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1 INTRODUCTION

In many applications, graphs are subject to discrete changes, such as insertions
and deletions of edges or vertices. The objective of a dynamic algorithm is to
efficiently update the solution to a problem after dynamic changes rather than to
recompute the entire graph from scratch each time. An algorithm is called fully
dynamic if the update operations include both insertions and deletions of edges or
vertices, and it is called partially (semi -) dynamic if only one type of an update,
either insertions or deletions, is allowed. A partially dynamic algorithm is called
incremental if it supports only insertions, while it is called decremental if it supports
only deletions.

The problem of finding the shortest paths in a directed weighted graph arises in
practice in different application settings. In particular, if a graph represents a com-
munication or transport network, then an insertion or deletion of an arc reflects
such real changes in the network as insertion or deletion of connections during its
existence. There are two versions of this problem: finding the single source shortest
paths and finding the all-pairs shortest paths. The most general types of update
operations for the single source shortest paths problem include insertions and dele-
tions of edges, update operations on the weight of edges, insertions or deletions of
isolated vertices [7]. The typical operations for the all-pairs shortest paths problem
include update operations on weights, finding the shortest distance and finding the
shortest path between two vertices, if any.

In the case of positive edge weights, several solutions have been proposed for
the dynamic maintenance of the shortest paths. Ausiello et al. [1] propose an effi-
cient solution for the all-pairs incremental problem assuming that edge weights are
restricted in the range of integers [1..C]. Chaudhuri and Zaroliagis [2] devise effi-
cient solutions for the all-pairs shortest paths problem for bounded treewidth graphs
when the weight of edges changes. Klein et al. [9] propose a fully dynamic solution to
maintain all-pairs shortest paths for planar graphs with unrestricted edge weights.
Franciosa et al. [5] devise fast algorithms that maintain a single source shortest paths
tree (sp-tree) of a general directed graph with integer edge weights in the range of
integers [1..C] during a sequence of edge deletions or a sequence of edge insertions.

In the case of arbitrary real edge weights, Ramalingam and Reps [17, 18] devise
fully dynamic algorithms for updating the single source shortest paths using the
output bounded model. In this model, the running time of an algorithm is analyzed
in terms of the output change rather than the input size. The authors assume that
the graph has no negative-length cycles before and after input update. Frigioni
et al. [7] study the semi-dynamic single source shortest paths problem for both di-
rected and undirected graphs with positive real edge weights in terms of the output
complexity. The decremental solution works only for planar graphs, while the in-
cremental solution works for any graph and its complexity depends on the existence
of a k-bounded accounting function for the graph. Frigioni et al. [6] propose fully
dynamic algorithms for updating the distances and an sp-tree in either a directed
or an undirected graph with positive real edge weights under arbitrary sequences
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of edge updates. The cost of the update operations is given as a function of the
number of output updates by using the notion of k-bounded accounting function.
For general graphs with n vertices and m edges the algorithms require O(

√
m log n)

worst case time per output update. Frigioni et al. [8] propose the fully dynamic
solution for the problem of updating the shortest paths from a given source in a di-
rected graph with arbitrary edge weights. The authors devise a new algorithm for
performing edge deletions and weight increases that explicitly deals with zero-length
cycles. They also propose an algorithm for handling edge insertions and weight de-
creases that explicitly deals with negative-length cycles. The cost of the update
operations is evaluated as a function of the structural property of the graph and
of the number of output updates. Algorithms from [5-8, 17, 18] use the dynamic
version of the Dijkstra algorithm [3]. Narváez et al. [11] study a group of algo-
rithms for dynamic maintaining an sp-tree after performing the update operations
on the edge weights. The authors propose two incremental methods to transform
the well-known static algorithms of Dijkstra and Bellman-Ford into new dynamic
algorithms. In [16], we propose an associative version of the Ramalingam decremen-
tal algorithm for the dynamic update of the shortest paths subgraph SP (G) [17]
that consists of all shortest paths from every vertex to the sink. We describe the
associative algorithm by means of the STAR-machine that simulates the run of as-
sociative (content addressable) parallel systems of the SIMD type with bit-serial
(vertical) processing and simple single-bit processing elements. Following [4], we
assume that each elementary operation of our model (its microstep) takes one unit
of time. We measure the time complexity of an associative algorithm by counting
all elementary operations performed in the worst case. The associative version of
the Ramalingam decremental algorithm is given as a group of algorithms that pro-
vide the execution of different parts of the Ramalingam decremental algorithm on
the STAR-machine. Moreover, we present the main advantages of the associative
version of the Ramalingam decremental algorithm [17].

The main objective of this paper is to provide an efficient parallel implemen-
tation on the STAR-machine of the Ramalingam decremental algorithm mentioned
above. The associative version is represented as the main procedure DeleteArc that
makes use of a group of auxiliary procedures. We prove correctness of the DeleteArc
procedure and all its parts. We obtain that this procedure takes O(hk) time, where
h is the number of bits required for coding the maximal weight of the shortest paths
to the sink and k is the number of vertices, whose shortest paths to the sink change
in SP (G) after deleting an edge from the given graph G. We also provide an example
of implementing the DeleteArc procedure on the STAR-machine.

2 MODEL OF ASSOCIATIVE PARALLEL MACHINE

Here, we propose a brief description of our model which is based on a Staran-like
associative parallel processor [4, 10]. It is defined as an abstract STAR-machine of
the SIMD type with vertical data processing [12]. In [14], we compare different mo-
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dels for vertical processing systems. Our model consists of the following components
(Figure 1):

• a sequential control unit (CU), where programs and scalar constants are stored;

• an associative processing unit consisting of p single-bit processing elements
(PEs);

• a matrix memory for the associative processing unit.

The CU passes an instruction to all PEs in one unit of time. All active PEs
execute it in parallel while inactive PEs do not. Activation of a PE depends on the
data.
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Fig. 1. The STAR-machine
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Fig. 2. Data array

Input binary data are loaded to the matrix memory in the form of 2D tables,
where each data item occupies an individual row and is updated by a dedicated
processing element (Figure 2). We assume that the number of PEs is not less than
the number of rows in an input table. The rows are numbered from top to bottom
and the columns from left to right. Both a row and a column can be easily accessed.
Some tables may be loaded to the matrix memory.

An associative processing unit is represented as h (h ≥ 4) vertical registers each
consisting of p bits (Figure 3). A vertical register can be regarded as a one-column
array. The STAR-machine runs as follows. The bit columns of the tabular data are
stored in the registers which perform the necessary Boolean operations.
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R1 R2 . . . Rh

Fig. 3. Associative processing unit

To simulate data processing in the matrix memory, we use data types word,
slice, and table. Constants for the slice and word types are represented as a se-
quence of symbols of {0, 1} in single quotation marks. The slice and word types
are used for the bit column access and the bit row access, respectively, and the table
type is used for defining the tabular data. Assume that any variable of the type
slice consists of p components which belong to {0, 1}. For simplicity let us call slice
any variable of the slice type.

Let us present the main operations for slices.
Let X, Y be variables of the slice type and i be a variable of the integer type.

We use the following operations:

• SET(Y ) simultaneously sets all components of Y to ‘1’;

• CLR(Y ) simultaneously sets all components of Y to ‘0’;

• Y (i) selects the value of the ith component of Y ;

• FND(Y ) returns the ordinal number i of the first (the uppermost) bit ‘1’ of Y ,
i ≥ 0;

• STEP(Y ) returns the same result as FND(Y ) and then resets the first found ‘1’
to ‘0’;

• CONVERT(Y ) returns a row, whose every ith bit coincides with Y (i). It is
applied when a row of one matrix is used as a slice for another matrix.

The operations FND(Y ), STEP(Y ), and CONVERT(Y ) are used only as the
right part of the assignment statement, while the operation Y (i) is used as both the
right part and the left part of the assignment statement.

To carry out data parallelism, we introduce in the usual way the bitwise Boolean
operations: X and Y , X or Y , notY , X xorY . We also use the predicate SOME(Y )
that results in true if there is at least a single bit ‘1’ in the slice Y . For simplicity,
the notation Y 6= ∅ denotes that the predicate SOME(Y ) results in true.

Note that the predicate SOME(Y ) and all operations for the slice type are also
performed for the word type. We will also employ the bitwise Boolean operations
between a variable w of the word type and a variable Y of the slice type, where
the number of bits in w coincides with the number of bits in Y .
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Let T be a variable of the table type. We employ the following elementary
operations:

• ROW(i, T ) returns the ith row of the matrix T ;

• COL(i, T ) returns its ith column.

Note that the STAR statements are defined in the same manner as for Pascal.
We will use them later for presenting our procedures.

Now, we recall a group of basic procedures [13, 15] implemented on the STAR-
machine. These procedures use the given global slice X to indicate with bit ‘1’ the
row positions used in the corresponding procedure.

The procedure MATCH(T,X, v, Z) defines positions of those rows of the given
matrix T which coincide with the given pattern v (Figure 4). It returns the slice Z,
where Z(i) = ‘1’ if and only if ROW(i, T ) = v and X(i) = ‘1’.

v 1 0 1 1

T X Z
1 0 1 0 1 0
0 0 1 1 0 0
1 0 1 1 1 1
1 0 1 1 0 0
1 0 1 1 1 1
1 0 1 0 1 0

Fig. 4. Testing v ∈ T

The procedure MIN(T,X,Z) defines positions of those rows of the given ma-
trix T where the minimal element is located. It returns the slice Z, where Z(i) = ‘1’
if and only if ROW(i, T ) is the minimal element in the matrix T and X(i) = ‘1’.

The procedure SETMIN(T, F,X, Z) defines positions of the given matrix T rows
that are less than the corresponding rows of the matrix F . It returns the slice Z,
where Z(j) = ‘1’ if and only if ROW(j, T ) <ROW(j, F ) and X(j) = ‘1’.

The procedure TCOPY1(T, j, h, F ) writes h columns from the given matrix T ,
starting from the (1 + (j − 1)h)th column, into the resulting matrix F , where j ≥ 1.

The procedure ADDV(T, F,X,R) writes into the matrix R the result of parallel
addition of the corresponding rows of matrices T and F , whose positions are selected
with bit ‘1’ in the given slice X. This algorithm uses table 5.1 from [4].

The procedure ADDC(T,X, v, F ) adds the binary word v to the rows of the ma-
trix T selected with bit ‘1’ in the slice X, and writes the result into the corresponding
rows of the matrix F . Other rows of the matrix F are set to zeros.

The procedure TMERGE(T,X, F ) writes the rows of the matrix T , selected
with bit ‘1’ in the slice X, in the corresponding rows of the matrix F . Other rows
of the matrix F do not change.

In [13, 15], we have shown that the basic procedures take O(k) time each, where
k is the number of bit columns in the corresponding matrix.
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3 PRELIMINARIES

Let G = (V,E) be a directed weighted graph with n vertices and m directed edges
(arcs). We assume that V = {1, 2, . . . , n}. Let wt denote a function that assigns
a weight to every edge. We will consider graphs with a distinguished vertex s called
sink.

An adjacency matrix Adj = [aij] of a directed graph G is an n × n Boolean
matrix, where aij = 1 if and only if there is an arc from the vertex i to the vertex j
in the set E.

An arc e directed from i to j is denoted by e = (i, j), where i = tail(e) and
j = head(e). Also, if (i, j) ∈ E, then j is said to be adjacent to i. We assume that
all arcs have non-negative weights and wt(u, v) =∞, if (u, v) /∈ E.

The infinity is implemented by the value
∑n

i=1 ci, where ci is the maximal weight
of arcs outgoing from the vertex i. Let h be the number of bits for coding this sum.

A path from u to s in G is a finite sequence of vertices u = v1, v2, . . . , vk = s,
where (vi, vi+1) ∈ E for i = 1, 2, . . . , k− 1 and k > 0. The shortest path from u to s
is the path of the minimal sum of weights of its edges.

Let dist(u) denote the length (weight) of the shortest path from u to s and
SP (G) denote the subgraph of the shortest paths from all vertices of G to the sink.

By analogy with Ramalingam, we introduce the following notations.

We denote by outdegree(v) the number of arcs outgoing from (leaving) the vertex
v in SP (G). Let an arc (i, j) be deleted from SP (G).

We denote by AffectedV the set of all vertices u in SP (G) such that all paths
from u to the sink include the deleted arc (i, j).

An arc (x, y) is called affected by deleting the arc (i, j) in SP (G) if there is no
such path from x to s in the new graph that uses the arc (x, y) and the weight of
the path is equal to distold(x).

Fig. 5. Graph G
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Now we provide an example. Let a graph G (Figure 5) and the shortest paths
subgraph SP (G) (Figure 6) be given.

We observe that in SP (G) there is a single shortest path to the sink from the
vertices 1, 2, 3, 4, and 8, while there are two different shortest paths to the sink
from other vertices.

Let the arc (4, 2) be deleted from SP (G). Then vertices 4, 7, 8, and 10 become
affected because there is no a path from them to the sink.

Fig. 6. The shortest paths subgraph SP (G)

4 THE RAMALINGAM DECREMENTAL ALGORITHM
FOR THE SINGLE-SINK SHORTEST PATHS PROBLEM

Let an arc (i, j) be deleted from SP (G) and outdegree(i) = 0.
The Ramalingam decremental algorithm for dynamic updating of the single-sink

shortest paths subgraph consists of the following two stages.
At the first stage, the set AffectedV and all affected arcs obtained after deleting

the arc (i, j) from SP (G) are determined. Then affected arcs are deleted from
SP (G). At the second stage, for every affected vertex vi, a new shortest path from
vi to s in G is computed and SP (G) is updated.

The first stage is performed as follows.
Initially, AffectedV = ∅. To construct it, an auxiliary set of vertices Work-

Set is used. Initially, WorkSet = {i} because outdegree(i) = 0 after deleting the
arc (i, j) from SP (G). Vertices in WorkSet are sequentially updated. The current
updated vertex u is deleted from WorkSet and is included into the set AffectedV.
Then every arc (x, u) is deleted from SP (G) and outdegree(x) is decreased by one.
If outdegree(x) = 0, the vertex x is included into WorkSet.

To perform the second stage, a heap PriorityQueue is used, whose elements are
affected vertices with a key. At this stage, first such a new shortest path to the
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sink is determined for every affected vertex u that does not include other affected
vertices. The value of dist(u) is its current key in the heap. After that SP (G) is
updated as follows.

At every iteration, a vertex with the minimum key in the heap (say a) is deleted
from the set PriorityQueue. Then those arcs (a, b) are determined that belong
to an alternative path from the vertex a to the sink and distnew(a) = wt(a, b) +
distold(b). Such arcs are included into SP (G). Further all arcs (c, a) are analyzed.
If a new path from the vertex c to the sink includes the arc (c, a) and distnew(c) <
distold(c), the current value dist(c) is equal to distnew(c) and this value is the new
key for the vertex c in PriorityQueue. If c ∈ PriorityQueue, the previous key of c
receives a new value. Otherwise, the vertex c is included into the heap with the key
distnew(c).

The process is completed after updating all vertices in the heap.

Let n1 denote the number of modified or affected vertices and n2 denote the
number of modified or affected arcs and vertices. Then the Ramalingam decremental
algorithm [17] takes O(n2 + n1 log n1) time.

5 ASSOCIATIVE VERSION OF THE RAMALINGAM
DECREMENTAL ALGORITHM

To design an associative version of the Ramalingam decremental algorithm for the
dynamic update of the shortest paths subgraph, we employ the following data struc-
ture:

• an n × n adjacency matrix G, whose every ith column saves with ‘1’ the heads
of arcs outgoing from the vertex i;

• an n× n adjacency matrix SP , whose every ith column saves with ‘1’ the heads
of arcs outgoing from the vertex i that belong to the shortest paths subgraph;

• an n× hn matrix Weight that contains the arc weights as elements. It consists
of n fields having h bits each. The weight of an arc (i, j) is written in the jth

row of the ith field;

• an n× hn matrix Cost that contains the arc weights as elements. It consists of
n fields having h bits each. The weight of an arc (i, j) is written in the ith row
of the jth field;

• an n× h matrix Dist, whose every ith row saves the shortest distance from the
vertex i to the sink;

• a slice AffectedV that saves with ‘1’ positions of all affected vertices.

We observe that the ith field of the matrix Weight saves the weights of arcs
outgoing from the vertex i, while the ith field of the matrix Cost saves the weights
of arcs entering the vertex i. Moreover, every jth row of the matrices G and SP
saves with ‘1’ the tails of arcs entering the vertex j.
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We first explain some reasons why this data structure is used.
Knowing an affected vertex k, the kth field of the matrix Weight, the matrix Dist,

and positions of other affected vertices, in particular, we can perform the following
actions of the Ramalingam decremental algorithm on the STAR-machine:

• simultaneously determine the weight of every path from k to the sink that does
not include other affected vertices;

• simultaneously determine positions of arcs outgoing from the vertex k that be-
long to different shortest paths from k to the sink.

If we use the kth field of the matrix Cost instead of the matrix Weight, we
can simultaneously determine positions of arcs, entering the vertex k, whose new
distance to the sink is decreased.

Let an arc (i, j) be deleted from G and SP (G).
We first provide an associative parallel algorithm (say Algorithm A) for selecting

the set of affected vertices and arcs. This algorithm makes use of the slices WS and
AffectedV and performs the following steps.

1. Set zeros into the slices AffectedV and WS. Check whether there is an arc
outgoing from the vertex i in SP . If it is true, go to exit. Otherwise, include
the vertex i into WS.

2. While WS 6= ∅, perform the following actions:

• delete the position of the first bit ‘1’ (say k) from the slice WS. Include the
vertex k into the slice AffectedV ;

• delete all arcs from SP that enter the vertex k;

• for every deleted arc (r, k), include the vertex r into the slice WS if and only
if there is no arc entering r in SP .

On the STAR-machine, this algorithm is implemented as the FindAffectedVert
procedure.

An associative parallel algorithm for computing new distances to the sink from
all affected vertices (say Algorithm B) runs as follows.

While AffectedV 6= ∅, determine the new distance to the sink from every affected
vertex by means of the following steps.

1. Select the position of the current affected vertex k in the slice AffectedV and
mark it with zero.

2. Compute in parallel the weight of every path in the matrix G from the vertex k
to the sink that begins with an arc (k, r), where r /∈ AffectedV.

3. Select the minimal distance from k to s and write it down into the kth row of
the matrix Dist.

On the STAR-machine, this algorithm is implemented as the ComputeNewDist
procedure.



Implementation of the Ramalingam Decremental Algorithm 341

An associative parallel algorithm for updating arcs outgoing from an affected
vertex k (say Algorithm C) performs the following steps.

1. By means of a slice (say Z), save the positions of all arcs outgoing from the
vertex k in the graph G.

2. Determine in parallel the weights of different paths from the vertex k to the sink
in the graph G that include an arc marked with bit ‘1’ in Z.

3. By means of a slice (say Y ), save positions of those arcs (k, l) for which dist(k) =
wt(k, l) + dist(l).

4. Include positions of arcs marked with ‘1’ in the slice Y into SP .

On the STAR-machine, this algorithm is implemented as the UpdateOutgoing-
Arcs procedure.

An associative parallel algorithm for updating arcs entering an affected vertex k
(say Algorithm D) performs the following steps.

1. By means of a slice (say Z), save the tails of arcs entering the vertex k in G.

2. For all vertices l marked with ‘1’ in the slice Z, determine in parallel the weight
of every path from k to the sink that starts with the arc (l, k).

3. By means of a slice (say Y ), save positions of those vertices r, marked with ‘1’
in the slice Z, for which distnew(r) < distold(r). Then write distnew(r) in the
corresponding rows of the matrix Dist.

On the STAR-machine, this algorithm is implemented as the UpdateIncomingArcs
procedure.

Now, we provide an associative parallel algorithm for dynamic updating the
shortest paths subgraph after deleting the arc (i, j) from the graph G. It performs
the following steps.

1. Delete the position of the arc (i, j) from the matrix G. If (i, j) /∈ SP , then go
to exit. Otherwise, delete the position of this arc from the matrix SP .

2. By means of Algorithm A, construct the slice AffectedV and delete positions of
the affected arcs from SP . Save a copy of the slice AffectedV in another slice
(say X).

3. By means of Algorithm B, determine new distances to the sink in the matrix G
for all affected vertices and write them in the corresponding rows of the matrix
Dist.

4. While AffectedV 6= ∅, update affected vertices taking into account their new
distances to the sink as follows:

• knowing the slice AffectedV and the matrix Dist, determine the position of
an affected vertex q having the minimum distance to the sink and delete q
from the slice AffectedV ;
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• by means of Algorithm C, determine in parallel positions of arcs (q, l) in
the matrix G, for which distnew(q) = wt(q, l) + distold(l) and include these
positions into SP ;

• by means of Algorithm D, determine in parallel positions of arcs (r, q) in
the matrix G, for which distnew(r) < distold(r), and write distnew(r) in the
corresponding rows of the matrix Dist.

On the STAR-machine, this algorithm is given as the DeleteArc procedure.

6 IMPLEMENTATION OF THE RAMALINGAM DECREMENTAL
ALGORITHM ON THE STAR-MACHINE

In this section, we first provide four auxiliary procedures and prove their correctness.
Then we propose the DeleteArc procedure.

The FindAffectedVert procedure determines all affected vertices and affected arcs
obtained after deleting the arc (i, j) from SP (G). It uses an auxiliary slice WS. The
procedure returns the updated matrix SP and a slice AffectedV, where positions of
all affected vertices are marked with bit ‘1’.

procedure FindAffectedVert(i: integer; var SP: table;

var AffectedV: slice(SP));

/* The arc (i, j) has been deleted from the matrices G and SP. */
var X,WS: slice(SP);

v,v1: word(SP);

k,r: integer;

1. Begin CLR(WS); CLR(AffectedV); CLR(v1);

2. X:=COL(i,SP);

3. if not SOME(X) then

/* There was a single arc outgoing from i in SP (G). */
4. begin WS(i):=‘1’;

5. while SOME(WS) do

/* The cycle for selecting affected vertices. */

6. begin k:=STEP(WS);

7. AffectedV(k):=‘1’;

/* The vertex k is saved in the slice AffectedV. */

8. v:=ROW(k,SP);

/* The row v saves the tails of arcs entering k. */
9. ROW(k,SP):=v1;

/* We delete from SP (G) all arcs entering k. */
10. while SOME(v) do

/* The cycle for updating the tails of arcs entering k. */
11. begin r:=STEP(v);

12. X:=COL(r,SP);

13. if not SOME(X) then WS(r):=‘1’;
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14. end;

15. end;

16. end;

17. End.

Lemma 1. Let an arc (i, j) be deleted from the shortest paths subgraph SP (G).
Then the FindAffectedVert procedure returns the slice AffectedV, where positions
of affected vertices are marked with ‘1’. Moreover, it deletes from the matrix SP
positions of all arcs that enter every affected vertex.

Proof. [Sketch.] We prove this by induction in terms of the number of vertices to
be included into the slice AffectedV.

Basis is checked for l = 1, that is, only the vertex i is an affected one after deleting
the edge (i, j) from SP (G).

After performing lines 1–2, the row v1 and the slices WS and AffectedV consist
of zeros and the slice X saves the ith column of the matrix SP . Since the edge
(i, j) has been deleted from SP and the vertex i is affected, then the slice X
consists of zeros. After performing lines 4–8, k = i, the slice WS consists of
zeros again, the ith bit of the slice AffectedV is equal to ‘1’, and the variable v
saves the tails of edges entering the vertex i.

After performing line 9, all edges entering the vertex i are deleted from the
matrix SP . Since there is a single affected vertex after deleting the edge (i, j)
from SP (G), for every vertex r marked with ‘1’ in v, there is at least one outgoing
edge that differs from (r, i). Therefore after execution of the cycle for updating
the tails of arcs entering the veretx i (lines 10–14), the slice WS consists of zeros
and we go to the procedure end.

Step of induction. Let the assertion be true for l ≥ 1 vertices included into the
slice AffectedV . We prove this for l+ 1 vertices. By the inductive assumption,
after including the first l vertices into the slice AffectedV , all edges entering
every affected vertex are deleted from the matrix SP . Moreover, the tails of the
deleted edges, for which there is no path to the sink, are included into the slice
WS.

After including the lth vertex into the slice AffectedV , the slice WS saves the
position of the (l+1)th affected vertex. Therefore the cycle for selecting affected
vertices (line 5) is performed. In this cycle, after performing lines 6–7, we first
delete the single vertex from the slice WS and WS = ∅. Then we include this
vertex into the slice AffectedV . After performing line 8, the variable v saves
the tails of edges entering the (l + 1)th affected vertex. After performing line 9,
all edges entering this vertex are deleted from the matrix SP . After fulfilling
the cycle for updating the tails of arcs entering an affected vertex (lines 10–14),
none new vertex is included into the slice WS because there are only l + 1
affected vertices after deleting the edge (i, j) from SP (G). Therefore the cycle
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for selecting affected vertices (lines 6–16) is finished, and we go to the procedure
end.

This completes the proof. 2

Let us consider the ComputeNewDist procedure. It determines new distances to
the sink from all affected vertices. The procedure uses the slice AffectedV and the
matrices G, Weight, and Dist. It returns the updated matrix Dist.

procedure ComputeNewDist(h: integer; G: table; Weight: table;

AffectedV: slice(G); var Dist: table);

var k,r: integer;

X,Z,Z1: slice(G);

v: word(Dist);

W1,W2: table;

1. Begin X:=AffectedV;

2. while SOME(X) do

3. begin k:=FND(X); Z:=COL(k,G);

4. Z1:=Z and ( not X);

/* The slice Z1 saves the heads of arcs outgoing from k
that are not affected. */

5. TCOPY1(Weight,k,h,W1);

/* The matrix W1 saves the kth field of the matrix Weight. */
6. ADDV(W1,Dist,Z1,W2);

/* The matrix W2 saves the weights of paths from k to s. */
7. MIN(W2,Z1,Z);

/* In the slice Z, we mark with ‘1’ positions of the

rows in W2, where the minimal element is located. */

8. r:=FND(Z); v:=ROW(r,W2);

9. ROW(k,Dist):=v;

/* The new distance from k to s is saved in ROW(k,Dist). */

10. X(k):=‘0’;

11. end;

12. End;

Lemma 2. Let the number of bits h for coding the infinity, the slice AffectedV
and the current matrices G, Weight, and Dist be given. Then the ComputeNewDist
procedure returns the updated matrix Dist that saves new distances to the sink from
all affected vertices.

Proof. We prove by induction in terms of the number of affected vertices l.

Basis is checked for l = 1. After performing lines 1–3, the slice X is a copy of the
slice AffectedV, k = i, and the slice Z saves positions of arcs outgoing from the
vertex i in G. After performing lines 4–6, the matrix W2 saves the weights of
different paths from the vertex i to the sink that are starts from an arc (i, l),
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where l /∈ AffectedV. After performing lines 7–9, we first determine the vertex r
that belongs to the new shortest path from i to the sink, then we write the new
distance from i to the sink in the ith row of the matrix Dist. After fulfilling line
10, X = ∅, and we go to the exit.

Step of induction. Let the assertion be true for l ≥ 1 affected vertices. We prove
this for l + 1 vertices. By the inductive assumption, after updating the first l
affected vertices, their new distances to the sink are written in the corresponding
rows of the matrix Dist, and there is only a single affected vertex in the slice X.
Further we reason by analogy with the basis.

This completes the proof. 2

Now, we proceed to the UpdateOutgoingArcs procedure. Knowing the current
updated vertex k, the number of bits h for coding the infinity, and the current
matrices G, Weight, Dist, and SP , the procedure returns the updated matrix SP .

procedure UpdateOutgoingArcs(h,k: integer; G: table;

Weight: table; Dist: table; var SP: table);

var W1,W2: table;

v: word(Dist);

Y,Z: slice(G);

1. Begin Z:=COL(k,G);

2. TCOPY1(Weight,k,h,W1);

3. ADDV(W1,Dist,Z,W2);

/* The matrix W2 saves different distances from

the vertex k to the sink. */

4. v:=ROW(k,Dist);

/* The variable v saves the shortest distance from

the vertex k to the sink. */

5. MATCH(W2,Z,v,Y);

/* In the slic Y , we mark with ‘1’ the vertices l
for which dist(k) = wt(k, l) + dist(l). */

6. COL(k,SP):=Y;

/* Positions of arcs (k, l) are included into SP. */
7. End;

Lemma 3. Let h be the number of bits for coding the infinity and k be the current
updated vertex. Let the current matrices G, Weight, Dist, and SP be given. Then,
after performing the UpdateOutgoingArcs procedure, positions of all edges (k, l) for
which dist(k) = wt(k, l) + dist(l) are included into the matrix SP.

Proof. We prove this by contradiction. Let an arc (k, r) belong to G and dist(k) =
wt(k, r) + dist(r). However, after performing the UpdateOutgoingArcs procedure,
the position of the arc (k, r) does not belong to the matrix SP . We prove that this
contradicts the execution of UpdateOutgoingArcs.
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Really, since (k, r) ∈ G, then after performing line 1 Z(r) = ‘1’. After per-
forming lines 2–3, the weight of the shortest path from vertex k to the sink that
includes the edge (k, r) is written unto the rth row of the matrix W2. By assumption,
dist(k) = wt(k, r) + dist(r). Therefore Y (r) = ‘1’ after fulfilling the basic MATCH
procedure. Hence, after performing line 6, the edge (k, r) is included into the matrix
SP . This contradicts our assumption. 2

Finally, we propose the UpdateIncomingArcs procedure. Knowing the current
updated vertex k, the number of bits h for coding the infinity, and the current
matrices G, Cost, and Dist, the procedure returns the updated matrix Dist.

procedure UpdateIncomingArcs(h,k: integer; G: table;

Cost: table; var Dist: table);

var Y,Z: slice(G);

v: word(G);

v1: word(Dist);

W,W1: table;

1. Begin v:=ROW(k,G); Z:=CONVERT(v);

/* The slice Z saves the tails of arcs entering k. */
2. v1:=ROW(k,Dist);

/* The row v1 saves the shortest distance from k to s. */
3. TCOPY1(Cost,k,h,W1);

/* The kth field of the matrix Cost is written into

the matrix W1. */
4. ADDC(W1,Z,v1,W);

/* In every lth row of W that corresponds to ‘1’ in Z,
the new distance from l to s is written. */

5. SETMIN(W,Dist,Z,Y);

/* In the slice Y , we mark with ‘1’ positions of vertices,

whose new distances to the sink are decreased. */

6. TMERGE(W,Y,Dist);

/* In every lth row of the matrix Dist, a new distance

to the sink is written if and only if Y (l) = ‘1’. */

7. End;

Lemma 4. Let h be the number of bits for coding the infinity and k be the current
updated vertex. Let the current matrices G, Cost, and Dist be given. Then the
UpdateIncomingArcs procedure maintains the matrix Dist, where new distances to
the sink are written for the tails r of arcs entering the vertex k whose distnew(r) is
decreased.

Proof. We prove this by contradiction. Let an arc (r, k) belong to the graph G and
distnew(r) < distold(r). However, after performing the UpdateIncomingArcs proce-
dure, the rth row of the matrix Dist does not change. We prove that this cotradicts
the execution of the UpdateIncomingArcs procedure.
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Really, the kth row of G saves the tails of edges entering the vertex k. Therefore
after performing line 1, these tails are marked with ‘1’ in slice Z. Since (r, k) ∈ G,
then Z(r) = ‘1’. After performing line 2, the row v1 saves the shortest distance
from vertex k to the sink. After fulfilling line 3, the rth row of the matrix W1 saves
the weight of the arc (r, k). Obviously, after performing lines 4–5, the rth row of the
matrix W saves the new distance from the vertex r to the sink. After performing
the basic SETMIN procedure (line 6), we obtain that Y (r) = ‘1’ because by the
assumption distnew(r) < distold(r). Hence, after performing line 7, ROW(r,Dist) =
distnew(r). This contradicts our assumption.

This completes the proof. 2

Let us proceed to the DeleteArc procedure. Knowing the deleted arc (i, j) and
the current matrices G, Weight, Cost, Dist, and SP , the procedure returns the
updated matrices G, SP , and Dist with the use of the above auxiliary procedures.

procedure DeleteArc(i,j,h: integer; Weight,Cost: table;

var G,SP: table; var Dist: table);

/* The arc (i, j) will be deleted from G and SP. */
var k: integer;

AffectedV,X,Y: slice(G);

label 1;

1. Begin X:=COL(i,G); X(j):=‘0’;

2. COL(i,G):=X;

/* The arc (i, j) is deleted from G. */

3. X:=COL(i,SP);

4. if X(j)=‘0’ then goto 1;

5. X(j):=‘0’; COL(i,SP):=X;

/* The arc (i, j) is deleted from SP (G). */
6. FindAffectedVert(i,SP,AffectedV);

/* This procedure returns the updated matrix SP
and the slice AffectedV . */

7. ComputeNewDist(h,G,Weight,AffectedV,Dist);

/* This procedure returns the updated matrix Dist. */
8. while SOME(AffectedV) do

/* The cycle for updating affected vertices. */

9. begin MIN(Dist,AffectedV,Z);

10. k:=FND(Z); AffectedV(k):=‘0’;

11. UpdateOutgoingArcs(h,k,G,Weight,Dist,SP);

/* We include into SP those arcs (k, r), for which

dist(k) = wt(k, r) + dist(r). */
12. UpdateIncomingArcs(h,k,G,Cost,Dist);

/* We write distnew(l) into ROW(l, Dist) if distnew(l) < distold(l)
and the path from l to s starts from the arc (l, k). */

13. end;

14. 1: End;
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Theorem 1. Let a directed weighted graph be given as an adjacency matrix G and
a matrix Weight. Let matrices Cost, SP , and Dist and the number of bits h for
coding the infinity be given. Let an arc(i, j) be deleted from the graph. Then after
performing the DeleteArc procedure, this arc is deleted from the matrices G and SP .
Moreover, matrices SP and Dist are updated according to the algorithms A, B, C,
and D.

Proof. [Sketch.] We prove this by induction in terms of the number q of affected
vertices that appear after deleting the arc (i, j) from the shortest paths subgraph
SP (G).

Basis is proved for q = 1. It can be checked immediately that after performing lines
1–5, the position of the arc (i, j) is deleted from the matrices G and SP . After
performing line 6, in view of Lemma 1, the slice AffectedV saves the position of
the affected vertex i and positions of all arcs, entering this vertex, are deleted
from SP . After performing line 7, in view of Lemma 2, AffectedV(i) = ‘1’
and the new distance from i to the sink is written in the ith row of the matrix
Dist. Since AffectedV 6= ∅, we perform the cycle for updating affected vertices
(9–13). Here, after fulfilling lines 9-10, we have k = i and AffectedV = ∅. After
performing line 11, in view of Lemma 3, we include into SP positions of the
arcs (i, r) for which distnew(i) = wt(i, r) + distold(r). By the assumption, there
is a single affected vertex in SP . It means that there is an alternative path to
the sink from every vertex l, being the tail of any arc (l, i) in the matrix SP .
Therefore after performing line 12, the matrix Dist does not change.

Hence, after performing the DeleteArc procedure, the position of the arc (i, j)
is deleted from matrices G and SP , distnew(i) is written into the ith row of the
matrix Dist, and positions of all arcs (i, r), for which distnew(i) = wt(i, r) +
distold(r), are included into SP .

Step of induction. Let the assertion be true when q ≥ 1 affected vertices are
updated in the given graph. We prove the assertion for q + 1 affected vertices.

One can immediately verify that, after performing lines 1–7, the position of
the arc (i, j) is deleted from the matrices G and SP , the slice AffectedV saves
positions of q + 1 affected vertices, positions of all affected arcs are deleted from
SP , and the new distances to the sink from all affected vertices are written in
the corresponding rows of the matrix Dist. Since AffectedV 6= ∅, we carry out
line 8.

After performing lines 9–10, we determine the position of the affected vertex k
having the minimal new distance to the sink and mark it with ‘0’ in the slice
AffectedV. By analogy with the basis, after performing line 11, we include into
SP the positions of arcs (k, r), for which distnew(k) = wt(k, r) + distold(r). Fur-
ther, after performing line 12, for every affected vertex r, for which distnew(r) <
distold(r), we write distnew(r) into the rth row of the matrix Dist.

Now, there are only q affected vertices, whose positions are marked with ‘1’
in the slice AffectedV. By the inductive assumption, after updating q affected
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vertices, all alternative shortest paths from every affected vertex r to the sink
are included into SP and the distance from r to s is written in the rth row of
the matrix Dist. Hence, the assertion is true for q + 1 affected vertices.

This completes the proof. 2

Let us evaluate the time complexity of the DeleteArc procedure. To this end,
we first evaluate the time complexity of the auxiliary procedures. Let k be the
number of affected vertices that appear in the matrix SP after deleting the arc
(i, j). The auxiliary FindAffectedVert procedure takes O(k) time because the cycle
for updating the tails of arcs entering an affected vertex takes O(1) time which
is not greater than the maximum number of bits ‘1’ in the rows of the matrix
SP . The auxiliary ComputeNewDist procedure takes O(kh) time because the cycle
while SOME(X) do (lines 2–11) is performed k times and inside this cycle, the basic
procedures require O(h) time each. The auxiliary procedures UpdateOutgoingArcs
and UpdateIncomingArcs take O(h) time each. In the DeleteArc procedure, the cycle
for updating an affected vertex (lines 9–13) takes O(kh) time because inside this
cycle, the basic procedure and two auxiliary procedures require O(h) time each.
Hence, the DeleteArc procedure takes O(kh) time.

In [16], we presented in detail the main advantages of the associative version of
the Ramalingam decremental algorithm. Briefly speaking, these advantages appear
due to the use of a natural two-dimensional data structure, the data access by
contents, and the use of a group of basic procedures that permits us to update in
parallel both the arcs outgoing from every affected vertex and the arcs entering this
vertex.

7 EXAMPLE

In this section, we provide the dynamic update of the shortest paths subgraph SP (G)
(Figure 6) after deleting the arc (4, 2) from the graph G (Figure 5).

For simplicity, we will provide the changes of matrices Dist and SP during
the execution of the DeleteArc procedure. For our example, s = 11, the infinity is
chosen as inf = (50)10 = (110010)2 and h = 6 according to the formula given in
Preliminaries.

Initially, the matrices Dist and SP have the form depicted in Table 1.
During the execution of the DeleteArc procedure, we first delete the arc (4, 2)

from SP (G) as shown in Figure 7. This corresponds to performing the following
operations of the STAR-machine: X:=COL(4,SP); X(2):=‘0’; COL(4,SP):=X. Ob-
viously, after performing these operations, the second row of the matrix SP consists
of zeros.

Further, we execute the auxiliary FindAffectedVert procedure. Here, we first
simultaneously delete the positions of the arcs (5, 4), (7, 4), and (8, 4). Then we
simultaneously delete the positions of the arcs (7, 8) and (9, 8). Finally, we delete
the position of the arc (10, 7) and obtain the result depicted in Figure 8.
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The matrix Dist
1 0 0 0 1 1 0
2 0 0 0 1 0 1
3 0 0 0 1 1 1
4 0 0 1 0 0 1
5 0 0 1 1 0 0
6 0 0 1 1 1 0
7 0 0 1 0 1 1
8 0 0 1 0 1 0
9 0 0 1 1 0 0

10 0 1 0 0 0 0
11 0 0 0 0 0 0

The matrix SP
1 2 3 4 5 6 7 8 9 10 11

1 0 0 0 0 1 0 0 0 0 0 0
2 0 0 0 1 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 1 0 0
4 0 0 0 0 1 0 1 1 0 0 0
5 0 0 0 0 0 1 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 1 0
8 0 0 0 0 0 0 1 0 1 0 0
9 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0
11 1 1 1 0 0 0 0 0 0 0 0

Table 1. The initial distances and the shortest paths

Fig. 7. SP(G) after deletion of the arc (4, 2)

Fig. 8. SP(G) after executing FindAffectedVert
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Hence, after performing the auxiliary FindAffectedVert procedure, we obtain the
slice AffectedV, where positions of vertices 4, 7, 8, and 10 are marked with bit ‘1’.
Moreover, the corresponding rows in the matrix SP consist of zeros.

Now, we execute the auxiliary ComputeNewDist procedure and determine a new
distance from every affected vertex to the sink. We obtain that dist(4) = 001101,
dist(7) = 001110, dist(8) = 001100, and dist(10) = 010001. These values are written
in the corresponding rows of the matrix Dist.

The matrix Dist
1 0 0 0 1 1 0
2 0 0 0 1 0 1
3 0 0 0 1 1 1
4 0 0 1 1 0 1
5 0 0 1 1 0 0
6 0 0 1 1 1 0
7 0 0 1 1 0 1
8 0 0 1 1 0 0
9 0 0 1 1 0 0

10 0 1 0 0 0 1
11 0 0 0 0 0 0

The matrix SP
1 2 3 4 5 6 7 8 9 10 11

1 0 0 0 1 1 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 1 1 0 0
4 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 1 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 1 0
7 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 1 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0
11 1 1 1 0 0 0 0 0 0 0 0

Table 2. The final distances and the shortest paths

During the execution of the cycle for updating the affected vertices (lines 9–13)
in the DeleteArc procedure, we first update the vertex 8 with the minimal distance
to the sink. As a result, the position of the arc (8, 3) is included into the matrix SP .
Moreover, we obtain that distnew(7) = 001101 and distnew(7) < distold(7). Therefore
we write the value 001101 into the seventh row of the matrix Dist. Then we update
the vertex 4 and include the position of the arc (4, 1) in the matrix SP . Further we
update the vertex 7 and include the position of the arc (7, 8) in SP .

Fig. 9. The new shortest paths subgraph SP(G)
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After updating the last affected vertex, we include the position of the arc (10, 6)
in the matrix SP . The result of performing the DeleteArc procedure is given in
Table 2.

We observe that Table 2 corresponds to the following subgraph of the shortest
paths depicted in Figure 9.

8 CONCLUSIONS

We have proposed the efficient implementation of the Ramalingam decremental al-
gorithm for updating the shortest-paths subgraph on the STAR-machine having not
less than n PEs. The associative version of the Ramalingam decremental algorithm
is represented as the DeleteArc procedure that includes a group of auxiliary proce-
dures for performing different parts of this algorithm. We have proved correctness
of the auxiliary procedures and the DeleteArc procedure and evaluated the time
complexity. We have obtained that the DeleteArc procedure takes O(kh) time per
a deletion, where h is the number of bits for coding the infinity and k is the number
of affected vertices that appear in SP (G) after deleting an arc. It is assumed that
each microstep of the STAR-machine takes one unit of time. We have also consid-
ered an example of implementing the Ramalingam decremental algorithm on the
STAR-machine.

The proposed data structure and the proposed technique for updating the short-
est paths on associative parallel processors can be used for solving other tasks, such
as implementation of the Ramalingam incremental algorithm for the dynamic up-
date of the shortest paths subgraph after insertion of an arc into the given graph
and for dynamic update of the shortest paths tree after deletion or insertion of an
arc.
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