abstract stereotypes are introduced: “process architec-
tural element” and “method content architectural element”.

We distinguish these two stereotypes as the “SP style” is a “method content
package” and its elements are only “method content elements”; however, the “SP
configuration” is a “process package” and its elements are only “process elements”
(Figure 4).

	

«	 metaclass	 »	
Package	

«	 Stereotype»	
Method	 Content	 Element	 (From	 Method	

Content)	 	 	

«	 stereotype»	
SP	 Style	 	 	

«stereotype»	
Method	 Content	 Package	 (From	

Process	 With	 Method)	 	 	 	

«stereotype»	
Method	 Content	 ArchitecturalElement	

«	 stereotype»	
Activity	 Definition	

	
«	 stereotype»	

DefaultActivityDefinitonParameter	
	

«stereotype»	
WorkDefinitonParameter	

(From	 Core)	

«	 stereotype»	
Work	 Definition	 (From	 core)	 	 	

«stereotype»	
ProcessArchitecturalElement	

«metaclass»	
Component	 	

«	 stereotype»	
SPComponent	 	 	 	

«stereotype»	
InterfaceElement	 	 	

«	 stereotype»	
SPconnector	 	 	 	

«	 stereotype»	
ProcessElement	 (From	 Process	 Structure)	 	 	

«	 metaclass	 »	
Package	

«	 stereotype»	
SPConfiguration	 	

	

«stereotype»	
Process	 package	

(from	 Process	 With	
Method)	 	 	 	

«metaclass»	
Class	 	

«	 stereotype»	
Attachement	

«stereotype»	
Binding	 «stereotype»	

SPPort	

«stereotype»	
SPConnector	 	 	

Role	

««metaclass»	
Connector	

Figure 4. Extension of method plugin profile with SP architectural elements [5]

Figure 5 depicts architectural elements added to extend the SPEM model. Two
kinds of UML elements (classes, associations, attributes, etc.) are added:

UML elements that describe the SP architecture: A SP configuration is com-
posed from SP components and SP connectors. The SP component is an activity

A SPEMOntology for Software Processes Reusing 47

that creates work products; it is composed of a set of SP ports. The SP con-
nector is an activity that adapts and controls the data flow or control flow, it is
composed of a set of SP connector roles. The SP components assembling is done
via attachments. An attachment is done between a SP port and a SP connector
that have the same kind (data flow or control flow).

UML elements that describe the SP style: the SP style is composed from ac-
tivity definitions. Both SP components and SP connectors are activities; thus,
activity definition identifies the SP connector types and the SP component types
at the same time. In the same manner, work product definition describes the
SP ports and the SP connector role types. The default assembling is described
with default activity definition parameter.

Figure 5. SPEM model extension with the required SP architectural elements

5 SPEMONTOLOGY GENERATION

SPEM being extended, we can generate our ontology that will allow describing and
deploying SP architectures. Our ontology OWL is generated by applying many
model transformations. To achieve this aim, we use ATL (Atlas Transformation

48 F. Aoussat, M. Oussalah, M. Ahmed Nacer

Language) modules UML2OWL and UML2COPY [3]. UML2OWL module is devel-
oped to transform an UML model to an OWL model. As SPEM is an UML profile,
we cannot use this module directly; in fact, in UML2OWL ATL module there are no
ATL rules that allow the transformation of profiles, stereotypes and tagged values
to OWL elements. Thus we had developed an ATL transformation module (Ap-
plySPEMProfile2SPEMModel Module) that applies SPEM profile to SPEM model
before applying UML2OWL transformation.

	

Stereotyped
SPEM model
(UML Editor)

SPEM Model
(UML Editor)

(UML Editor)

SPEMOntology
(Protégé editor)

 SPEM Profile
(UML Editor)

ATL1	 transformation	
(First	 step)	

	

ATL2	 	 transformation	

	

	

OWL2XML	 Module	

	

UML2OWL	
Module	

	
	

UML2Copy	
Module	

Apply	
SPEMProfile	
2SPEMModel	

Module	 	

(Second step)

Figure 6. ATL transformations for genrating SPEMontology

Consequently the transformation of SPEM metamodel to an OWL Ontology is
performed by two ATL transformations ATL1 and ATL2 (Figure 6)

• ATL1 is an ATL transformation used to prepare the SPEM metamodel to be
transformed into an OWL model. It applies the SPEM profile to the SPEM
model in order to have a stereotyped UML model (stereotyped SPEM model).
Knowing that SPEM has stereotyped and non-stereotyped elements, ATL1 is
composed from two modules:

– UML2COPY module: copies directly the non-stereotyped elements of the
SPEM model into the output model (stereotyped SPEM model).

– ApplySPEMProfile2SPEMModel module: applies the stereotypes of SPEM
profile to the corresponding elements of SPEM model. Unlike the other
modules, this module is specific to SPEM model; in fact, the rules are written
according to the name of the SPEM model elements and the name of SPEM
profile elements.

As there is no ATL rule for the same element in the two modules at the same
time, these modules are executed in parallel.

A SPEMOntology for Software Processes Reusing 49

• ATL2 is the UML2OWL transformation. This exisiting transformation is used
to generate an OWL ontology (SPEMOntology) from the stereotyped SPEM
model (the result of ATL1 transformation).

5.1 ApplySPEMProfile2SPEMModel Module

The execution of ApplySPEMProfile2SPEMModel Module is as follows:

• Definition of the SPEM profile and SPEM model and their metamodels with
adequate tools. The extension of the files must be “.uml” and that of the
metamodels must be “.ecore”.

• Application of the SPEM profile to the SPEM model: This step is performed
using the rule “ApplyProfile2Model” (Figure 7). This rule is a matchedRule
applied when an instance of the element “UML2!Model” is recognized in the
source model. It allows copying the SPEM model and all its characteristics
(name, visibility, etc.). The rule has an imperative part introduced by the
keyword “do” in which the SPEM profile is applied to the SPEM model using
the “applyProfile()” method.

Figure 7. ATL rule for applying SPEM profile to SPEM model with “applyProfile” method

• Application of SPEM stereotypes to the SPEM elements: For each SPEM ele-
ment (class or association) we associate the following matchedRule: in the
declarative part, the element and all its characteristics are copied, and in the
imperative part, the generated element is placed in the corresponding pack-
age; then the corresponding stereotype is applied using the “applyStereotype()”
method (Figure 8).

In order to distinguish stereotyped elements from the on-stereotyped elements
in the OWL ontology, we add the prefix “Pro” to the name of the stereotyped
element.

50 F. Aoussat, M. Oussalah, M. Ahmed Nacer

Figure 8. Partial view of ATL rule for applying SPEM stereotype to SPEM element (Ac-
tivity class) using the “applyStereotype” method

• Tagged values transformation that will be detailed in the next section.

The methods “applyProfile()” and “applyStereotype()” are provided by the
UML2.0 plugin in the Eclipse environment. This plugin is essential for carrying
out such transformations. It also provides the UML2.0 meta-model described in
Ecore to which UML models (SPEM model, SPEM profile and the stereotyped
SPEM model) conform.

5.2 Tagged Values Transformation

To transform the “tagged values”, we proceed as follows:
We notice that a tagged value can only be “data type property” at ontology

level; in fact, the “data type property” links an OWL concept to an “OWL data
type”, which is the case of the “tagged value” that links an UML class to an “UML
data type”. In the UML2OWL ATL transformation an OWL “data type property”
is generated only from an attribute of an UML class. Consequently, at the SPEM
model each tagged value is considered as an attribute of an UML class.

The “tag definition” of a particular stereotype, once applied to the corresponding
class, corresponds to a tagged value. Thus, for each class that the corresponding
stereotype includes tag definition, an UML attribute that corresponds to its tagged
value will be created.

To achieve this, we add an adequate instruction to the matchedRule (declarative
part) of each class whose stereotype has “tag definitions” (Figure 9). These instruc-
tions will create an UML attribute for each tag definition. In the imperative part
of the rule, the UML attribute is added to the stereotyped class (Figure 8). When
creating an UML property the name, type, multiplicity and visibility are specified
as follows (Figure 9):

A SPEMOntology for Software Processes Reusing 51

• Name: the name of the corresponding tag definition.

• Type: the type of tag definition, which may be an UML data type or may take
values of an enumeration. If the tag definition takes the values from an enumer-
ation, the type of the UML attribute will be the UML DataType “string”.

• The visibility of the properties of SPEM model is “public”, so any generated
Property has a “public” visibility.

• The multiplicity of an attribute indicates the number of values that can be
associated to it. In our case the maximum number of values associated with
an attribute is at most one. Thus, lower and upper values of any generated
tagged value property are “zero” and “one” respectively.

Figure 9. Partial view of ATL rule for defining tagged values

5.3 SPEMOntology Structure

Figure 10. SPEMontology structure (class view/concept view)

SPEMOntology is the result of successive ATL transformations. It is constituted
from 56 concepts and an important number of data and object properties. In order

52 F. Aoussat, M. Oussalah, M. Ahmed Nacer

to facilitate its understanding, it is important to describe its organization. SPEM
is structured into seven packages [26]. By analyzing the SPEM packages (after the
extension), we notice that every SPEM package has its abstract class that regroups
the common behavior of the package classes.

Figure 10 (left) depicts the main abstract classes of every SPEM package. We
notice the existence of the concepts introduced to describe SP architectures; all the
classes (abstract or not) are also transformed into OWL concepts. In our work we
had not exploited the Process Behavior package, thus it is not represented here. Af-
ter the ATL transformations this organization can be identified (Figure 10 (right)).
The SPEM packages view can be identified through the main concepts of SPEMOn-
tology.

6 SOFTWARE PROCESS KNOWLEDGE AQUISITION

The concepts heterogeneity finds solution by exploiting a standard metamodel. The
heterogeneity at instance level is treated by separating every kind of knowledge.
Indeed, our ontology must store four kinds of knowledge:

The SP architecture knowledge: our ontology must allow retrieving SP archi-
tectures. The capitalized knowledge concerns SP configurations and SP styles.

The used knowledge: our ontology must allow the reuse of exiting SP models.
The capitalized knowledge concerns the know-how of existing SP models.

The reference vocabulary: Our ontology must retrieve a comprehensible SP
knowledge. The capitalized knowledge concerns the vocabulary used by the
final stakeholders.

The instance heterogeneity management: our ontology must manage the he-
terogeneous vocabulary. Thus, we must do the correspondence between the used
knowledge and the reference vocabulary.

We exploit the structure of SPEM to deal with the instances heterogeneity. Each
SPEM package is used to store a kind of knowledge. In the next sections we detail
how we capitalize each kind of SP knowledge.

6.1 The SP Architectures Knowledge Capitalization

The SP expert stores the SP configurations and the SP styles of the company. This
step is very important as it allows describing formally the company development
policies and practices.

The knowledge can be recurrent SP configurations, well-known life cycles or
particular processes that the company may use as SCRUM or XP processes.

The instantiation is done on the “process architectural element” concepts and
the “method content architectural element” concepts (Figure 11). This step is done
manually by a SP expert of the company. However, the advantage is that it is done
once and it will be reused independently from the SP expert intervention.

A SPEMOntology for Software Processes Reusing 53

Figure 11. SP architectural concepts of SPEMOntology

6.2 The Used Knowledge Aquisition

We instantiate the concepts of “process with method” and “process structure” pack-
ages. In SPEM these packages are used to describe the effective use of the content
methods and the SP fragments, respectively, independently of particular develop-
ment method [26]. In our ontology, these concepts are used to capitalize the used
know-how that are collected from the existing SP models (Figure 12).

This step is done automatically; we apply a reverse engineering on every SP
model that will be reused. For each PML we develop an instantiation program
that identifies the pertinent concepts and allows the extraction of the pertinent
knowledge.

As example we develop an instantiation program for EPF (Eclipse Process
Framework) models [16] and another for PBOOL+ models [13]. The knowledge
acquisition from EPF models is direct as these models conform to SPEM; however,
for PBOOL+ models there is no “task use” concept, so then, we suppose that every
elementary activity of PBOOL+ model is constituted from one “task use” and do
the instantiation.

6.3 The Reference Vocabulary Capitalization

In SPEM the method content package is dedicated to describe development methods
independently from their use: “. . . The method content package defines the core
elements of every method such as roles, tasks, and work product definitions. . . ” [6].
We use these concepts to describe the vocabulary reference (Figure 12).

The method content concepts are solicited to describe many kinds of know-
ledge: method content elements, vocabulary reference and architectural types. To

54 F. Aoussat, M. Oussalah, M. Ahmed Nacer

Figure 12. The Used knowledge concepts of SPEMOntology

distinguish between these kinds of knowledge, for the “method content element”
concept we add a data type property “concept role” that can have the next values:
“MC” for method content knowledge, “VR” for vocabulary reference and “AT” for
architectural type.

The weakness of this step is that the instantiation is done manually; it depends
on the experience of the SP expert and on the users groups. Every company has its
own vocabulary and its own abbreviation and terminology convention.

However, the advantage of this manual step is that it formally defines the ter-
minology of the company. It allows not only a better comprehension of the SP
models, but also constitutes a contribution to capitalize company’s know-how that
will be used and reused formally, independently from the SP experts and their tacit
knowledge.

6.4 The Instance Heterogeneity Management

To manage the instances heterogeneity, we must provide a correspondence between
the used knowledge and the reference vocabulary. This correspondence is provided
by using existing associations between method content concepts and process with
method concepts (Figure 13).

A SPEMOntology for Software Processes Reusing 55

Figure 13. SPEM associations used to manage the SP knowledge

7 AOSP APPROACH EVALUATION

In this paper we present only the engineering “by” reusing SPs of AoSP approach,
the engineering “for” reusing SPs is not presented; thus, SP architecture retrieving,
SP architecture inference and SP architecture deployment are not detailed.

However, even if the AoSP appoach is not presented in full and having a first
operationnal result (the SPEMOntology), we can do a first evaluation of AoSP.

The initial
goal

to this aim we have. . . as future work we can. . .

Suggest a gen-
eral solution

used a standard metamodel that
describes concepts of a large
range of SPs.- give a uniform re-
presentation for different kinds of
SP models

develop a deployment program
for each SP model kind that we
need to generate

Increase the
reuse of ex-
isting SP
models

developed a domain ontlogy
“SPEMOntology” that capital-
izes SP knowledge from existing
SP models independently from
their PML or metamodel

infer new solutions and new SP
architectures

Increase the
reusability of
the modeled
SPs

exploited the abstract structure
at the modeling step; defined
reusable SP connectors; defined
SP styles; defined execution
styles

many SP architecture de-
ployments such as: dynamic,
distributed and using different
PMLs; describe SP components
ans SP connectors with XML
files

Increase the
SP model
quality

used the SP architectures that
allow modeling flexible, compre-
hensible SP models; used a do-
main ontology that allows ex-
ploiting the precedent SP mod-
eling experiments

retrieve optimal solution accord-
ing to the development context
(time, cost or quality oriented)

Table 3. AoSP approach evaluation

Both reusing approaches based on software architecture and approaches based on
ontology suggest particular solutions for particular problems (simulation, evolution,
interaction, software maintenance. . .); however, our solution is general and can be

56 F. Aoussat, M. Oussalah, M. Ahmed Nacer

used for many kinds of SPs (capitalize or retrieve SP models). Also, unlike existing
approaches, AoSP exploits all the opportunities offered by the software architectures
and domain ontologies to model and execute SPs.

According to Table 3 we had globally achieved our primary goals; in fact, to
increase the SP reusing and reusability, we have defined an ontology that can ca-
pitalize heterogeneous SP models and we have exploited the software architecture
principles to model reusable SPs. The described SP architectures give the SP model
more flexibility, comprehension and dynamicity.

However, this evaluation is not complete; in fact, the engineering “by” reusing
SPs is not presented and can give more advantages to our approach. The SP archi-
tectures knowledge retrieving, the SP architecture deployment and SP knowledge
inference increase, as well as the SP reusing.

7.1 The SP Knowledge Inference

Infer new knowledge is one of the advantages of a domain ontology. The large size
of SPEMOntology gives us the ability to infer various SP knowledge. The inference
of new knowledge must have a clear goal and follow a coherent reasoning. In our
case, our inference rules are organized into two kinds:

• Inference rules that manage the consistency of knowledge base. These rules
must manage the consistency and coherence of the SP knowledge extracted from
different sources. In fact, the extraction of knowledge from many sources can
create “gaps” in the knowledge base.

• The inference rules that allow the emergence of new solutions (new activities or
components assembling for example), and allow exploring optimal solutions ac-
cording to specific criteria. For example two kinds of knowledge can be inferred:
“equivalent SP configuration”, the rule identifies the SP configurations that can
replace a particular SP configuration and “equivalent SP components”: the rule
identifies the SP components that can replace a particular SP component. We
can define other rules that infer equivalent configuration that optimizes the exe-
cution time, execution cost or quality results.

We can give numerous examples of rule inference; however, this work is in
progress and will be subject of future articles.

Example 1. SPEM : predecessor(?SPEM : W, ?SPEM : Y)→ SPEM :
successor(?SPEM : Y, ?SPEM : W): If W is a predecessor of Y then Y is a successor
of W .

Example 2. SPEM : linkedTaskUse(?SPEM : x, ?SPEM : y) ∧ SPEM :
ownedProcessParameter(?SPEM : y, ?SPEM : z) ∧ SPEM :
ownParameters(?SPEM : y, ?SPEM : w)→ SPEM : isPerformed
(?SPEM : x, ?SPEM : w): if the performer x is associated to the task use y and y
is a task use of activity w then x is a performer of activity w.

A SPEMOntology for Software Processes Reusing 57

8 CONCLUSION

AoSP is a SP reusing approach that offers a standard solution to increase the reuse
and the reusability of SP models.

This paper presents the engineering “for” reusing SPs of AoSP (architecture
oriented software process) approach. AoSP exploits the software architecture prin-
ciples to model SPs. By separating the SP modeling preoccupations: work product
treatments (components), work product transmissions (data flow connectors) and
execution control (control flow connectors), AoSP offers an innovative vision of the
SP modeling. It allows modeling more comprehensible, flexible and controllable SP
models.

Based on existing approaches insufficiencies, we define a complete semantics to
describe SP architectures. We model SP architecture as software architecture but
we respect the SP specificities such as human dimension and the characteristics of
the SP execution. In addition, we define explicit connectors and architectural styles
specific to the SP architectures. On the other hand, AoSP uses a domain ontology
to capitalize the best practices of the software development domain. It exploits the
capitalized knowledge to retrieve and deploy SP architectures.

The ontology conceptualization is discussed, it is based on SPEM. We extend
SPEM by introducing required architectural concepts. Indeed, SPEM deals with SP
reusing based on components and lacks important architectural elements to describe
SP architectures. The ontology was generated by transformation model techniques;
to this aim, we use ATL modules (UML2OWL and UML2COPY) and we develop
our ATL module “applySPEMprofile2SPEMmodel” to apply SPEM profile to SPEM
model.

To describe and deploy the SP architectures, SPEMOntology must store different
kinds of knowledge: The used know-how, the SP architecture knowledge and the
reference vocabulary. In addition, it must provide a correspondence between these
kinds of knowledge. We exploit the SPEM structure (organized into packages) to
separately store these kinds of knowledge. We add adequate properties to keep the
knowledge coherence.

Actually we are working on the engineering “by” reusing: first results of infer-
ring, retrieving and deploying SP architectures have been obtained, but must be
refined before publishing.

REFERENCES

[1] Alloui, I.—Oquendo, O.: Supporting Decentralised Software-Intensive Processes
Using ZETA Component-Based Architecture Description Language. International
Conference on Entreprise Information Systems 2001, pp. 207–218.

[2] Atli, A.—Khammaci, T.—Smeda, A.: Integrating Software Architecture Con-
cepts into the MDA Platform with UML Profile. J. of Computer Science, Vol. 3,
2007, No. 10, pp. 793-802.

58 F. Aoussat, M. Oussalah, M. Ahmed Nacer

[3] Atlas Transformation Language, ATL: ATL transformations list. 2007, http:
//www.eclipse.org/m2m/atl/atlTransformations/.

[4] Aoussat, F.—Ahmed-Nacer, M.—Oussalah, M.: Reusing Approach for Soft-
ware Processes based on Software Architectures. International Conference on En-
treprise Information Systems 2010, pp. 366–369.

[5] Aoussat, F.—Oussalah, M.—Ahmed Nacer, M.: SPEM Extention with Soft-
ware Process Architectural Concepts. COMPSAC 2011, pp. 215–225.

[6] Avrilionis, D.—Belkhatir, N.—Cunin, P.-Y.: A Unified Framework for Soft-
ware Process Enactment and Improvement. 4th International Conference on the Soft-
ware Process 1996, pp. 102–108.

[7] Barchetti, U.—Capodieci, A.—Lisa Guido, A.—Mainetti, L.: Modelling
Collaboration Processes Through Design Patterns. Computing and Informatics,
Vol. 30, 2011, No. 1, pp. 113–135.

[8] Belkhatir, N.—Estublier, J.: Supporting Reuse and Configuration for Large
Scale Software Process Models. 10th International Software Process Workshop 1996,
pp. 35–40.

[9] Bendraou,R.—Gervais, M.P.—Blanc, X.: UML4SPM: An Executable Soft-
ware Process Modelling Language Providing High-Level Abstractions. 10th IEEE In-
ternational Enterprise Distributed Object Computing Conference 2006, pp. 297–306.

[10] Bermejo-Alonso, J.—Sanz, R.—Rodriguez, R.—Hernandez, C.: Ontology-
Based Engineering of Autonomous Systems. In Proceedings of the Sixth International
Conference on Autonomic and Autonomous Systems (ICAS) 2010.

[11] Choi, J.—Scacchi, W.: Modeling and Simulating Software Acquisition Process
Architectures. J. of Systems and Software, Vol. 59, 2000, pp. 343–354.

[12] Coulette, B.—Thu, T.D.—Cregut, X.—Thuy, D.T.B.: Rhodes, a Process
Component Centered Software Engineering Environment. In International Conference
on Entreprise Information Systems 2000, pp. 253–260.

[13] Cregut, X.—Coulette, B.: PBOOL: An Object-Oriented Language for Defini-
tion and Reuse of Enactable Processes. J. Software – Concepts and Tools, Vol. 18,
1997, No. 2, pp. 47–62.

[14] Dai, F.—Li, T.—Zhao, N.—Yu, Y.—Huang, B.: Evolution Process Component
Composition Based on Process Architecture. International Symposium on Intelligent
Information Technology Application Workshops 2008, pp. 1097–1100.

[15] Dami, S.—Estublier, J.—Amiour, M.: APEL: A Graphical Yet Executable For-
malism for Process Modeling. J. Automated Software Engineering, Vol. 5, 1997,
pp. 61–96.

[16] EPF Composer: Eclipse Process Framework Composer. http://www.eclipse.

org/epf/downloads/tool/tool_downloads.php

[17] Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. Ph. D. on Information and Computer Science, University of California,
Irvine, USA 2000.

[18] Garlan D.—Wang, Z.: ACME-Based Software Architecture Interchange. Third
International Conference on Coordination Languages and Models 1999, pp. 340–354.

A SPEMOntology for Software Processes Reusing 59

[19] He, J.—Yan, H.—Liu, C.—Jin, M.: A Framework of Ontology Supported Know-
ledge Representation in Software Process. 2007, http://www.atlantispress.com/
php/download_paper.php?id=1180.

[20] Kellner, M. I.—Feiler, P.H.—Finkelstein, A.—Katayama, T.—Oster-
weil, L. J.—Penedo, M.H.—Rombach, D.H: ISPW-6 Software Process Exam-
ple. 5th international software process workshop on Experience with software process
models (ISPW) 1990.

[21] Li, J.—Li, J.—Li, H.: Research on Software Process Improvement Model Based on
CMM. 2008, http://www.waset.org/journals/waset/v39/v39-70.pdf.

[22] Liao, L.—Yuzhong, Q.—Leung, H.K.N.: Software Process Ontology and Its
Application. 4th International Semantic Web Conference Galway 2005.

[23] Medvidovic, N.—Grunbacher, P.—Egyed, A.—Boehm, B.W.: Bridging
Models Across the Software Lifecycle. J. Syst. Softw., Vol. 68, 2003, pp. 199–215.

[24] Medvidovic, N.—Rosenblum, D. S.—Redmiles, D. F.—Robbins, J. E.: Mod-
eling Software Architectures in the Unified Modeling Language. J. ACM Transaction
on Software Engineering and Methodology, Vol.11, 2002, No. 1, pp. 2–57.

[25] Medvidovic, N.—Taylor, R.N.: A Classification and Comparison Framework
for Software Architecture Description Languages. IEEE Trans. Softw. Eng., Vol. 26,
2000, pp. 70–93.

[26] Object Management Group (OMG): Software Systems Process Engineer-
ing Meta Model (SPEM), v2.0, 2008, http://www.omg.org/cgi-bin/docFormal/

2008-04-01.

[27] Rilling, J.—Zhang, Y.—Meng, W. J.—Witte, R.—Haarslev, V.—Char-
land, P.: A Unified Ontology-Based Process Model for Software Maintenance
and Comprehension. In Models in Software Engineering: Workshops at MoDELS,
Vol. 4364, 2007, pp. 56–65.

[28] Shen, B.—Chen, C.: The Design of a Flexible Software Process Language. In
SPW/ProSim 2006, pp. 186–194.

[29] Sommerville, I.—Rodden, T.: Human, Social and Organizational Influences on
the Software Process. Trends in Software: Software Process 1996, pp. 89–100.

[30] Tomohiko, K.M.—Mori, K.—Shiozawa, T.: Process-Centered Software Engi-
neering Environment Using Process and Object Ontologies. Second Joint Conference
on KnowledgeBased Software Engineering 1996, pp. 226–229.

Fadila Aoussat is an Assistant at Saad Dahlab Blida Uni-
versity, Algeria. She received her Doctor degree from USTHB
University (in collaboration with Nantes University, France) in
2013. She is an active member on the software engineering team
of LSI-USTHB laboratory. Her research interests include soft-
ware process modeling and software architectures.

60 F. Aoussat, M. Oussalah, M. Ahmed Nacer

Mourad Oussalah is a Full Professor of computer science at
the University of Nantes and the chief of the software archi-
tecture modelling team. His research concerns software archi-
tecture, object architecture and their evolution. He worked on
several European project (Esprit, IST, . . .). He has been acting
as the leader of national projects (France Telecom, Bouygues
telecom , Aker-Yard-STX, . . .).

Mohamed Ahmed Nacer is a Full Professor at USTHB (Al-
gier’s University). He received his PhD degree in computer
science from the High School – Polytechnic National Institute
(INPG) of Grenoble (France) in 1994. He is an expert at the
UNDP in the enhancement of quality assurance and institu-
tional planning. He is the Director of the Computer Engineering
Laboratory at USTHB and is in charge of the software engineer-
ing team. His current research interests include process mod-
elling, software architecture based components, web services and
database systems.

