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Abstract. Visual methods have been extensively studied and performed in clus-
ter data analysis. Given a pairwise dissimilarity matrix D of a set of n objects,
visual methods such as Enhanced-Visual Assessment Tendency (E-VAT) algorithm
generally represent D as an n × n image I(D) where the objects are reordered to
expose the hidden cluster structure as dark blocks along the diagonal of the im-
age. A major constraint of such methods is their lack of ability to highlight cluster
structure when D contains composite shaped datasets. This paper addresses this
limitation by proposing an enhanced visual analysis method for cluster tendency
assessment, where D is mapped to D′ by graph based analysis and then reordered
to D′ using E-VAT resulting graph based Enhanced Visual Assessment Tendency
(GE-VAT). An Enhanced Dark Block Extraction (E-DBE) for automatic determi-
nation of the number of clusters in I(D′) is then proposed as well as a visual data
partitioning method for cluster formation from I(D′) based on the disparity be-
tween diagonal and off-diagonal blocks using permuted indices of GE-VAT. Cluster
validation measures are also performed to evaluate the cluster formation. Extensive
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experimental results on several complex synthetic, UCI and large real-world data
sets are analyzed to validate our algorithm.

Keywords: Visual clustering, graph analysis, cluster assessment tendency, auto-
matic clustering, visual data partitioning and validation measures.

1 INTRODUCTION

A major issue in the data mining area is how to categorize the observed data into
meaningful structures. Clustering analysis, also called segmenation analysis or taxo-
nomy analysis, intends to identify homogeneous objects into a set of groups, named
clusters, by given criteria. Partitioning the set of objects O = {o1, o2, . . . , on} into C
self-related objects is the major process of cluster analysis. Various clustering al-
gorithms are reported in the literature [1, 2, 3]. All clustering algorithms will be
analysed and subjective (1 ≤ C ≤ n) clusters numbers, even if no “definite” clusters
exist, i.e., C1 . . . Cc, so that Ci ∩ Cj = if i 6= j and C1 ∪ C2 ∪ . . . ∪ Cc = O. There
have been large numbers of data clustering algorithms in the recent literature [1].
The general problems involved in clustering of unlabeled data sets are:

a) assessing cluster tendency, i.e., value of C,

b) grouping the data into C meaningful sets, and

c) evaluating the Clusters discovered.

Given “only” a pairwise dissimilarity proximity matrixD ∈ Rn×n representing a data
set of n objects, this paper addresses these three problems, i.e., determining the
number of clusters C prior to clustering, partitioning the data into C clusters and
validating the clusters.

Most clustering algorithms desire the number of clusters C as a key factor, so the
quality of the resultant clusters mainly depends on the assessment of C. For several
applications, users can choose the number of clusters with domain information.
However, in various situations, the significance of C is unknown and has to be
predicted from the data itself. Diverse postclustering measures of cluster validity
have been proposed to approximate C, e.g., [4, 5, 6, 7, 8, 9, 10], by choosing the
best partition from a set of alternative partitions. To compare, cluster tendency
assessment attempts to estimate C before clustering occurs. Visualization used in
cluster analysis maps the high-dimensional data to a 2D space and aids users having
an intuitive and easy-to-understand graph/image to expose the grouping relationship
among the data. In particular, the depiction of data structures in an image format
has an extensive and continuous history, e.g., [11, 12, 13, 14, 15, 16]. The visual
illustration of pairwise dissimilarity information about a set of n objects is typically
depicted as an n × n image, where the objects are reordered so that the resultant
image is capable to highlight potential cluster structure in the data. A “useful”
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reordered dissimilarity image (RDI) highlights possible clusters as a group of “dark
blocks” along the diagonal of the picture, and can thus be viewed as a visual assist
to tendency assessment.

Reordered dissimilarity images are generated by using any of the existing sche-
mes in [12, 13, 14, 15, 16, 17]. For compactness, this paper focuses on one method
for generating RDIs, namely Enhanced-Visual Assessment of cluster Tenedency
(E-VAT) of Puniethaa [17], although the proposed approach can also be applied
to any method that generates RDIs. However, several practical applications involve
datasets with highly complex structure, which invalidate the assumption of com-
pact, well-separated clusters. This paper proposes a new approach for generating
RDIs that combines E-VAT with weighted graph analysis of pairwise data.The re-
sulting Graph Enhanced-VAT (GE-VAT) image clearly demonstrates the number
of clusters C and the estimated sizes of each cluster for data sets with highly irre-
gular cluster structures. Based on GE-VAT, the cluster structure in the data can
be consistently estimated by visual assessment. An effective strategy to measure
the “goodness” of GE-VAT images for automatically determining the number of
clusters C using Enhanced Dark Block Extraction (E-DBE) is also proposed. Also,
a visual data partitioning algorithm based on the GE-VAT image and its unique
block-structured property to cluster the data into C groups is performed. By in-
tegrating cluster tendency assessment and cluster formation using RDI, the paper
proposes a natural environment for visual cluster internal validation and interpreta-
tion. A wide range of primary and comparative experiments on synthetic, UCI and
real-world data sets exhibit the efficacies of the proposed algorithms.

In summary, the major contributions of this paper comprise:

1. the GE-VAT algorithm for better revealing the hidden cluster structure of com-
plex shaped data sets;

2. the efficient “goodness” measure of the GE-VAT images for automatic assess-
ment of cluster tendency by E-DBE algorithm;

3. the valuable visual data partitioning algorithm is based on the GE-VAT images
and

4. the visual cluster internal validation is performed on the cluster formation.

Schematic diagram of the overall proposed system and the major steps are shown
in Figure 1. The rest of the paper is organized as follows: Section 2 illustrates the
proposed graph based GE-VAT algorithm. Section 3 presents the strategy of E-DBE
for automatically determining the number of clusters C from the GE-VAT images,
Section 4 shows how to find the C clusters from the GE-VAT image using visual
data partitioning algorithm. Section 5 extends the GE-VAT algorithm to evaluate
the created cluster objects using internal cluster validation methods. Experimental
results are shown in Section 6, prior to discussion and conclusion in Section 7.
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Figure 1. Automatic clustering procedure. These steps are related to each other and per-
form cluster partition.

2 GRAPH BASED ENHANCED VISUAL ASSESSMENT
OF CLUSTER TENDENCY

The proposed work is built upon the E-VAT algorithm [17] (see Appendix). It
simply reorders the data to reveal its hidden structure, which can be viewed as illus-
trative data visualization for estimating the number of clusters former to clustering.
However, hierarchical structure could be detected from the reordered matrix if the
diagonal sub-blocks are presented within larger diagonal blocks. The viewer can
approximate the number of clusters C from the E-VAT image by counting the num-
ber of dark blocks along the diagonal if these dark blocks acquire visual precision.
Though, this is not always feasible. Dark block appears in the E-VAT image only
when a fixed (or ellipsoidal) group exists in the data. For complex-shaped data sets
where the borders between clusters become less distinct due to either significant
overlay or rough geometries between different clusters, the resulting E-VAT images
will degrade (see Figures 4 a), 5 a) and 6 a) for examples). Consequently, viewers
may infer different numbers of clusters from such poor images, or even cannot esti-
mate C at all. This obviously raises a problem of whether to transform D into a new
form R′ so that the E-VAT image of R′ can become clearer and more helpful about
the cluster structure. The proposed algorithm addresses this problem by combining
the E-VAT algorithm with weighted graph analysis of the proximity matrix of the
data.

Recently, a number of researchers have used graph analysis in applications such
as random-walk [18], dimensionality reduction [19], image segmentation [20, 21] and
data clustering [23]. These visual graph techniques commonly use the eigenvectors of
a graph adjacency (or Laplacian matrix) to create a geometric representation of the



An Efficient Visual Analysis Method 1017

graph. Different methods are strongly connected, e.g., Laplacian eigenmaps [19] are
much related to the mapping process used in spectral clustering algorithm depicted
in [24]. Let G(V,E,W ) be a weighted undirected graph, where V is a set of n vertices
(e.g., corresponding to n objects {o1, o2, . . . , on} to be analyzed), E = [eij] is the edge
set with eij = 1 showing that there is an association between vertices i and j and
0 otherwise, and W = [wij], an n× n affinity matrix or weighted adjacency matrix,
includes the edge weights, with wij representing the relation of the edge linking
vertices i and j. Most graph representation methods differ in terms of constructing
the graph (reflected in E, e.g., the ε – neighborhood graph, the K-nearest neighbor
graph [22] and the fully connected graph), weighting functions (reflected in W , e.g.,
simple 0-1 weighting and the normally used Gaussian similarity function) or graph
Laplacians (e.g., the unnormalized Laplacian matrix L = M−W and the normalized
version L = M−1/2LM−1/2, where M is a diagonal degree matrix of G, i.e., mij =∑n

j=1wij). The graphical decomposition of the Laplacian matrix provides useful
information about the properties of the graph. It has been revealed experimentally
that groups in the original data space may not correspond to curved regions, but
once they are mapped to a spectral space spanned by the characteristic vectors of
the Laplacian matrix, they are more likely to be changed into compact clusters [23,
25]. Based on this study, D is embedded in a k-dimensional spectral space, where
k is the number of characteristics vectors used, such that each original data point is
absolutely replaced with a new vector instance in this new space. After a complete
study of recent spectral methods, combinations of graph Laplacian for obtaining
a better graph embedding (and thus, better GE-VAT images, see Figures 4 b), 5 b)
and 6 b) for example) are executed. GE-VAT algorithm and its pseudocode are
summarized in Tables 1 and 2, respectively.

Input: D = [dij ]: an n × n scaled matrix of pairwise dissimilarites k: the
number of characteristic vectors used.

Process
Step (1): Compute a local scale parameter σi for object Oi using σi =
d(Oi, Ok) = dik where Ok is the Kth nearest neighbor of Oi.

Step (2): Build the weighting matrix W ∈ Rn×n by defining Wij =
exp(−dijdji/(σiσj)) for i 6= j, and wii = 0.

Step (3): Construct the normalized Laplacian matrix L′ = M−1/2WM−1/2.

Step (4): Choose the K largest characteristic vectors of L′ to form the matrix
V = [v1, . . . , vk] ∈ Rn×k by stacking the characteristic vectors in columns.

Step (5): Normalize the rows of V with unit Euclidean norm to generate V ′.

Step (6): For i = 1, 2, 3 . . . n let ui ∈ Rk be the vector
consequent to the ith row of V ′ and treat it as a new instance (related to Oi).
Then construct a new pairwise dissimilarity matrix D′ between instances.

Step (7): Apply the E-VAT algorithm to D′ to obtain the image I(D′)

Output: Graph-mapped and reordered dissimilarity matrix (D′) and its cor-
responding scaled gray-scale image I(D′)

Table 1. Graph based enhanced – visual assessment tendency algorithm
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Start
Input: D a scaled dissimilarity matrix, K the number of characteristic vectors

Output: Reordered dissimilarity matrix (D′) and gray scale image I(D′)
Execute: Graph based Enhanced – Visual Assessment Tendency Algorithm
(GE-VAT)
While objref do

For each profile objref,k
σobjref ← distance(Oobjref , Ok) where Ok is the Kth nearest neighbor of

Oobjref

End for
endwhile
// weighting Matrix M -Diagonal Degree Matrix and W -Adjency Matrix
For each profile i

For each profile j
If i 6= j then Wij = exp(−dijdji)/σiσj else Wii = 0

endfor
endfor
For each profile i

For each profile j
di ←Wij + di

endfor
endfor
Construct the normalized Laplacian Matrix L′

L′ ←M−1/2WM−1/2

Compute K largest characteristic vector for L′ to form the vector norm
V = [v1, v2, . . . vk] and normalize to V ′.
For each profile i

New dissimilarity matrix D′

endfor
Function EVAT(D′, size(D′), Pi) // Pi – Permutation Vector

Compute the reordered dissimilarity image I(D′)← (D′)

Return(RDI, (D′), I(D′))
End

Table 2. Pseudo code for graph based enhanced – visual assessment tendency algorithm

Some points about this algorithm are noted as follows:

• Using a definite local scaling parameter allows fine-tuning of the object-to-object
distance according to the local statistics of the neighborhood surrounding objects
i and j, resulting in high likeness within clusters and low likeness across clusters,
which has been demonstrated in [25], is a benefit for clustering.

• Performing the normalized Laplacian matrix L′ = M−1/2WM−1/2.

• The computational complexity of the GE-VAT algorithm depends mainly on
three parts, i.e., computing the local scale parameter σi, the characteristic de-
composition of the normalized Laplacian matrix L′, and performing the E-VAT
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algorithm. The corresponding runtime complexities for these three parts are, re-
spectively, O(Kn2), O(n3) and O(n2). Thus, the total computational complexity
of GE-VAT algorithm is O(n3 + (K + 1)n2).

3 AUTOMATIC CLUSTER TENDENCY ASSESSMENT

Clustering in unlabeled data O is the assignment of labels to the objects in O, where
two essential components are needed; they are the number of groups to seek C and
a partitioning method to discover the C clusters. In this section, the problem
of cluster tendency assessment is explored by GE-VAT. Before designing an auto-
matic method for estimating the number of clusters from the GE-VAT images, the
characteristics of the GE-VAT images are examined. Figures 4 a), 5a and 6a show
the examples for original E-VAT image and best (based on k value) GE-VAT im-
ages with different numbers of characteristic vectors are shown in Figures 4 b), 5 b)
and 6 b) respectively, GE-VAT images are generally clearer than the orginal E-VAT
image in revealing real data structure.

To enable automatic determination of the number of clusters, the “best” GE-
VAT images in terms of “clarity” and “block structure” must be found. Each of
the “block regions” in the image corresponds to either intracluster or intercluster
dissimilarity values, while “clarity” is relevant to the degree of brightness difference
of such blocks. For determining the number of clusters from the given GE-VAT
image an Enhanced- Dark Block Extraction (E-DBE) is proposed based on [26] which
relies on distance measure and basic image and signal processing techniques [27].
The procedure for E-DBE is summarized in Table 3. Figure 2 shows the results of
E-DBE algorithm on iris dataset. In Figure 2 a) three dark blocks are presented
on the diagonal which means there are three clusters in the data set for which the
input is the outcome of GE-VAT algorithm. Next the binary GE-VAT image is
revealed in Figure 2 b). Distance transformation on the binary image is performed
to obtain the gray-scale image which is shown in Figure 2 c). Later the positions of
diagonal values in the gray-scale image are projected as a first order derivative of
iris data set using smooth, moving, sgolay filters are shown as a projection signal in
the Figures 2 d), 2 e) and 2 f), respectively. The peaks in the projection signals the
number of clusters presented in the data set (here C = 3).

Some points about this algorithm are noted as follows:

• Transform the original matrix D to a new dissimilarity matrix D′ using a “mono-
tonic” exponential function f(v) = 1− exp(−v/σ) (parameter σ may be merely
selected as the global threshold significance obtained by Otsu’s algorithm [28]).

• Adaptive threshold algorithm to obtain a new threshold σ′ to convert the binary

image by Image
(2)
ij = 1 if Image

(1)
ij > σ′ and Image

(2)
ij = 0 otherwise.

• Distance transformation is a form of depiction of a digital image, which converts
a binary image to a gray-scale image in which the value of each pixel is the
distance from the pixel to the adjacent non-zero pixel in the binary Image(2).
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Figure 2. Sample results of the E-DBE algorithm on iris dataset; a) GE-VAT image of
iris dataset; b) binary GE-VAT image of iris dataset; c) distance transformed
image; d) first order derivative projection signal obtained using “smooth”; e) first
order derivative projection signal obtained using “moving”; f) first order derivative
projection signal obtained using “sgolay”
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Input: n × n – scaled matrix of dissimilarities D = [dij ], the proportion of
the allowed minimum cluster size of the data size n.

Process
Step (1): Transform D to a new dissimilarity matrix D′ = dij = 1 −
exp(−dij/σ).
σ – scale parameter determined D using Otsu [28] automatically.

Step (2): Form a RDI Image(1) corresponding toD′ using GE-VAT algorithm.

Step (3): Threshold the Image(1) to obtain binary Image(2) using the adaptive
threshold [29] algorithm.

Step (4): Perform a distance transform on Image(2) to obtain a new gray-scale
Image(3), and scale the pixel values to [0, 1].

Step (5): Project the pixel values of the Image(3) onto the main diagonal axis
of the image to form a projection signal Histogram(1).

Step (6): Filtering the projected signal is performed by Savitzky-Golay filter
design [30].

Step (7): Compute the first order derivative of the Histogram(1) to obtain
signal Histogram(2).

Output: The number of dark blocks C (i.e., count the number of major
peaks)
presented in the RDI.

Table 3. Enhanced dark block extraction algorithm

• Savitzky-Golay filters are optimal, they minimize the least-squares error in fit-
ting a polynomial to frames of noisy data and find the original sets of peaks pi
and valleys vj by finding the equivalent from-positive-to-negative zero-crossing
points and from-negative-to-positive zero-crossing points.

• The computational complexity of this algorithm mainly depends on the compu-
tation of gray scale images and optimal thresholds, which is O(n2).

4 VISUAL DATA PARTITIONING

In this section, GE-VAT is further explored for the problem of visual data parti-
tioning. That is, whether the method can automatically extort a crisp C-partition
of O directly from the visual facts in Image(D′)? If so, how well does it execute?
In common, the C-partitions of a data set O are sets of c.n values uik that can be
easily arrayed as c × n matrix U = [uik]. The set of all nondegenerate c-partition
matrices for O is [

Hhcm =
{
U ∈ Rc×n|0 ≤ uik ≤ 1,∀i, k

}]
(1)

with
c∑
i=1

ui,k = 1,∀k and
n∑
k=1

ui,k > 0,∀1. (2)
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Element uik of U is the membership of object k in clusters i. In the case of
a “crisp” (or hard) partition (not fuzzy), uik = 1 if Ok is labeled 1 and 0 otherwise.
The significant property of Image(D′) is that it has, starting in the upper left corner,
dark blocks along its main diagonal. Consequently, constrain the search through
Hhcn to those partitions that imitate the block structure in Image(D′) [31], i.e.,

H∗hcm = {U ∈ Hhcm} . (3)

Let U in H∗hcn be an aligned C-partition of O when its entries form C contiguous
blocks of 1 s in U , ordered to initiate from the upper left corner, and continue
down and to the right. Every member of H∗hcn is isomorphic to the distinctive
set of C discrete integers, i.e., the cardinalities of the C clusters in U that gratify
{{n1|1 ≤ n1; 1 ≤ i ≤ C;

∑c
i=1 ni = n}}, so associated partitions can be alternatively

specified by {n1 : n2 : . . . : nc}. The important uniqueness of Image(D′) that can be
exploited for finding a high-quality candidate partition U are the contrast differences
between the dark blocks along the main diagonal and the pixels closest to them.

Input: Image(D′): the GE-VAT image generated from a set of n objects.
π(): the permutation index obtained during E-VAT re-ordering
C: the number of clusters

Process

Step (1): Perform a global threshold on Image(D′)(1) to obtain a binary
image Image(D′)(2).

Step (2): Apply Distance Transformation (DT) on binary image
Image(D′)(2). For each pixel inD′, the distance transformedD′′ assigns a num-
ber that is the distance between that pixel D′ and the nearest nonzero pixel
of ′. Here the “city block” distance measure is used to execute the DT.

Step (3): Obtain the diagonal values of D′′ and convert into a 1D vector
norm V ∗.
Step (4): Transform the non-zero elements of V ∗ into cluster partition U∗
(which is equivalent to obtaining the sizes of each cluster {n1, . . . , nc}). The
position p1 of the first ‘1’ in V ∗ means the first cluster partition is from sample
1 to p1. The position pj (j = 2, . . . , C − 1) of the jth ‘1’ means the jth cluster
partition is from sample (pj−1 + 1) to pj . The Cth cluster partition is from
sample (pc−1 + 1) to n.

Step (5): Retrieve real object indices in each cluser Ci with the
permutation index π(), i.e., C1 =

{
Oπ(1), . . . , Oπ(n1)

}
and Ci ={

Oπ(ni−1+1), . . . , Oπ(ni−1+ni)

}
for i = 2, . . . , C.

Output: The data partitioning results {C1, . . . , Cc}.

Table 4. Visual data partitioning (VDP) algorithm

The proposed algorithm aims to generate candidate partitions in H∗hcn by testing
their robustness to the clusters suggested by the aligned dark blocks in Image(D′)
(i.e., dissimilarites in non-dark blocks off-diagonal) [31]. The proposed visual data
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partitioning procedure is based on the GE-VAT image which is summarized in Tab-
le 4.

Several points about this algorithm are noted as follows:

• Alternatively the proposed algorithm can be executed using optimization algo-
rithms such as genetic algorithm and particle swarm optimization.

• In addition to the GE-VAT image, this visual partitioning procedure can also
operate on other reordered dissimilarity images.

• Sampling-based extended scheme can be applied for large object data sets.

• The time complexity of this algorithm mainly depends on the distance tranfor-
mation, object size, i.e., space complexity O(n2) and vector norm V ∗.

5 EXPERIMENTAL RESULTS

In order to evaluate the proposed algorithms, a number of experiments have been
made on synthetic, UCI and real world datasets (summarized in Table 5). The pre-
processing data mining techniques such as mean imputation method [32] for missing
data and Z-score normalization [33] are performed on data sets to compute the
distance matrix D, where D is the input dissimilarity matrix for GE-VAT algorithm.
All experiments were implemented in a Matlab 7.1.0.246 environment on a PC with
an Intel 2.10 GHz CPU and 3 GB memory running Windows XP.

5.1 Review of Data Sets

Three synthetic data sets with diverse data structure (i.e., dissimilar numbers of clus-
ters and different data distributions) are used in the experiments. The scatter plots
of these synthetic data sets are shown in Figure 3, in which each one corresponds
to a visually meaningful collection. These three data sets are taken from [36]; the
data sets involve more irregular and dense data structures, in which an observable
cluster centroid for each group is not predictable. These data sets include different
scales between clusters or some clusters are concealed in a cluttered background.

100 200 300 400 500 600 700 800 900

50

100

150

200

250

300 a) b) c)

Figure 3. Scatter plot of synthetic data sets (S-1, S-2 and S-3)
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Six real-world data sets were also considered to assess the proposed algorithms,
five of which are from the UCI machine Learning Repository and one from various
Integrated Counseling and Testing Center (ICTC) and Antiretroviral (ART) centers
of Tamilnadu and Pondicherry. i.e., U-1, U-2,. . . , U-5and R-1. In concise, U-1
(Dermatology) database includes 357 instances, each of which has 33 attributes and
belongs to one of 6 classes. U-2 (Heart) data set from [34] includes 270 instances,
each of which has 12 attributes and belongs to one of 2 classes. U-3 (Hepatisis)
data set is a 72 × 72 matrix consisting of pairwise dissimilarities from a set of
72 patients clinical report that were clustered into 2 groups (alive or dead) which
had 19 immunological parameters. U-4 (iris) data set contains 3 physical classes,
50 instances each, where each class refers to a type of iris plant with 4 attributes.
U-5 (wine) data set includes 178 samples from 3 wine cultivators with 12 various
attributes.

R-1 (HIV/AIDS) diagnosis data set contains 400 objects. The attributes are
Age, Sex, WT, HB, Treat Drug, Pill count, Initial drug, Occupation, Marital sta-
tus, CD4, CD8, Ratio, WBC, RBC, PCV, platelet, TLC, SGPT, SGOP and Drug
regimen- Class Attribute (CA). The entire integer of items in this data set is n = 400.

Data Physical Class # Size Number of Clusters C
Set (Cp) attributes (n) Manual Manual Automatic

E-VAT GE-VAT E-DBE
(CmEV ) (CmGEV ) (CaEDBE)

S-1 2 2 2 000 ≥ 1 2 2

S-2 3 2 2 000 ≥ 2 3 3

S-3 3 2 2 500 ≥ 1 3 3

U-1 6 33 357 2 6 6

U-2 2 12 270 ≥ 1 2 2

U-3 2 19 72 ≥ 2 2 2

U-4 3 4 150 ≥ 2 2 2

U-5 3 12 178 ≥ 1 3 3

R-1 6 19 400 ≥ 1 6 6

Table 5. Summary of data sets used and estimating C results

5.2 Determining the Number of Clusters

For each data set data mining preprocessing techniques, pairwise dissimilarity ma-
trix D are computed in the original attribute space. The E-VAT images are shown in
Figure 4 a) for the synthetic data sets, Figure 5 a) for UCI data sets and Figure 6 a)
for real data set. It is viewed that the cluster structure of the data in these E-VAT
images is not clearly highlighted. Consequently, viewers have complexity in giving a
sound result about the number of clusters in these data sets; different viewers may
infer diverse estimates of C. Later, GE-VAT algorithm is applied to each of the data
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Figure 4. a) original E-VAT images of three synthetic data sets with visual clustering re-
sults shown by dark red lines; b) the corresponding best GE-VAT images with
visual clustering results; c) the corresponding E-DBE projection signals to deter-
mine the number of clusters automatically

sets and the results for synthetic, UCI and real data sets are shown in Figures 4 b),
5 b) and 6 b), respectively.

In contrast to the original E-VAT images (Figures 4 a), 5 a) and 6 a)), the GE-
VAT images (Figures 4 b), 5 b) and 6 b)) generally have clearer presentations of the
block structure on the diagonal and thus better highlight the concealed cluster struc-
ture. Table 5 summarizes the number of clusters determined by manual inspection
from the original E-VAT image (Cm

EV ), manual inspection from a series of GE-VAT
images (Cm

EV ) and automatic determination of cluster numbers from GE-VAT im-
ages using E-DBE (Cm

EDBE). The results of cluster number assessment from the
GE-VAT images for the 9 data sets are correct in terms of the number of actual
physical classes Cp; this was estimated by manual inspection of the data sets. The
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Figure 5. a) original E-VAT images of five UCI data sets with visual clustering results
shown by dark red lines; b) the corresponding best GE-VAT images with visual
clustering results; c) the corresponding E-DBE projection signals to determine the
number of Clusters



1028 P. Prabhu, K. Duraiswamy

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

180

200

a)

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

200

220 b)

0 100 200 300 400 500
0

100

200

300

Positions of Diagnal Axis of Image

P
ro

je
c

ti
o

n
 V

a
lu

e
s

First order derivate Projection signal of 
HIV data set using "sgolay" filter

 

 

Original Data

Smoothed Data Using ’sgolay’

c)

Figure 6. a) original E-VAT images of real HIV data set with visual clustering results
shown by dark red lines; b) the corresponding best GE-VAT images with visual
clustering results; c) the corresponding E-DBE projection signals to determine the
number of clusters automatically

outcome again highlights the benefits of converting D to D′ by graph embedding to
obtain a more accurate estimate of C. Table 6 shows the concise account of cluster
results of VDP algorithm for data sets using GE-VAT images.

5.3 Efficient Visual Data Partitioning (vdp)
and Algorithm Comparison

Cluster validations, which assess the goodness of clustering outcomes [5], have long
been recognized as one of the vital issues to the success of clustering applications.
External and internal clustering validations are the two main categories of cluster
validation. External validation measure is entropy, which evaluates the “purity” of
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Data # of clusters Cluster Manual
Set through VDP Cluster # # of objects in each cluster inspection of class

S-1 2 1 1 000 2
2 1 000

1 1 000
S-2 3 2 500 3

3 500

1 1 000
S-3 3 2 750 3

3 250

1 110
2 59

U-1 6 3 70 6
4 48
5 51
6 19

U-2 2 1 150 2
2 120

U-3 2 1 60 2
2 12

1 50
U-4 3 2 50 3

3 50

1 59
U-5 3 2 71 3

3 48

R-1 6 1 221 6
2 144
3 11
4 17
5 5
6 1

Table 6. Cluster results of Visual Data Partitioning (VDP) algorithm for data sets using
GE-VAT images

clusters and internal validation measures only rely on information in the data [35].
In this paper the proposed visual partitioning algorithm evaluates by comparing the
proposed algorithm with the ground truth label (available for these 9 data sets).
Accuracy metric (AC) has been widely used for cluster validation [24, 37, 38]. Sup-
pose that MC

i is the clustering label of an object Oi and MG
i is the related ground

truth label; then AC is defined as Maxmap

∑n
i=1 δ(M

g
i ,map(ZC

i ))/n where n is the
total number of objects in the data, δ(M1,M2) is the delta function that equals 1
if and only if Z1 = Z2 and 0 otherwise, and map is the mapping function that
permutes clustering labels to equivalent labels specified by the ground truth. The
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Data Cluster K-mean Ward GE-VATσ GE-VATσi VDPGE−VAT VDPE−VAT
Set # (C) (Km) (Lw)

S-1 2 88.30 71.70 100.0 100.0 100.0 90.15

S-2 3 76.05 77.95 100.0 100.0 100.0 57.50

S-3 3 45.64 48.83 100.0 100.0 100.0 53.21

U-1 6 96.05 96.63 96.78 96.78 94.88 65.15

U-2 2 88.14 91.72 87.13 88.05 90.80 83.45

U-3 2 90.15 95.56 100.0 100.0 100.0 97.33

U-4 3 81.45 89.33 90.67 93.33 98.67 67.33

U-5 3 96.30 92.70 97.75 97.75 98.31 49.33

R-1 6 76.19 95.55 82.15 81.60 96.00 68.95

Table 7. Comparison of clustering algorithm performance accuracy (percent)

S. No Proposed Methods Complexity Capability of tackling
high dimensional data

1 GE-VAT O(n3 + (K + 1)n2) Yes

2 E-DBE O(n2) Yes

3 VDP O(n2) Yes

Table 8. Computational complexity for the proposed algorithms

Kuhn-Munkres algorithm is usually used to obtain the best mapping [39]. Visu-
alization of the proposed visual partitioning algorithm on synthetis, UCI and real
data sets are shown in Figures 4 b), 5 b) and 6 b), respectively. The clustering val-
idation of the proposed visual data partitioning algorithm on the orginal E-VAT
image (V DPE−VAT ) and the GE-VAT (V DPGE−VAT ) are summarized in Table 7,
from which the proposed algorithm obtains satisfactory partitioning results, i.e.,
V DPGE−VAT performs better than V DPE−VAT .

Several typical clustering algorithms are also implemented for comparison.
These algorithms are K-means (Km), Ward’s hierarchical clustering (Lw) [40], GE-
VAT with global-scale parameter [24] (GE-VATσ) and GE-VAT with local-scale
parameter [36] (GE-VATσi). The clustering accuracies of these algorithms on these
9 synthetic, UCI and real data sets are listed in Table 7, from which it can be seen
that overall precision of the proposed cluster partitioning algorithm on the GE-VAT
image is better than that of K-means, Ward’s algorithm and standard graph based
clustering with local scale parameter is comparable to that of graph clustering with
global scaling. In addition, visual methods give intuitive interpretation on the num-
ber of clusters, cluster structure and partition outcomes from the images, as well as
eliminating the randomly initialized K-means clustering stage.

6 DISCUSSION AND CONCLUSION

This paper has offered an enhanced visual approach toward automatically determin-
ing the number of clusters and partitioning data in either object or pairwise rela-
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tional form. In order to better reveal the hidden cluster structure, particularly for
complex-shaped data sets, the E-VAT algorithm has been enhanced by using graph
based analysis of the proximity matrix of the data. Based on GE-VAT the enhanced
dark block extraction for automatically determining the number of clusters has been
proposed. Later, visual clustering algorithm based on GE-VAT images have derived
based on its block-structured property. A sequence of primary and comparative
experiments on synthetic, UCI and real-world data sets have confirmed that our
algorithms execute well in requisites of both visual cluster tendency assessment and
data partitioning. The potentials of the proposed algorithm are applied in image
segmentation, grouping of complex real-world datasets and in feature extraction.

There are strong relations between the GE-VAT algorithm and other works:
both the GE-VAT algorithm and the spectral clustering algorithm described [24]
use graph based normalized Laplacian matrix that is essentially for graph embeding
procedure of [19]. A major property of the graph embedding framework is the entire
preservation of the cluster structure in the embedding space. For novel representa-
tions in the embedding space, spectral clustering in [24] performs K-means to cluster
them; while the proposed visual data clustering algorithm first converts them to an
enhanced reordered dissimilarity (GE-VAT) image and then uses the diagonal values
of the tranformed image by E-DBE with permutation index to partition its block
structures. A local scaling method is suggested in [36] to change the global scale σ
in [24], leading to better clustering, mainly when the data includes manifold scales
or when the clusters are positioned within cluttered background.

The proposed algorithms will possibly reach their useful limit when the image
formed by any reordering of D is not from a well-coherent dissimilarity matrix. The
present method compares positively to postclustering validation methods in com-
putational effectiveness. Next, the method does not eliminate the need for cluster
validity (i.e., the third problem in cluster analysis). Computational complexity for
the proposed algorithms is revealed in Table 8 which shows E-DBE and VDP has less
computation time compared to GE-VAT. Cluster performance evaluation depends
significantly on the choice of the validity criteria and the clustering algorithms. The
existing index-based validation methods are apparently an approximate outcome
to validate the proposed visual algorithms. The method for finding direct visual
validation process will be one of the important issues in future work.

A APPENDIX

The Enhanced – VAT Algorithm

The E-VAT algorithm [17] works on a pairwise dissimilarity matrix.

Let O = {o1, o2, . . . , on} denote n objects in the data and D a pairwise matrix
of dissimilarities between objects, each element of which, dij = d(oi, oj), is the
dissimilarity between objects oi and oj and usually satisfies 1 ≥ij≥ 0; dij = dji;
dii = 0, for 1 ≤ i, j ≤ n.
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Input

Load the multi dimensional dataset and convert it into dissimilarity matrix us-
ing Euclidean, Hamming and Mahalanobis distance for numerical, categorical
and mixed attributes respectively. Consider the dataset as n× n dissimilarity
matrix.

Process

Step (1): Transform D to a new dissimilarity matrix R with d′ij = 1 −
exp(−dij/σ), where σ is a scale parameter determined from D using the algo-
rithm of Otsu [28] automatically.

Step (2): Form a RDI image I(1) corresponding to R using the VAT algo-
rithm. Let I and J be subsets of K = {1, . . . , n}. We let argmin {Rpq}p ∈ I,
q ∈ J denote the set of all ordered index pairs (i, j) in I × J such that
Rij = arg min{Rpq}p ∈ I, q ∈ J .

Step (2.1):
Let I = Φ, J = {1, 2 . . . n} and P = (0, . . . 0).
Choose (i, j) ∈ argp∈j and q∈j max{dpq}
Place P (1) = i, I ← {i} and J ← J − {i}

Step (2.2):
Iterate for t = 2 . . . n
Select (i, j) ∈ argp∈i and q∈j min{dpq}
Set P (t) = j, revise I ← I ∪ {j} and J ← J − {j}

Step (2.3): Figure the dissimilarity template or matrix R = [dij ] = [dP (i)P (j)]

Where 1 ≤ i, j ≤ n

Step (3): Display the reordered matrix R̃ as the ODI Ĩ using the conventions
given above.

Output

Gray scale image I(D), which denotes maximum (dij) to white and minimum
(dij)
to black.

Table 9. The enhanced VAT algorithm
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The E-VAT algorithm displays a reordered dissimilarity matrix of D as a gray-
scale image. The E-VAT algorithm is summarized in Table 9. The reordering idea
is to find P so that R̃ is as close to a block diagonal form as possible.

An example of E-VAT is shown in Figure 7. Histogram of iris data set of n = 150
points in R2 is displayed in Figure 7 a), data points were converted to a 150 × 150
dissimilarity matrix D by computing the distance measures based on the attribute
characteristic between each pair of points. Figure 7 b) shows the unordered image
of iris data set. In E-VAT image [13] in Figure 7 c) the dark blocks are not clearly
visible, further reordering is necessary to reveal the underlying cluster structure of
the data.
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