
Computing and Informatics, Vol. 32, 2013, 595–627

INVESTIGATIONS INTO LAMARCKISM,
BALDWINISM AND LOCAL SEARCH
IN GRAMMATICAL EVOLUTION GUIDED
BY REINFORCEMENT

Jack Mario Mingo

Computer Science Department
Universidad Autónoma de Madrid
Madrid, Spain
e-mail: mario.mingo@uam.es

Ricardo Aler

Computer Science Department
Universidad Carlos III de Madrid
Madrid, Spain
e-mail: aler@inf.uc3m.es

Daŕıo Maravall

Artificial Intelligence Department
Universidad Politécnica de Madrid
Madrid, Spain
e-mail: dmaravall@fi.upm.es

Javier de Lope

Applied Intelligent Systems Department
Universidad Politécnica de Madrid
Madrid, Spain
e-mail: javier.delope@upm.es

Communicated by Gianfranco Rossi

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computing and Informatics (E-Journal - Institute of Informatics,...

https://core.ac.uk/display/267941748?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

596 J. M. Mingo, R. Aler, D. Maravall, J. Lope

Abstract. Grammatical Evolution Guided by Reinforcement is an extension of
Grammatical Evolution that tries to improve the evolutionary process adding
a learning process for all the individuals in the population. With this aim, each
individual is given a chance to learn through a reinforcement learning mechanism
during its lifetime. The learning process is completed with a Lamarckian mecha-
nism in which an original genotype is replaced by the best learnt genotype for the
individual. In a way, Grammatical Evolution Guided by Reinforcement shares an
important feature with other hybrid algorithms, i.e. global search in the evolution-
ary process combined with local search in the learning process. In this paper the
role of the Lamarck Hypothesis is reviewed and a solution inspired only in the
Baldwin effect is included as well. Besides, different techniques about the trade-off
between exploitation and exploration in the reinforcement learning step followed by
Grammatical Evolution Guided by Reinforcement are studied. In order to evaluate
the results, the system is applied on two different domains: a simple autonomous
navigation problem in a simulated Kephera robot and a typical Boolean function
problem.

Keywords: Hybrid algorithms, grammatical evolution, Lamarckism, Baldwinism

1 INTRODUCTION

Grammatical Evolution (GE) [1] is an Evolutionary Algorithm created with the aim
of developing programs based on a grammar. In order to carry out this function
GE employs a mapping process that transforms the codons which make the genome
into useful information, with the purpose of helping to select the production rules
in a BNF grammar. This mapping process is simple. Firstly, the genome is ex-
plored from left to right in order to generate an integer number sequence in a stage
called transcription. Then, the integer string is used for getting a value that deter-
mines what production rule will be applied on each time along the creation program
process. Usually, this second stage is known as translation.

Starting from this scheme and having as support the hypothesis that learning can
guide the evolution [2], a Grammatical Evolution Guided by Reinforcement (GER)
was proposed [3]. This system merges Grammatical Evolution and Reinforcement
Learning [4] in an attempt to let individual learning during the lifetime of each
individual. The main goal in the learning process is to generate new programs using
the same grammar that is used for creating the original genetic program. Thanks
to learning, new programs are built in an attempt to get a learnt program better
than the original genetic program. According to the Baldwin effect [5], an organism
that learns can evolve faster even if the result of learning is not copied back to the
genotype. Giving a chance for the learned knowledge to be passed onto the offspring
was proposed by Lamarck [6]. Nowadays, this proposal called Lamarck Hypothesis
is not accepted from a biological viewpoint. However there is no reason for not using
it from a computational viewpoint as GER does.

Investigations into the Learning Process in GER 597

Hybrid or memetic algorithms (MA)[7] are a kind of algorithms created to
solve complex problems that traditional evolutionary algorithms cannot solve easily.
These algorithms enhance the global search capabilities associated with evolutionary
algorithms with local search capabilities in order to explore the neighbourhood of
an individual. Both features, local search and Lamarck hypothesis are used by GER
although several differences exist between these systems as will be shown later.

The role of Lamarckian mechanism in GER was analyzed initially in [8] where
two GER systems were compared: the first one included the Lamarck Hypothesis,
i.e. it was a standard GER, and the second one did not include it. The results
showed that the system without Lamarckian mechanism could not find solutions in
the autonomous navigation domain used on tests. The present paper starts from
this situation and studies the Baldwin effect, where the fitness after learning is kept
(unlike Lamarck) but the learned program is not (like Lamarck). Another question
this paper is concerned with refers to the exploration-exploitation trade-off that is
inherent to Reinforcement Learning technique. Regarding different strategies [4, 9],
this paper compares the initial e-greedy strategy of GER with probability based
strategies.

The main aim of this paper is to compare different learning processes during
a grammatical evolution guided by reinforcement (GER) under the same conditions.
Of course, learning in evolution has been extensively studied but we are interested
here in grammar based approaches only. Studying several alternatives in the learning
process associated with GER is important to find out the most appropriate strategy
in a specific domain. A second goal in the study is analysing how each learning
alternative affect several parameters in the evolutionary process, such as the number
of unique individuals in the population, the average fitness value or the number of
individuals that really benefit from the learning. We apply different variants of
GER in two different domains: firstly, in autonomous navigation of a Kephera robot
wandering in an unknown environment, and secondly in a classical problem of finding
a solution for an even 3 parity Boolean function. In the first problem, a simulated
robot is used.

Next sections describe these points in detail. Firstly, in Section 2 we review
learning and evolution from a general context and from a robotic perspective. Sec-
tion 3 describes essential issues in grammatical evolution guided by reinforcement
as a method of merging learning and evolution. Section 4 describes the problems
to be considered. Section 5 explains all learning methods investigated in the exper-
iments. Section 6 analyses results for each method and globally. Finally, Section 7
is dedicated to comment conclusions.

2 EVOLUTION, LAMARCK HYPOTHESIS AND BALDWIN EFFECT
AS LEARNING MECHANISM

Relationships between evolution and learning are a constant topic of interest from
natural and computational point of views. Computationally, evolution is a global

598 J. M. Mingo, R. Aler, D. Maravall, J. Lope

search while learning can be considered a local search in the neighbourhood of each
individual. There are great advantages if both methods are combined because evo-
lution lets adapt a population to slow changes in a time scale and learning lets adapt
each individual to fast changes in the environment. Besides, evolution can operate
in a parallel way and learning can smooth out the fitness landscape. From compu-
tational point of view two learning methods have been considered more extensively,
namely Baldwinian and Lamarckian learning which correspond to biological theo-
ries established by the biologists Baldwin and Lamarck. According to Lamarck, the
learning process followed by an individual is returned to its offspring via genotype,
that is, Lamarck proposed a direct heritage of acquired features during the lifetime.
According to Baldwin, the learning process followed by an individual is not returned
directly to its offspring via genotype but the effects of learning drive evolution in
a smoother way and these effects can appear finally in further generations. Current
biologists did not confirm the Lamarck hypothesis and it is not used in that disci-
pline because it is not plausible. However, from computational point of view there
are no constraints to use it and some works have done it as we will show below.

Baldwin effect was computationally showed by Hinton and Nowlan [2] with
a simple but elegant and compelling experiment. They used a genetic algorithm
as evolutionary method and they used learning to find the only correct solution
in an imaginative problem. When the population was driven only through evolu-
tion there was a single individual with a good fitness and the other ones had the
same bad fitness. However, thanks to learning other individuals had a chance to
improve their bad fitness as a function of the number of changes on its genotype
to reach the solution. Therefore, learning could help evolution through a smoother
search toward the only solution. Other works complement this initial proposal about
interaction between learning and evolution, e.g., [10], where a study about interac-
tions between adaptive processes on two levels was addressed. Individual level was
mediated by learning while population level was driven by evolution. Ackley and
Littman proposed an adaptation strategy known as Evolutionary Reinforcement
Learning (ERL) which combined evolution with neural network learning and they
studied how several populations behaved in a simulated world. Results showed that
learning and evolution combined could produce better long-lasting populations than
either alone. Belew et al. [11] studied interactions between learning and evolution in
a strictly computational point of view and they argued that Lamarck mechanism is
not possible when genotype and phenotype spaces are far from each other because
“it is computationally impossible to encode in the structural genotype the results of
behavioural experiments”. Anyway, as many others Belew et al. concluded that com-
bined learning and evolution lead to efficient and reliable hybrid algorithm. Another
early example comparing Lamarck and Baldwin effects is found in [12] where au-
thors show how there are functions where simple genetic algorithm without learning
as well as Lamarckian evolution converge to the same local optimum, while genetic
search with Baldwin effect converges to the global optimum. Besides, they found
out that an algorithm exploiting the Baldwin effect sometimes outperformed an al-
gorithm exploiting Lamarckian evolution. However, Whitley et al. only considered

Investigations into the Learning Process in GER 599

function optimization problems and their results showed as well that Baldwin search
was slower than Lamarckian search. Gruau and Whitley compared these learning
mechanism in [13] but they did not find important differences between results that
the systems reached. However, Lamarck effect was more successful in an experiment
developed by Ku and Mak [14], who compared the performance in a cellular genetic
algorithm which combined evolution and both kinds of learning. Results show that
the Lamarckian mechanism was able to support the cellular system when it was op-
timizing the weights of a recurrent neural network but the Baldwinian mechanism
failed in this task. Convergence, in terms of the number of generations taken, was
better with Lamarck than systems without learning and with Baldwin learning. We
can finish this short general review with a work by Julstrom et al. [15], where these
learning mechanisms were also compared in a different domain, specifically in a node
partitioning problem with cycles of four minimum length. Again, Lamarck effect got
better results than Baldwin effect. A consequence that we can extract of all these
experiments is that performance of learning mechanism is very domain dependant.

From an evolutionary robotic domain point of view there is an obvious interest
in merging evolution and learning as well. In a preliminary work about this topic,
Nolfi et al. [16] studied an artificial neural network working in an environment with
food elements. At the population level, the networks evolved to become fitter at one
task on the basis of the number of food elements collected while at the individual
level, each member tried to learn as to predict the consequences of its actions during
the lifetime. Nolfi et al. did not use Lamarck mechanism in the experiments and the
results showed a positive effect when evolution and learning were combined in spite
of tasks being different. Authors explained this fact by considering that evolution
tends to select individuals that are located in regions of the search space where both
tasks are dynamically correlated. A different issue about evolution and learning
was studied by Nolfi and Parisi [17]. In this case, a neural controller for a mobile
robot was evolved with the aim to analyse if the controller was able to adapt to
changes in the environment on each generation: colours of the walls switched from
black to white and vice versa. Thanks to the complex interaction between evolution
and learning, the evolved robots developed an ability to discriminate both environ-
ments because, as the authors mentioned, learning complements to evolution by its
quicker adaptation to the environmental changes that are too fast. An example of
Baldwin effect in robotic context is found in [18] where an analysis about benefits
and costs of learning process was addressed. As Mayley wrote, “it is the exploita-
tion of the benefits and reduction of the costs that provide the selection pressure for
firstly the adoption of a learned behaviour and subsequently its genetic assimilation”.
The genetic assimilation of acquired traits is a secondary but not less important
consequence of the Baldwin effect.

Examples like the previous ones are only a small sample of relationship between
evolution and different classes of learning. While it seems clear that hybrid systems
get better performance than standalone systems, it is not clear that Baldwin effect
outperforms Lamarck mechanism or vice versa. Although, there are more studies
in other domains than in the robotic context, most of the conclusions have been

600 J. M. Mingo, R. Aler, D. Maravall, J. Lope

obtained for neural networks and they can be applied to this context because this
type of structure is the most used to build robot controllers.

3 GRAMMATICAL EVOLUTION GUIDED BY REINFORCEMENT

GER tries to merge evolution and learning in a simple way: it allows individuals of
the population to rewrite its own program several times, trying different choices by
means of the same BNF grammar. This process is easy: initially each programmer-
individual is evaluated by executing the program created starting from its origi-
nal chromosome. Details about the mapping genotype-phenotype can be examined
in [1]. Then, the individual can create new programs using other grammatical rules.
If some learnt program is better than the original genetic program, a Lamarckian
mechanism is carried out. This mechanism substitutes the original genotype by the
learnt genotype. Basically the process consists of three stages:

1. transcription

2. translation

3. learning.

Figure 1 summarizes the process driven by GER.

01011011 Binary String

1 1 2 3 Integer String

Derivation Tree

TRANSCRIPTION

TRANSLATION

PROGRAM

LEARNING

Rules

Fig. 1. Stages in Grammatical Evolution Guided by Reinforcement

Transcription is the process that transforms the original binary string into an in-
teger number string, while Translation uses the integer number string for getting
a value that represents the rule to apply for the current non terminal. The next
formula shows how to get this value:

Rule = IntegerValue % NumberOfRules (1)

Investigations into the Learning Process in GER 601

where IntegerValue is the current number in the integer string, % represents the
module operator and NumberOfRules means the maximum number of rules corre-
sponding to the non terminal that will be expanded each time. Finally, the Learning
stage uses a Reinforcement Learning mechanism for generating new programs.

There are four essential items in GER, in addition to the actual evolution: Re-
inforcement Learning, Q Tree, Lamarck Hypothesis and Exploration-Exploitation
trade-off. Evolution in GER performs just as in a standard GE or similar evolution-
ary algorithms. Next sections briefly describe all these issues. We will finish this
review of GER with a discussion about the local optimization that GER addresses.

3.1 Reinforcement Learning

In Reinforcement Learning, an agent in a specific state can choose an action among
a group of possible actions. We will show here how GER applies reinforcement
learning but a good review about this topic can be found in [4]. Applying the
reinforcement learning scheme to GER the following items are identified:

• An individual-programmer that represents the agent.

• A group of states that represent the derivation steps used up to a point in the
building of the program.

• A group of production rules to apply in each of these states. Production rules
stand for actions to apply.

The aim of the individual-programmer is to calculate a policy for the actions
appropriate for any state. In GER, an action is simply a production rule to be
applied. A state is the partial derivation steps sequence applied up to a particular
instant. This way, state 0 would correspond to the start symbol of the grammar;
state 1, to the result of substituting the start symbol by one of the production rules
appropriate to it; state 2 would result from substituting the left most non terminal
symbol by a production rule valid for it and so on. This process can be concluded
because of one of two reasons:

1. The individual generates an analysis tree, that is, a tree whose leaves only con-
tain terminal symbols. In this case, the learnt program is evaluated and its
fitness is obtained.

2. The individual does not generate an analysis tree after a determined number of
rule selections.

In this case, the individual obtains a very poor fitness. The reinforcement learning
process is repeated as many times as it is established by means of a system parame-
ter, and the consequence will be the creation of a group of learnt programs. Some
of these programs will be grammatically wrong and they will get a very poor fitness
while other ones will be grammatically right and they will get a fitness based on
their capacity to solve the problem.

602 J. M. Mingo, R. Aler, D. Maravall, J. Lope

3.2 Q-Tree

GER uses a reinforcement learning based on Q-Learning [19]. The purpose of
Q-learning is to learn which production rules should be used. Initially, a non-
terminal symbol can be rewritten by any of the rules associated to that symbol, but
the reinforcement process learns to give more weight to the most appropriate rules.
GER employs a tree structure instead of a table because the state space might be
very big for some domains. This tree is known as Q-Tree. Q-Tree stores the pro-
duction rules more suitable on each state. With this aim Q-Tree keeps the following
information on each node (state):

• A numeric value that represents the production rules used to reach the state.
Root node is an exception because it is labelled with the start symbol in the
grammar.

• A group of numeric values called Q values, which represent the different produc-
tion rules that can be applied in the state.

An example will help to clarify the concepts and will show how the Q-Tree is
filled. Next grammar is used for solving the navigation task although details about
this problem will be described later.

N = {<code>, <line>, <if-statement>, <op>}

T = {move_left(), move_right(), move_forward(),

stop(), wall_left(), wall_right(),

wall_front(), if, else, (,), {, }}

S = <code>

<code> ::= <line> (0)

| <code> <line> (1)

<line> ::= <if_statement> (0)

| <op> (1)

<if-stm>::= if (wall_left()) {<line>} else {<line>} (0)

| if (wall_right()) {<line>} else {<line>} (1)

| if (wall_front()) {<line>} else {<line>} (2)

<op> ::= move_left(); (0)

| move_right(); (1)

| move_forward(); (2)

| stop(); (3)

where N means the non terminal symbols set, T means the terminal symbol set and
S is the start symbol of the grammar as usual. Table 1 shows a hypothetical output
of a transcription process applied to the initial binary string.

Figure 2 shows a possible mapping process with a wrapping value [1] (maximum
number of times that a chromosome can be used to build a program starting from
the grammar) equal to 5. A wrapping value is needed in order to avoid recursive
productions rules producing an infinite loop during the mapping process.

Investigations into the Learning Process in GER 603

1 1 3 0

Table 1. Chromosome of an individual-programmer

code

code line

code line

code

line

line

op

move_right

op

move_left

op

move_right

op

move_left

Fig. 2. Derivation Tree for the individual chromosome

Internal nodes in Q-Tree represent non terminal symbols and leaf nodes are
terminal symbols. In this example the chromosome represented in Table 1 has been
used 3 times to generate the tree.

While the derivation tree is being built a specific process builds the Q-Tree as
well. Initially each Q value is configured with a default value of −1. There are
as many slots as the maximum number of production rules on each node (in the
example there are four Q values because there are four rules associated with the
non terminal 〈op〉). When the original genotype program is evaluated, the genotype
which is represented by means of integer values is covered and the integer values are
saved in the Q-Tree according to the production rule that they select. In this way,
in the example, the first node in the Q-Tree would have as label the start symbol
of the grammar 〈code〉. The second node would have as symbol the value 1 (first
integer on the string), the third one would save the symbol 1 (second integer on the
string), the fourth one is the symbol 3 (third integer on the string) and so on (see
the right branch in the Q-Tree represented in Figure 3 for details). The nodes of
Q-Tree are linked through pointers from a higher node to a lower node.

Once the original genotype has been evaluated, a learning process is applied.
To this purpose, the individual can look for new production rules during a number
of learning steps which are defined by a parameter in the system, so the tree grows

604 J. M. Mingo, R. Aler, D. Maravall, J. Lope

according to learning process. In a learning step a new program is generated either
right or wrong (from a grammatically point of view). In Figure 3, we can see the
earliest stages in the Q-Tree as the result of a specific execution.

1=0.0100
code

0=0.0100
1=0.009996

1

1=0.0100

2=0.00998

0

3=0.009996

1

0=0.009996
3

1=0.00996
0

1=0.00996

1

3=0.009996

1

0=0.009996

3

1=0.009996
0

1=0.009996

1

3=0.009996

1

0=0.009996

3

Rw=0.009996
0

2=0.0100

1

3=0.009998

2

1=0.009998

3

1=0.009998

1

1=0.009998

1

2=0.009998

1

1=0.009998

2

1=0.009998

1

Rw=0.009998

1

2=0.0100

2

2=0.0100

2

3=0.0100

2

1=0.0100

3

3=0.0100

1

1=0.0100

3

Rw=0.0100

1

Fig. 3. Q-Tree for the individual chromosome

The symbol Rw stands for the reward [3] associated to the individual. On
each node of the Q-Tree we have represented only keys (rules) that correspond to
derivation steps tested by the individuals. The right branch of the Q-Tree shows the
sequence of derivations associated to the original genotype (see Table 1 for details).
Other two sequences of derivations associated with learnt genotypes are shown in the
left and middle branches. Reward is propagated from the last derivation (leaf node)
to the first one (level one) and it is computed by means of the following expression:

Reward = 1/FitnessValue (2)

Investigations into the Learning Process in GER 605

where fitnessValue depends on the specific problem we are going solve. As we can see
in the Q-Tree shown in Figure 3 the reward is the same for all nodes in a derivation
step. This is a consequence of using a discount factor of 1 when the updating rule
for Q-learning [19] is applied:

Q(sj, aj) = rj + γmax
a′

Q(sj+1, a
′) (3)

where, rj is the reward in the level j of the Q-Tree, sj stands for the state in the
level j, sj+1 is the state in the level j + 1, aj is the production rule applied in the
node sj and a′ is the rule with the higher value Q for the node sj. Finally, γ stands
for the discount factor and it is fixed to 1 in GER as we commented above.

To finish this section we notice that the Q-Tree plays global knowledge role in
the system and it is maintained between population members and generations. It
keeps different derivation steps which have been evaluated in the environment by all
the individuals. It guides the search when the individuals have the chance to learn
because it provides resources to try new steps starting from the old ones. To some
extent we also can consider the Q-Tree as a type of cultural learning which might
bias the results but we think that cultural learning can be included or considered
as another source of knowledge that the individual can find during its life time
and we can talk about learning in general terms. This way, we would not need
to separate cultural and individual learning processes. We will adopt this view in
the experiments but we are aware of this supposition would be analysed with more
detail in other works.

3.3 Lamarck Effect

Once the learning process has finished, several programs have been created. Some
of them are syntactically correct and some are not. Correct programs are evaluated
by means of their execution and they will have a fitness according to their skill in
the task. The learnt fitness is compared with the fitness reached by the genetically
created program for the individual. If a learnt fitness is better than the initial fitness,
the Lamarck Hypothesis can be applied and learning can be copied over the original
genotype. This way, we can replace the original genotype of the individual by the
best of the learnt genotype.

The use of the Lamarck Hypothesis in GER was initially analysed in [8] where
a study about its exclusion from the system was tested in order to check its influence
on the results. In [8], it was supposed that the learning process included in GER
through the Q-Tree would be powerful enough to drive the population toward ad-
vantageous fitness landscapes. However, results showed that correct solutions were
not possible without the use of the Lamarck Hypothesis. Nevertheless, in that work
the Lamarck Hypothesis was excluded completely, i.e., neither the original genotype
was replaced by the best learnt genotype nor the original genetic fitness was replaced
by the best learnt fitness. This way, the system tested in that work trusted only in
the knowledge the Q-Tree kept. An approach where the best learnt fitness replaces

606 J. M. Mingo, R. Aler, D. Maravall, J. Lope

the original fitness is essentially a Baldwin effect and we will study this approach in
this work.

3.4 Balance Between Exploration and Exploitation

A common problem in reinforcement learning is the trade-off between exploring new
actions or exploiting previously learnt actions. GER uses an e-greedy strategy to
select actions (production rules). Random selection is a problem with this strategy
and GER tries to solve it using a non constant factor that varies following the
expression:

EGreedyFactor = 1− (learnStep/learnStepsNum) (4)

where learnStep means the current learning step and learnStepsNum represents
a system parameter which specifies the total number of learning steps.

The EGreedyFactor value is used when an action must be selected during the
learning process. In this case the action means to select a production rule and GER
selects a rule depending on the e-greedy factor. If the factor is less than a threshold
(a system parameter), GER selects a known rule. Otherwise, GER selects a new
rule. In terms of values, when learnStep increases then EGreedyFactor decreases
and it is more probable that EGredyFactor does not go beyond the threshold, so
GER will select a known rule. By means of this strategy it is possible to contribute
to the exploration in the first learning steps and the exploitation in the last learning
steps. This strategy tries to use a number of learning steps that ensures an almost-
full evaluation in the earliest stages in the process. This way, the last learning steps
can take advantage of a Q-Tree with more information about the production rules
tested.

3.5 Local Optimization in GER

GER is a hybrid algorithm with two main components: an evolutionary process
which addresses a global search and a learning process which drives a local search.
Reinforcement learning used in GER is local because once GER generates and eva-
luates the original genotype, it starts to build new programs but it creates programs
that are close to the original genotype. To do it, all the learnt derivation trees start
applying the same initial rule number than the original derivation tree. Besides, as
a consequence of the balance between exploration and exploitation after some initial
exploration steps the individual will search already exploited nodes.

Local optimization is a distinctive feature of memetic algorithms (MA) but there
are several differences between GER and MA. Firstly, in MA local optimization is
usually implemented by iteratively applying a mutation operator to the agent. How-
ever, GER applies a method based on reinforcement learning to find new solutions
for each individual. Secondly, local optimization in MA can be applied in differ-
ent stages [20], i.e. after other genetic operators, applying it only in the final step,
etc. GER applies reinforcement learning after other operators have been applied.

Investigations into the Learning Process in GER 607

Generally, MA tries to include domain knowledge through heuristics while GER
does not add this kind of knowledge because reinforcement learning is driven by the
goal of getting the maximum reward and it chooses rules depending on its utility to
find that reward. Nevertheless, GER applies Lamarck mechanism like most MA do.
We can argue that both GER and MA try to improve the performance with local
optimization but they do it in different ways.

4 PROBLEMS AND DOMAINS

In order to analyse the learning process in GER we have applied this system in two
different domains and problems. The first domain is related to robotics and the
second one is a classical problem in evolutionary computation. A robotic domain
is very useful if we want to analyse the process in dynamic environments because
the sensors and actuators of the robot can introduce noise and this fact allows us to
reproduce a non-deterministic problem. On the other hand, if we want to analyse
the process in static problems we can test it in a second domain. In this case, we
have chosen a Boolean function because this kind of problems are deterministic, i.e.
input and output values are known in advance and the algorithm only tries to find
a correct solution. We think this combination of static and dynamic domains can
support the study more extensively.

4.1 Autonomous Navigation

Autonomous navigation is a very studied task. In this work, we only consider
a simple task: a robot wanders around an unknown environment. The robot must
navigate without hitting against the walls or other obstacles. We use a simulation
of the Kephera robot which was developed by J. C. Gallager and S. Perreta. This
version can be downloaded freely from [21].

To evaluate the robot’s movements, the environment is divided into 16 zones.
Zones are used for evaluating the fitness function together with a measure about the
collisions. The fitness function is calculated by means of the formula:

Fitness = (Colls/Steps) + ((Steps((Visits/Steps)) (5)

where Colls stands for the number of collisions against the walls incurred by the
robot, Steps refers to time units that an individual spends while executing the pro-
gram and Visits represents the number of zones visited during navigation. It is
important to take into account the number of visited zones with the aim of lim-
iting the effect in the evolution of some individuals, who do not hit any wall but
simply turn around itself. An individual is successful if it visits 7 or more zones
and does not hit anything. Figure 4 shows the environment and its division in 16
zones. These zones are not visible during the simulation but they are shown for
clarity.

608 J. M. Mingo, R. Aler, D. Maravall, J. Lope

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Fig. 4. Environment distributed into 16 zones

The grammar we used for solving this task was mentioned in Section 3.2 when
the Q-Tree was reviewed. Table 2 shows the most significant parameters in the
system.

goal Find a program that allows to simulate
a Kephera robot wandering around an en-
vironment without collisions

Fitness Cases 2 cases. One for each starting point

Case’s Raw fitness (collisions/steps) + (steps− (visits/steps))

Standardized fitness Case’s Raw fitness/number of fitness cases

Termination criterion Maximum number of generations or the first
individual who gets an standardized fitness
less than or to than 99.93 (0 collisions and 7
visited zones)

Codons by individual 10

Wrapping events 5

Population size 50

Maximum generations 20

Learning steps 10

Discount factor 1.0

Crossover probability 0.9

Mutation probability 0.03

Duplication probability 0.05

Table 2. General parameters in the autonomous navigation problem

Investigations into the Learning Process in GER 609

Learning steps and discount factor parameters where introduced in [3]. The
remaining parameters were defined previously in [1]. As we will show, these para-
meters seem to be sufficient to solve the problem.

4.2 Even 3 Parity Boolean Function

Boolean function is a classical problem in order to compare different evolutionary
strategies. As we only intend to analyse the learning process in GER we have chosen
the even 3 parity case because it is not a very hard problem but it is large enough
to explore its evolution. In order to solve the even 3 parity problem, the following
grammar is used:

N = {<expr>, <op>, <var>}

T = {and, or, nand, nor, (,)}

S = {<expr>}

<expr> ::= <op> (<expr> , <expr>) (0)

| <var> (1)

<op> ::= and (0)

| or (1)

| nand (2)

| nor (3)

<var> ::= d0 (0)

| d1 (1)

| d2 (2)

The group of terminals has been taken from [22]. Table 3 shows the common
configuration for the problem in this case. We think these parameters can solve the
problem because some previous work has shown that a population of 200 suffices
to obtain good results in this kind of domains [8]. This reference also shows that
beyond 30–50 generations, the system begins to stagnate.

5 ANALYSIS OF THE LEARNING IN GER

This section is concerned with the analysis of different variants about the learning
process in GER. We consider as learning in this study the Lamarckian mechanism,
the Baldwin effect and the exploration-exploitation trade-off usual in reinforcement
learning. The last term is part of the local search implemented by GER. Next
sections describe the different systems which implement all cases.

5.1 Grammatical Evolution Guided by Reinforcement (GER)

This system refers to a standard GER as it was defined in [3] with an e-greedy
mechanism of balancing between exploration and exploitation. It embodies the
Lamarckian hypothesis. This system is proposed as baseline.

610 J. M. Mingo, R. Aler, D. Maravall, J. Lope

goal Finding a logical function which solves the
even 3 parity Boolean problem, that is, the
one that returns true when there is an even
number of bits set to 1 arguments and false
when not

Fitness Cases The eight possible logical combinations for
three arguments

Case’s Raw fitness The number of success in the eight fitness
cases

Standardized fitness 8− Raw fitness

Termination criterion When the standardized fitness is 0

Codons by individual 10

Wrapping events 4

Population size 400

Maximum generations 50

Learning steps 30

Discount factor 1.0

Crossover probability 0.9

Mutation probability 0.01

Duplication probability 0.01

Table 3. General parameters in the even 3 parity Boolean function problem

5.2 Grammatical Evolution Guided by Reinforcement
with Probabilistic Exploration Strategy (GER-Kprob)

This system refers to a standard GER with a typical exploration strategy in rein-
forcement learning and it is based on probabilities according to the next expres-
sion [23]:

P (a) = kER(a)/Σa′εAk
ER(a′) (6)

where a represents the rule (action), ER(a) measures the probability to choose the
action and k is a constant value that was fixed in 0.5 after several tests. GER-Kprob
and GER only differ in the rule they use for exploring and exploiting. Equation (6)
is used when an action must be selected during the learning process. In this case the
action means to select a production rule and GER-KProb selects a rule depending
on this expression.

5.3 Grammatical Evolution Guided by Reinforcement
with Boltzmann Exploration Strategy (GER-Eprob)

This system implements a standard GER with another common strategy in reinforce-
ment learning as the Boltzmann exploration strategy. In this case, the expression is
described as [9]:

P (a) = kER(a)/T/Σa′εAk
ER(a′)/T (7)

Investigations into the Learning Process in GER 611

where a means the rule (action), ER(a) measures the probability to choose the ac-
tion, k is a constant value and T is a parameter usually called temperature. This
parameter decays with the time and as consequence exploration decays too. Tem-
perature parameter decays according to the learning step as expression:

Temperature = 1− (lerningStep/lerningStepsNum). (8)

Equation (7) is used when an action must be selected during the learning process.
In this case the action means to select a production rule and GER-EProb selects
a rule depending on this expression.

GER, GER-Kprob and GER-Eprob are systems created with the aim to test the
best exploration/exploitation policy while the individual is building its derivation
tree. All the systems are standard GER and they apply Lamarck hypothesis but
they apply different expressions during the learning process. GER uses Equation (4),
GER-KProb uses Equation (6) and GER-EProb uses Equation (7).

5.4 Grammatical Evolution Guided by Reinforcement
with Baldwin Effect (GER-Baldwin)

A GER-Baldwin system is implemented like a standard GER without applying the
Lamarck hypothesis. Therefore it does not replace the original genotype by the best
learnt genotype if any exists. Nevertheless, if a learnt program is better than the
original genetic program the learnt fitness replaces the original fitness. This way,
the system implements GER with Baldwin Effect instead of GER with Lamarckism.

5.5 Grammatical Evolution Guided by Reinforcement
without Applying a Lamarckian Mechanism
and without Replacing the Original Fitness (GER-QTree)

The last system consists of a GER system without the Lamarck hypothesis like the
previous one. However, in this case the original fitness is not replaced if a best
learnt program is found during the process learning. This system was implemented
previously in [8] and it does not include either Lamarck hypothesis or Baldwin Effect.
Nevertheless, this is an interesting system to test if the Q-Tree is enough for solving
the task because Q-Tree is an essential element in GER as learning mechanism. It
keeps a memory of alternatives (derivation steps) used during the process of learning
and evolution and it seems possible that Q-Tree can implement a Baldwin Effect
implicitly.

612 J. M. Mingo, R. Aler, D. Maravall, J. Lope

6 RESULTS

6.1 Autonomous Navigation

In order to compare results in the case of the navigation problem we tested 40 exe-
cutions for each system described in the previous section (cf. Table 2 for general
parameters). The following criteria were used in the comparative analysis:

• Success probability.

• Average standardized fitness by execution.

• Average individual learning by execution.

• Average genetically correct individual by execution.

• Average unique individuals by execution.

Next sections describe these criteria and the results that each system attained.
Average values are computed taking into account all the completed generations on
each test.

6.1.1 Success Probability

Success probability is a widely used measure in evolutionary computation and it
allows to test whether a system can find a solution to a problem. It measures the
successful number of tests in relation to the total number of tests. Figure 5 shows
results for each system.

\

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Su
cc

es
s

C
um

m
ul

at
iv

e
Fr

eq
ue

nc
y

Generation

GER-Rob

GER-Rob-Eprob

GER-Rob-Kprob

GER-Rob-Baldwin

Fig. 5. Navigation Problem: Success cumulative frequency

Figure 5 only shows four systems because GER-QTree system did not find a solu-
tion to the navigation problem after 40 executions. As Figure 5 shows, the standard

Investigations into the Learning Process in GER 613

GER system (with e-greedy selection) reached the best results with 90 % success
probability, while the GER-Baldwin system that refers to GER implementing Bald-
win Effect reached 78 % success probability. However, differences between both sys-
tems are not statistically significant according to a Chi-Square test (Chi-Square =
2.296, p-Value = 0.12970). On the other hand, systems with probabilistic action
selection reached 68 % (GER-Eprob) and 60 % (GER-Kprob). In this case, differ-
ences between GER and GER-Eprob are statistically significant (Chi-Square = 6.05,
p-Value = 0.01390) and differences between GER and GER-Kprob are also signifi-
cant (Chi-Square = 9.6, p-Value = 0.00194). Finally, differences between probabilis-
tic systems (GER-EProb and GER-KProb) are not statistically significant according
to a Chi-Square test (Chi-Square = 0.487, p-Value = 0.48526).

6.1.2 Average Standardized Fitness related to Best Individuals

This measure represents average standardized fitness on each of 40 executions. This
value is computed by dividing the sum of fitness values between the number of
completed generations in the execution. The fitness considered corresponds to the
best individual in each generation. This way, this average fitness value is related
only to the best individuals and it is not related to the whole population. We
consider the best individuals because we want to analyse how the best individuals
evolve during the process taking into account all the tests. Analysing average values
for the best individuals we can check how a system is learning or evolving because
if the average value is near the optimum value, the system is learning or evolving
correctly, but if the average value is far from this optimum value the system neither
learns nor evolves properly.

In the navigation problem, an execution is considered to be correct if an indi-
vidual gets a fitness equal to or higher than 99.93 because this value means that
7 zones are visited and there are no collisions against any wall. Figure 6 shows
results grouped by the system.

As can be seen in the figure, the worst system is the same as for success proba-
bility (GER-QTree) because it maintains fitness practically constant and very above
99.93 (approximately near 99.99 which is a great difference if we look at the scale
in the Y-axis). We remember that the higher the fitness the worse the individual
is, so we can consider this result as reasonable because GER-QTree did not find
any solution. Other systems exhibit similar tendencies according to this criterion.
A simple explanation is needed here to explain why the worst system maintains
populations with bad individuals and poor fitness. Most individuals in GER-QTree
are bad, both in the first generations and the last ones, because the system can
not drive the population toward optimal positions. On the other hand, success-
ful systems support good individuals, maybe not initially but when evolution and
learning progress these systems drive toward the right landscape and better fitness
is attained practically for all the best individuals in each generation. Results in this
section show an important consequence: GER-QTree seems not to evolve and not
to learn properly in dynamic domains. Therefore, it should be concluded that it

614 J. M. Mingo, R. Aler, D. Maravall, J. Lope

99.90

99.91

99.92

99.93

99.94

99.95

99.96

99.97

99.98

99.99

100.00

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Av
er

ag
e

St
an

da
rd

 F
itn

es
s

Test

GER-Rob

GER-Rob-Eprob

GER-Rob-Kprob

GER-Rob-Baldwin

GER-Rob-Qtree

Fig. 6. Navigation Problem: Average standardized fitness

are important that the results of learning are reflected in the individual, either by
altering the improved fitness (Baldwin) or by altering the individual (Lamarck).

6.1.3 Average Individual Learning

Average individual learning by execution is useful to analyse the average of learning
individual on each of 40 executions. This value is computed by dividing the sum of
effective learnings between the number of completed generations in the execution.
In this work an individual is considered to have learned when, at least, it is able to
find a program fitter than the original during its learning process. This value allows
the systems to test if individuals take advantage of the learning process. Contrary
to the fitness average value, this average value is related to the whole population.
Again, Figure 7 shows results group by system.

Results show that values are similar in all systems except in the case of GER-
Baldwin. Values, in general, are above 30, which indicates that on each execution
nearly 30 individuals would take advantage of the learning process against 20 indivi-
duals that would not. A curious difference is shown in the figure between GER-QTree
and GER-Baldwin systems. None of them implements the Lamarck hypothesis but
the first one does not change the fitness and the second one does. Average individual
learning is higher in GER-Baldwin. A possible explanation might be in the change
of fitness when an individual learns although its genotype remains unchanged. The
original genotype could be very poor and consequently during the learning process it
is easy to find better programs. However, as the fitness is changed to be better, the
individual has the chance to be selected in genetic operations. So, the individual
can pass to the next generation where it would learn again because its original
genotype was bad. By contrast, in GER-QTree neither genotype nor fitness are

Investigations into the Learning Process in GER 615

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Av
er

ag
e

In
di

vi
du

al
 L

ea
rn

in
g

Test

GER-Rob

GER-Rob-Eprob

GER-Rob-Kprob

GER-Rob-Baldwin

GER-Rob-Qtree

Fig. 7. Navigation Problem: Average individual learning

changed, so it is more difficult to pass to the next generation because its fitness
remains poor. It seems that GER-Baldwin maintains a group of individuals with
bad original genotype but good fitness reached during its lifetime through a learning
process while the remainder systems discard bad individuals and maintain a number
of individuals more or less stable that always learn.

6.1.4 Average Genetically Correct Individuals

This measure counts how many individuals have an original genotype that generates
a correct program from a syntactical point of view. Actually, we use the sentence
“syntactical point of view” to express that an individual is syntactically incorrect
when it is not possible to translate its genotype into a correct phenotype. In other
words, a genetically correct genotype allows building a correct program after the
translation stage in GER (see Figure 1 for details). Mapping process in gramma-
tical evolution basically depends on the genotype length and the wrapping event
parameter, i.e. in order to avoid infinite loops the algorithm tries to apply rules for
a while but if a tree with only terminals as leaves can not be built we consider the
individual as syntactically incorrect although a term like bad individual could be
more appropriate.

The results grouped by systems are shown in Figure 8. This value is computed by
dividing the sum of genetically correct individuals between the number of completed
generations in the execution and it is a value related to the whole population. The
number of genetically correct individuals is important in terms of evolution.

As we can see in the figure the systems again obtain a similar behaviour except
in GER-Baldwin. Average genetically correct individual is close to 40 and this
value seems to indicate that learning is returned into genotype in the systems that

616 J. M. Mingo, R. Aler, D. Maravall, J. Lope

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Av
er

ag
e

G
en

et
ic

al
ly

 C
or

re
ct

 In
di

vi
du

al
s

Test

GER-Rob

GER-Rob-Eprob

GER-Rob-Kprob

GER-Rob-Baldwin

GER-Rob-Qtree

Fig. 8. Navigation Problem: Average genetically correct individuals

implement this feature. This way successive generations can take advantage of this
circumstance and they can maintain individuals with an initially correct code. The
hypothesis would be convenient in cases like GER, GER-Eprob and GER-Kprob
because they are systems that implement the Lamarckian mechanism. However, GE-
QTree system does not return the results of learning on the genotype and fitness. In
this system the number of correct genetic individuals only depends on the beneficial
genetic operations. A high average value can indicate that system lead population
toward individuals with a syntactically correct code, even though, as it was shown
in Figure 5 when we analysed the success probability, these individuals can not
solve the problem. Finally, GER-Baldwin system did not reach a result as good
as in other systems; but this system could be damaged because if the fitness is
changed for an individual but its genotype remains unchanged, the individual might
be selected and pass to the next generation, but then, if its original genetic was
grammatically incorrect, it will be equally incorrect in the next generation. This
could be an aspect to consider for explaining a smaller number of genetically correct
individuals in GER-Baldwin.

6.1.5 Average Unique Individuals

The measure of average unique individuals provides the level of diversity inside of
population. Information about this factor in the experiments is shown in Figure 9.
Like the learning and genetic averages, this value is also related to the whole popu-
lation.

It can be seen in Figure 9 that there is an evident difference between systems
which maintain an explicit learning (GER, GER-Eprob, GER-Kprob and GER-
Baldwin) and the system with implicit learning (GER-QTree). The last system got

Investigations into the Learning Process in GER 617

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Av
er

ag
e

U
ni

qu
e

In
di

vi
du

al
s

Test

GER-Rob

GER-Rob-Eprob

GER-Rob-Kprob

GER-Rob-Baldwin

GER-Rob-Qtree

Fig. 9. Navigation Problem: Average unique individuals

lower results on this measure because it had fewer unique individuals. It seems
that diversity of population is smaller when learning does not revert into population
again through individuals both via fitness and via genotype. Probably, the general
parameters (Table 2) are not enough to check more paths in the Q-Tree and the
GER-QTree can not test the branches extensively. This system only trusts in the Q-
Tree as the single mechanism to learn and evolve but the Q-Tree can only be valuable
if it contains a lot of information. In other case, the Q-Tree can repeat bad branches
continuously and the number of individuals to be built is reduced. Therefore, the
diversity of population is smaller. A higher learning steps parameter (Table 2)
could improve this behaviour but finding a solution could be very computationally
expensive.

6.2 Even 3 Parity Boolean Function

As the even 3 parity Boolean function problem is more computationally expensive
than the navigation problem we only tested 10 executions for each system in this
case (see Table 3 for general parameters). We analyse the same criteria here and the
next sections discuss the results. Average values are computed taking into account
all the completed generations on each test.

6.2.1 Success Probability

Figure 10 shows results for each system related to the success probability.
We can see again that Figure 10 only shows four systems because GER-QTree

system did not find a solution to the Boolean function problem either. As Figure 10
shows, the GER system (with e-greedy selection) reached the best results with 80 %

618 J. M. Mingo, R. Aler, D. Maravall, J. Lope

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

0 3 6 9 12 15 18 21 24 27 30 33 36 39 41 44 47

Su
cc

es
s

C
um

m
ul

at
iv

e
Fr

eq
ue

nc
y

Generation

GER-Bool

GER-Bool-Eprob

GER-Bool-Kprob

GER-Bool-Baldwin

Fig. 10. Boolean Function Problem: Success cumulative frequency

success probability, while the GER-Baldwin and GER-EProb systems reached 60 %
success probability. Differences are not statistically different according to a Chi-
Square test (Chi-Square = 0.952, p-Value = 0.32921). The other probabilistic sys-
tem (GER-KProb) performed badly in this static problem. Except for this system,
these results are similar to the navigation problem, i.e. a standard GER performs
better than other systems but GER implementing Baldwin also performs well. The
only difference between GER-EProb and GER-KProb is the temperature parame-
ter (T) in the expression to compute the probability value (see Equations (6) and (7)
for details). This parameter depends on the learning step and the maximum number
of learning steps and we use the same formulae to compute both in standard GER
and GER-EProb. Temperature parameter is a way of balance between exploration
and exploitation as we mentioned earlier and we think this is the answer to poor per-
formance in GER-KProb. This system does not use the temperature parameter and
it cannot take advantage of the exploration-exploitation trade-off as the other sys-
tems do. From a statistical point of view, differences between GER and GER-Eprob
are not significant (Chi-Square = 0.952, p-Value = 0.32921) but differences between
GER and GER-Kprob are significant (Chi-Square = 7.2, p-Value = 0.00729). Fi-
nally, differences between probabilistic systems (GER-EProb and GER-KProb) are
not statistically significant according to a Chi-Square test (Chi-Square = 3.333,
p-Value = 0.06790)

6.2.2 Average Standardized Fitness Related to Best Individuals

Regarding the average standardized fitness taking into account only the best indi-
viduals, Figure 11 shows results grouped by system.

Investigations into the Learning Process in GER 619

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00
2.10
2.20
2.30
2.40
2.50
2.60
2.70
2.80
2.90
3.00

0 1 2 3 4 5 6 7 8 9

Av
er

ag
e

St
an

da
rd

 F
itn

es
s

Test

GER-Bool

GER-Bool-Eprob

GER-Bool-Kprob

GER-Bool-Baldwin

GER-Bool-Qtree

Fig. 11. Boolean Function Problem: Average standardized fitness

As can be seen in the figure, the worst system is also GER-QTree because it
maintains a fitness far from the 0 value which is the optimum value (approximately
around 2). Other systems show similar tendencies according to this criterion. If we
compare this figure with Figure 6 we can see that average standardized fitness is more
homogeneous for all the systems (excluding GER-QTRee) in a static problem than
it was in a dynamic one. We think that this different behaviour can be explained in
terms of noise and non-determinism. In a static problem the input and output values
are not changed during the execution and the fitness evaluation process is always
determined. This way, the same individual gets always the same fitness value each
time it is evaluated. However, in a dynamic problem, the fitness evaluation process
cannot be completely determined because the sensors and actuators can measure
values with some error between different evaluations. This way, the same individual
can get a slightly different fitness value each time it is evaluated. In graphical terms,
deterministic problems show homogeneous values while non-deterministic problems
show more irregularity.

6.2.3 Average Individual Learning

Figure 12 shows results group by system related to the individual learning criteria.
Results about learning reveal a similar behaviour both in the Boolean function

problem and the navigation problem. Average individual learning is higher in GER-
Baldwin as it was in the other case and we can argue the same opinion, i.e. Baldwin
effect takes into account the fitness value but the genotype is kept as it originally
was. This way, if the original genotype was not good the individual must learn
again. Systems like GER, GER-EProb and GER-KProb perform basically equally.
Around half of population learnt on each test (200–250 individuals) while in the

620 J. M. Mingo, R. Aler, D. Maravall, J. Lope

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400

0 1 2 3 4 5 6 7 8 9

Av
er

ag
e

In
di

vi
du

al
 L

ea
rn

in
g

Test

GER-Bool

GER-Bool-Eprob

GER-Bool-Kprob

GER-Bool-Baldwin

GER-Bool-Qtree

Fig. 12. Boolean Function Problem: Average individual learning

navigation problem this value was slightly higher (around 30–35 individuals learnt).
Learning process is affected by the number of unique individuals in the population
and by the quality of these individuals. Figure 9, related to the unique individuals
in the navigation problem, showed that most individuals were unique during each
execution. However, Figure 7, related to the learning process in the navigation
problem, showed that most individuals had to learn during the execution. Both
results reveal that there are a lot of unique individuals in the population but these
individuals do not seem genetically good and they have to learn during their lifetime.
In the Boolean function problem, there are fewer individuals who must learn but as
we will see below, there also are fewer unique individuals in the population.

Finally, a slight difference is found in the GER-QTree system between the
Boolean function problem and the navigation problem. Figure 12 shows a poor
learning process for this system. Again, this fact confirms that GER-QTree does
not learn in similar conditions to other systems. GER-QTree learning was similar
to learning in other systems when we tested the navigation problem (see Figure 7
for details) but we think that the complexity of the problem could be the answer.

6.2.4 Average Genetically Correct Individuals

Figure 13 shows results grouped by system related to the number of genetically
correct individuals.

As we can see in the figure the systems again obtain a similar behaviour except in
GER-Baldwin and GER-QTree. The average correct genetically individual is close
to 70 % and this value seems to indicate that learning is returned into genotype in
the systems that implement this feature (GER, GER-EProb and GER-KProb). This
way successive generations can take advantage of this circumstance and they can

Investigations into the Learning Process in GER 621

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400

0 1 2 3 4 5 6 7 8 9

Av
er

ag
e

G
en

et
ic

al
ly

 C
or

re
ct

 In
di

vi
du

al
s

Test

GER-Bool

GER-Bool-Eprob

GER-Bool-Kprob

GER-Bool-Baldwin

GER-Bool-Qtree

Fig. 13. Boolean Function Problem: Average genetically correct individuals

maintain individuals with an initially correct code. Navigation problem showed the
same behaviour for this feature as well. GER-Baldwin system did not reach a result
as good as in other systems because if the fitness is changed for an individual but
its genotype remains unchanged, the individual might be selected and pass to the
next generation. If the original genotype was grammatically incorrect, it will be
equally incorrect in the next generation. Similar behaviour was also observable in
the navigation problem. Curiously, GER-QTree exhibits more genetically correct
individuals in this case than other systems and this value is also higher than the
equivalent value for the navigation problem. A possible explanation could be that
the Q-Tree in the navigation problem is simpler than it is in the Boolean problem.
Besides, the general parameter seems to be unsatisfactory in this more complex
problem in order to expand the Q-Tree. This way, Q-Tree in the Boolean problem
manages less useful information with only a reduced number of analysed branches.
As the Q-Tree is the force driving the process, in the Boolean problem most of the
time is devoted to repeating the evaluation of similar individuals. This reduced set
of individuals can be genetically correct as Figure 13 shows but they are far from
the optimal solution as the other figures reveal.

6.2.5 Average Unique Individuals

We finish the Boolean function problem analysis with results for the unique number
of individuals.

It can be seen in Figure 14 that the Boolean problem is equivalent to the naviga-
tion problem in the number of unique individuals. Again, a clear difference between
systems that maintain an explicit learning (GER, GER-Eprob, GER-Kprob and
GER-Baldwin) and the system with implicit learning (GER-QTree) is reflected.

622 J. M. Mingo, R. Aler, D. Maravall, J. Lope

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400

0 1 2 3 4 5 6 7 8 9

Av
er

ag
e

U
ni

qu
e

In
di

vi
du

al
s

Test

GER-Bool

GER-Bool-Eprob

GER-Bool-Kprob

GER-Bool-Baldwin

GER-Bool-Qtree

Fig. 14. Boolean Function Problem: Average unique individuals

The last system got lower results on this measure because it had fewer unique
individuals. As we have mentioned before the general parameters (Table 3) might
not be enough to check more paths in the Q-Tree and the GER-QTree can not
test the branches extensively. In any case, the poor number of unique individuals in
GER-QTree confirms what we supposed when we analysed the number of genetically
correct individuals: in GER-QTree there are few unique individuals so the diversity
of population is smaller. Besides, the individuals are not good and the Q-Tree can
not guide the process toward a solution.

With regard to systems with explicit learning Figure 14 shows an evident dif-
ference between GER-KProb and other systems. This fact was also visible in the
navigation problem (see Figure 9 to compare) but here the difference is greater.
GER systems based on probabilities only differ in the way they compute the next
production rule to apply during the mapping genotype-phenotype. GER-EProb uses
a temperature parameter while GER-KProb does not use this parameter. A tempera-
ture parameter allows the system to control the exploration-exploitation balance. In
the implemented systems this parameter depends on the number of learning steps
as we described in Equations (4) and (8). Both GER and GER-EProb compute
rules by means of this parameter and they usually try new rules around 50 % times
and exploit known rules around 50 % times. However, in GER-KProb this pro-
portion can vary. According to results that Figure 14 shows, in a deterministic or
static problem, the number of unique individuals in the population is higher when
using this type of probability than when using a probability based on temperature.
Nevertheless, this fact does not imply a better performance in terms of success prob-
ability because, as Figure 10 shows, GER-KProb got worse results than GER and
GER-EProb systems.

Investigations into the Learning Process in GER 623

7 CONCLUSIONS

GER tries to enhance evolutionary systems with a learning process. It was deve-
loped in order to improve the task solving process by means of evolutionary search
and learning. The learning process is a very important component in the system and
it deserves to be analysed in depth. The aim of this work is to be a first approach to
the subject and several systems have been developed to test different choices related
to learning. We focus the study in two different domains: a navigation task for
simulated robots which represent a non-deterministic problem and a Boolean func-
tion problem which represent a deterministic one. In order to analyse the learning
process we define the learning scope according to three issues:

1. the Lamarckian mechanism to replace the original genotype,

2. the Baldwin Effect

3. the exploration-exploitation trade-off at the moment of choosing a production
rule.

These aspects represent different ways the learning can be included in an evolu-
tionary algorithm and they are studied in the context of a grammatical evolution.
Besides, we are interested in analysing how each method can affect some parameters
in the system such as the number of unique individuals, the average fitness value, the
number of individuals genetically correct or the number of individuals that benefit
from the learning process. In short, a detailed study about learning is important
because it can help to select the most appropriate strategy to solve a problem in
a specific domain by means of evolutionary techniques.

From a success probability viewpoint, a system based on standard GER reached
the best result in both problems (90 % in the navigation problem and 80 % in
the Boolean problem). This system implements the Lamarck hypothesis and uses
an e-greedy exploration-exploitation mechanism. Another GER system without
Lamarck but with possibility to change fitness (GER-Baldwin) also reached good
results (78 % and 60 %, respectively) and this fact is according to the Baldwin effect
as it was firstly proposed by Hinton and Nowlan in [2] and subsequently confirmed in
other studies. In the Baldwin effect we can notice how the learnt behaviour can be
transformed in a genetic behaviour in subsequent generations. Difference in success
probability between GER and GER-Baldwin indicates a slightly better performance
with Lamarck in both contexts (static and dynamic environment). However, these
differences are not statistically significant according to a Chi-Square test. This is
consistent with some studies where a Lamarck strategy outperforms a Baldwin stra-
tegy while in other studies the opposite was the case. Nevertheless, it is clear that
the influence of Lamarck seems to be less important than it was supposed in [8]
because a system with Baldwin gets competitive results as well. Regarding strate-
gies for exploring and exploiting, the results show that e-greedy technique is more
effective in both cases than probabilistic methods. On the other hand, it seem more
useful to include a specific parameter to control the exploration-exploitation trade-

624 J. M. Mingo, R. Aler, D. Maravall, J. Lope

off (as the temperature parameter does) because GER-EProb performed better than
GER-KProb in the deterministic problem. A higher performance for the proba-
bilistic method vs. e-greedy method has not been theoretically proved yet [4] and
it might be related with distance between best actions and the rest ones as it was
proposed in [9].

In this work some of the most significant parameters that can impact system
performance were analysed. Standardized fitness did not offer a lot of information
because results were very similar for all systems that solve the problem (GER,
GER-EProb, GER-KProb and GER-Baldwin). Anyway, it was useful for testing
that systems that do not solve the problem presented average fitness values far from
the solution (GER-QTRee).

Measures about average learning individuals offered similar results among sys-
tems, except in the system with Baldwin effect (GER-Baldwin) and the system with
learning only via Q-Tree (GER-QTree). GER-Baldwin system reached higher values
as to the average if it is compared with the other systems. As a possible explanation
we can argue that in this system the learning process is only reverted to the indi-
vidual via fitness while in a standard GER with Lamarck hypothesis the learning
process is also reverted via genotype. In a Baldwinian system if the genotype is not
modified to directly include the learnt behaviour it is more probable that the indi-
vidual will have to learn again in the next generation and it is more probable that
the individual will be bad genetically. Of course, this reasoning is applied specially
to the selected individuals, i.e., the elitist individuals because other individuals will
be affected by the evolutionary operators in any case. Regarding GER-QTree, the
results in the Boolean function problem showed that this system can not learn ap-
propriately although this system showed a good learning process in the navigation
problem. We think the navigation problem is easier to solve and the Q-Tree could
be more expanded than it was in the Boolean problem. It is worth to mention that
all system were executed with the same general parameters. This fact is important
because we want to compare systems performing under equal circumstances. In this
sense, maybe GER-QTree could get better results if it was executed with higher
values in the parameters. However, with a low configuration other systems perform
better.

With regard to average correct genetically individuals, results are also homo-
geneous in systems with Lamarckian mechanism such as GER, GER-EProb and
GER-KProb and they show differences in GER-Baldwin and GER-QTree. A sys-
tem based on Baldwin maintains fewer genetically correct individuals than a system
that replaces the original genotypes with the best learnt genotypes. According to
Baldwin, the genotype is not replaced and the learning is reflected in the population
in a long-term approach. We think this is the reason why in a reduced number
of generations than we set in the tests, the Baldwin effect could be less notorious
in the whole population. Results in both problems show how GER-Baldwin can
maintain the most promising individuals between generations because they are able
to learn during its lifetime even though its original genotype is not good. This way,
GER-Baldwin performs reasonably well in deterministic and non-deterministic con-

Investigations into the Learning Process in GER 625

texts. Curiously, GER-QTree shows a good level of genetically correct individuals
although, as we commented before, this group of individuals is not good.

A measure about population diversity is very similar for systems with success
as well (with the exception of GER-KProb in the deterministic case as mentioned).
Systems that failed to find a solution (GER-QTree) have a poor genetic diversity
and if learning is not possible or it is hard, the system could not drive the population
toward a good solution. On the other hand, systems which find a solution do not
need a great diversity in the population because either the learning or the evolution
or both can guide the population to the solution.

To summarize, this work shows the learning process as an important item for
improving evolution. Experimental results show a slightly better performance with
Lamarck hypothesis than with Baldwin effect in two domains: deterministic and
non-deterministic. Nevertheless, in the case of the navigation problem, the simplicity
of the task can overcome some problems associated with Lamarck, i.e. the diversity of
the population can fall down due to the fact that the same chromosome is frequently
replicated because of its skill and the Lamarckian mechanism. In any case, the
results show that GER can be a valuable alternative to solve some kind of specific
problems. Future work may establish if this result escalates to much more complex
problems, but this would need much more computing power, given the number of
experiments to be carried out.

REFERENCES

[1] Collins, J. J.—Ryan, C.—O’Neill, M.: Grammatical Evolution: Evolving Pro-
grams for an Arbitrary Language. Lecture Notes in Computer Science 1391, Pro-
ceedings of the First European Workshop on Genetic Programming, Springer-Verlag
1998, pp. 83–95.

[2] Hinton, G.E.—Nowlan, S. J.: How Learning can Guide Evolution. Complex Sys-
tems, Vol. 1, 1987, pp. 495–502.

[3] Mingo, J.M.—Aler, R.: Grammatical Evolution Guided by Reinforcement. IEEE
Congress on Evolutionary Computation 2007, pp. 1475–1482.

[4] Sutton, R. S.—Barto, A.G.: Reinforcement Learning: An Introduction. MIT
Press 1998.

[5] Baldwin, M. J.: A New Factor in Evolution. The American Naturalist, Vol. 30,
1896, pp. 441–451.

[6] Lamarck, J. B.: On the Influence of the Environment on the Activities and Habits
of These Living Bodies in Modifying Their Organization and Structure. Zoological
Philosophy, MacMillan, London 1914, pp. 106–127.

[7] Moscato, P.—Cotta, C.: A Gentle Introduction to Memetic Algorithms. Hand-
book of Metaheuristics. Kluwer Academic Publishers 2003, pp. 105–144.

[8] Mingo, J.M.—Aler, R.: The Role of the Lamarck Hypothesis in the Grammat-
ical Evolution Guided by Reinforcement. 6th International Workshop on Practical
Applications of Agents and Multiagent Systems, Salamanca 2007, pp. 201–207.

626 J. M. Mingo, R. Aler, D. Maravall, J. Lope

[9] Kaelbling, L. P.—Littman, M. L.: Reinforcement Learning: A survey. Journal
of Artificial Intelligence Research, Vol. 4, 1986, pp. 237–285.

[10] Ackley, D.—Littman, M.: Interactions Between Learning and Evolution. In
C. G. Langton, C. Taylor, J. D. Farmer and S. Rasmussen (Eds.): Artificial Life II,
Studies in the Sciences of Complexity, Vol X, Addison Wesley 1991, pp. 487–509.

[11] Belew, R.K.—McInerney, J.—Schraudolph, N.N.: Evolving Networks: Us-
ing the Genetic Algorithm with Connectionist Learning. Proceedings of the Second
Artificial Life Conference, Addison-Wesley 1990, pp. 511–547.

[12] Whitley, D.—Gordon, V. S.—Mathias, K.: Lamarckian Evolution, the Bald-
win Effect and Function Optimization. Lecture Notes in Computer Science, Vol. 866,
Springer-Verlag 1994, pp. 6–15.

[13] Gruau, F.—Whitley, D.: Adding Learning to the Cellular Development of Neural
Networks: Evolution and the Baldwin Effect. Evolutionary Computation, Vol. 1,
1993, pp. 213–233.

[14] Ku, K.W.C.—Mak, M.W.: Exploring the Effects of Lamarckian and Baldwinian
Learning in Evolving Recurrent Neural Networks. In Proceedings of 1997 IEEE In-
ternational Conference on Evolutionary Computation 1997, pp. 159–163.

[15] Julstrom, B.A.: Comparing Darwinian, Baldwinian and Lamarckian Search in
a Genetic Algorithm for the 4-Cycle Problem. Congress on Evolutionary Computa-
tion, Late Breaking Paper in Genetic and Evolutionary Computation Conference,
Orlando (USA) 1999, pp. 134–138.

[16] Nolfi, S.—Elman, J. L.—Parisi, D.: Learning and Evolution in Neural Networks.
Adaptive Behaviour, Vol. 1, 1994, pp. 5–28.

[17] Nolfi, S.—Parisi, D.: Learning to Adapt to Changing Environments in Evolving
Neural Networks. Adaptive Behaviour, Vol. 1, 1997, pp. 75–98.

[18] Mayley, G.: The Evolutionary Cost of Learning. From Animals to Animats. In
Maes, P., Mataric, M. J., Meyer, J. A., Pollack, J. and Wilson, S. W. (Eds.), Pro-
ceedings of the Fourth International Conference on Simulation of Adaptive Behavior,
MIT Press 1996, pp. 458–467.

[19] Watkins, C.—Dayan, P.: Q-Learning. Machine Learning, Vol. 8, 1992,
pp. 279–292.

[20] Moscato, P.—Cotta, C.: An Introduction to Memetic Algorithms. Revista
Iberoamericana de Inteligencia Artificial, 2003, No. 19, pp. 131–148.

[21] Gallager, J. C.—Perreta, S.: WSU Kephera Robot Simulator. Availaible on:
http://carl.cs.wright.edu/reg/ksim/downloads/downloads.html.

[22] Koza, J.: Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press 1992.

[23] Callan, R.: Artificial Intelligence. Palgrave MacMillan 2003.

Investigations into the Learning Process in GER 627

Jack Mario Mingo received his B. Sc. in informatics engineering in 1993 and his M. Sc.
in informatics engineering from Universidad Politécnica de Madrid in 2002. Currently,
he is working towards his Ph. D. at the same university. Since 1991 he has been work-
ing as programmer, analyst, project manager and databases specialist in several projects
related to financial, logistics and telecom services. In parallel with these activities he
is a Part-Time Professor at Technical School, Universidad Autónoma de Madrid. His
current research interests include grammatical evolution, evolutionary computation and
autonomous robots.

Ricardo Aler received his M. Sc. in informatics engineering from Universidad Politécnica
de Madrid in 1992 and his Ph. D. degree from the same university in 1999. He received
his M. Sc. in decision support systems from the University of Sunderland (UK) in 1993.
His current research interests include genetic programming, evolutionary computation,
machine learning and brain-computer interface. He has published extensively on these
subjects and he has participated in both national and international projects. Currently,
he is Associate Professor at Technical School, Universidad Carlos III de Madrid.

Daŕıo Maravall received his M. Sc. in telecommunication engineering from Universidad
Politécnica de Madrid in 1978 and his Ph. D. degree from the same university in 1980.
Between 1980 and 1988 he was Associate Professor at School of Telecommunication Engi-
neering, Universidad Politécnica de Madrid. In 1988 he was promoted to Full Professor at
Faculty of Computer Science, Universidad Politécnica de Madrid. Between 2000 and 2004
he was the Director of the Department of Artificial Intelligence of the Faculty of Com-
puter Science at Universidad Politécnica de Madrid. His current research interests include
computer vision, autonomous robots and computational intelligence. He has published
extensively on these subjects and has directed more than 20 funded projects, including
a five-year R & D project for automated inspection of wooden pallets using computer vi-
sion techniques and robotic mechanisms, with several operating plants in a number of
European countries (Spain, France, Italy and United Kingdom) and in USA. As a result
of this project he holds a patent issued by the European Patent Office at The Hague, The
Netherlands

Javier de Lope Asia��n received his M. Sc. in computer science from Universidad Politéc-
nica de Madrid in 1994 and his Ph. D. degree from the same university in 1998. Currently,
he is Associate Professor in the Department of Applied Intelligent Systems at Universidad
Politécnica de Madrid. His current research interest is focused on study, design and
construction of modular robots and multi-robot systems, and on development of control
systems based on soft computing techniques. He is currently leading a three-year R & D
project for developing industrial robotics mechanisms which follow the guidelines of multi-
robot systems and reconfigurable robotics. In the past he also worked on projects related
to computer-aided automatic driving by means of external cameras and range sensors and
design and control of humanoid and flying robots.

