COMPUTING INDEXES AND PERIODS OF ALL BOOLEAN MATRICES UP TO DIMENSION N = 8

Pavol Zajac, Matúš Jókay
Institute of Computer Science and Mathematics
FEI STU
Ilkovičova 3
81219 Bratislava, Slovakia
e-mail: \{pavol.zajac, matus.jokay\}@stuba.sk
Communicated by Marian Vajteršic

Abstract

A set of $n \times n$ Boolean matrices along with the Boolean matrix multiplication operation form a semigroup. For each matrix A it is possible to find index μ and period λ, such that $A^{\mu}=A^{\mu+\lambda}$, and μ, λ are the smallest positive integers with this property. We are concerned with a question: How many $n \times n$ Boolean matrices have the given index, and period? A new algorithm is presented that was used to compute index and period statistics of all square Boolean matrices up to $n=8$. Computed statistics are presented in the appendix of the paper.

Keywords: Boolean matrix, enumeration, directed graphs

1 INTRODUCTION

A Boolean matrix is a matrix with only $\{0,1\}$-entries viewed as elements of Boolean algebra. We can define multiplication of such matrices similar to a classical matrix multiplication using logical OR as addition, and logical AND as multiplication, respectively. We can also intuitively define powers of (square) Boolean matrices, i.e., A^{n} is n-times multiplied matrix A with itself.

Boolean matrices and Boolean matrix multiplication have a wide range of applications. In general, they can represent binary relations on finite sets, and the Boolean matrix product is used to compute the composition of relations. (Simple) graphs can be represented by Boolean adjacency matrices, where the element $a_{i j}$
is 1 iff there is an (oriented) edge between vertices v_{i}, and v_{j}, respectively. Moreover, powers of adjacency matrix are related to powers of graphs, more specifically, Boolean power $B=A^{i}$ of adjacency matrix A has $b_{j k}=1$ iff there exists a path with the length exactly i between vertices v_{j}, v_{k}.

It is known that when we compute successive powers of some Boolean matrix, the sequence starts to repeat itself at some point, i.e., we will get $A^{m}=A^{m+l}$ for some m, l. That is, the minimal m is called the index, and l the period of matrix A. It is not difficult to compute index and period of a single Boolean matrix, and the bounds on these numbers were given already by Schwarz [5, 6]. However, it is not known, how many $n \times n$ matrices there are with index m, and period l.

Our research was inspired by the recently proposed matrix test for randomness [1]. One of the tests is based on the distribution of indexes and periods of Boolean matrices. A tested (pseudo)random sequences is mapped to a set of Boolean matrices. For each matrix the index and period are computed. The statistics of the set formed by the sequence are compared by the (specific) χ-square test with the statistics of the whole set of Boolean matrices. If the test fails at some level α, the sequence is rejected.

The main problem of the test is that it is difficult to compute the required (complete) statistics of the whole set of matrices (this set contains $2^{n^{2}}$ matrices). Grošek et al. in [1] provide statistics for n (size of the matrix) up 5. We have later extended these results to cases $n=6,7[3,4]$. In this paper, we focus on the problem of computing these statistics for $n=8$. In some cases the value $n=8$ is optimal for the implementation of the test, because most of the computers today are byte oriented. Moreover, a single 8×8 Boolean matrix can be packed completely into one 64 -bit word.

To compute the desired statistics by the classical method, we should compute 2^{64} indexes and periods of 8×8 Boolean matrices. Although it is a feasible computational effort, it is still too costly. However, we have been able to find a more effective enumeration algorithm, which reduces the complexity of the effort to approximately $2^{56} .{ }^{1}$ We have implemented this algorithm, and executed in a grid environment. The results of the computation are summarized in Appendix A.

The paper is organized as follows. In Section 2, we summarize more precisely the basic facts about Boolean matrices. Our enumeration algorithm is described in Section 3. We provide the details of the implementation in Section 4. Section 5 contains summary of the results, and the details of the computational effort involved. Finally, Section 6 contains our conclusions, remarks, and open questions.

2 PRELIMINARIES

Let $\mathcal{B}=(\{0,1\}, \vee, \wedge)$ be a standard Boolean algebra (\vee denotes logical OR, and \wedge denotes logical AND). Let $\mathcal{M}_{n}=\mathcal{B}^{(n \times n)}$ denote a set of all $n \times n$ Boolean matrices.

[^0]Let \odot denote a Boolean matrix multiplication, i.e., if $A, B \in \mathcal{M}_{n}$, then $C=A \odot B \in$ \mathcal{M}_{n}, and $c_{i, j}=\bigvee_{j=1}^{n} a_{i, k} \wedge b_{k, j}$. To simplify notation, we omit the symbol \odot when writing products of different matrices from \mathcal{M}_{n}.

For the convenience of the reader, we summarize basic mathematical facts about the operation \odot from $[1,5,6]$. Algebra $\left(\mathcal{M}_{n}, \odot\right)$ is a finite semigroup, i.e., the operation \odot is closed on \mathcal{M}_{n} and associative. Let I be an identity matrix (with ones on diagonal). Let $A^{0}=I$, and let $A^{i}=A \odot A^{i-1}$ for $i>0$ integer, i.e., A^{i} is a usual i-th power of matrix under \odot multiplication. As the number of elements of \mathcal{M}_{n} is finite, surely $A^{j}=A^{i}$ for some $j>i$.

Definition 1. Let $A \in \mathcal{M}_{n}$. Let $\mu(A), \lambda(A)$ be the smallest positive integers such that $A^{\mu}(A)=A^{\mu(A)+k}$ for any $k>1$. We call $\mu(A)$ an index of A, and $\lambda(A)$ a period of A.

According to the Euler-Fermat Theorem for Finite Semigroups [5], there exist two numbers M, Λ, such that for each $A \in \mathcal{M}_{n}: x^{M+\Lambda}=x^{M}$, with

$$
\begin{aligned}
M & =\max \left\{\mu(A) ; A \in \mathcal{M}_{n}\right\} \\
\Lambda & =\operatorname{lcm}\left\{\lambda(A) ; A \in \mathcal{M}_{n}\right\}
\end{aligned}
$$

We call M, Λ universal exponents of \mathcal{M}_{n} (i.e., the universal index and period, respectively). For the semigroup of Boolean matrices, we can use the following two theorems to compute the universal exponents.

Theorem 1. [6] For the semigroup \mathcal{M}_{n} of $n \times n$ Boolean matrices, the universal index $M=(n-1)^{2}+1$.

Theorem 2. [6] Let $n=n_{1}+n_{2}+\ldots+n_{k}$ be a partition of n. Then $\Lambda=$ $\operatorname{lcm}\left\{\operatorname{lcm}\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}\right\}$, where the outer least common multiplier is taken across all possible partitions of the integer n.

However, in our research we are not interested directly in the value Λ. Instead, we only want to know the maximum period that can be achieved. This value is then

$$
\lambda_{\max }=\max \left\{\operatorname{lcm}\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}\right\},
$$

where the maximum is again taken across all possible partitions of n. Relevant possible exponents for small n 's are summarized in Table 1.

n	M	Λ	$\lambda_{\max }$
6	26	60	6
7	37	420	12
8	50	840	15

Table 1. Universal exponents for the semigroup of Boolean matrices (selected n 's)

3 ENUMERATION OF MATRICES WITH A GIVEN INDEX AND PERIOD

Let $\mathcal{A} \subset \mathcal{M}_{n}$ be a set of $n \times n$ Boolean matrices. Let $\nu_{\mathcal{A}}(m, l)$ denote the number of Boolean matrices from the set \mathcal{A} with given index m, and period l, i.e., $\nu_{\mathcal{A}}(m, l)=|\{A \in \mathcal{A} ; \mu(A)=m, \lambda(A)=l\}|$. We are interested in the question of effective computation of $\nu_{\mathcal{M}_{n}}$ for a given (small) n. For simplicity, we will use ν_{n} in place of $\nu_{\mathcal{M}_{n}}$. The number of possible indexes and periods is limited (and small). Thus it is possible to use the following enumeration algorithm to compute ν_{n} :

1. For $m=0, \ldots, M, l=0, \ldots, \lambda_{\max }$: initialize counters $C[m, l] \leftarrow 0$;
2. For each matrix $A \in \mathcal{M}_{n}$: compute $\mu(A), \lambda(A)$, and increment $C[\mu(A), \lambda(A)]$;
3. Output: $\nu_{n}(m, l)=C[m, l]$.

The complexity of the basic algorithm is $2^{n^{2}}$ computations. Grošek et al. [1] were able to use this algorithm for n up to 5 . Using internal bit parallelism [4] we were able to compute the values up to $n=7$, with the estimate for $n=8$ on 23000 CPU years [3]. In this section we show the advanced enumeration algorithm with a lower computational complexity (with the same memory requirements).

It is well known that two square matrices, say A, B, are equivalent if there exists a permutation matrix ${ }^{2} P$ such that $P A P^{T}=B$. If A and B are adjacency matrices of graphs G_{A}, G_{B}, then these graphs are isomorphic iff A and B are equivalent. The outline of our algorithm is based on the following two lemmas drawn from graph theory.

Lemma 1. Let $A \in \mathcal{M}_{n}$ be an $n \times n$ Boolean matrix. Let P be an $n \times n$ permutation matrix. Then $\mu\left(P A P^{T}\right)=\mu(A)$, and $\lambda\left(P A P^{T}\right)=\lambda(A)$.

Lemma 1 could be used to simplify the enumeration algorithm. Suppose we compute $\mu(A), \lambda(A)$. Then it is not necessary to compute μ, λ again for each of the matrices $P A P^{T}$, we can add to counter $C[\mu(A), \lambda(A)]$ the cardinality of $\left\{P A P^{T}\right\}$. However, this number can be different for different matrices, and can be lower than the number of possible permutation matrices, n ! (e.g., when $A=I$). The most difficult problem is to provide a sequence of matrices $\left\langle A_{i}\right\rangle$, such that $A_{i+1} \notin \bigcup_{j=1}^{i}\left\{P A_{j} P^{T}\right\}$. This problem is equivalent to enumerating all directed graphs (with loops) up to isomorphism.

Lemma 2. Let $\mathcal{A} \subset \mathcal{M}_{n}$ be a set of $n \times n$ Boolean matrices. Let P be an $n \times n$ permutation matrix, then $\left|P \mathcal{A} P^{T}\right|=|\mathcal{A}|$.

Corollary 1. Let $\mathcal{A} \subset \mathcal{M}_{n}$ be a set of $n \times n$ Boolean matrices. Let P be an $n \times n$ permutation matrix and let $\mathcal{B}=P \mathcal{A} P^{T}$, then for each $(m, l): \mid\{B \in \mathcal{B}: \mu(B)=$ $m, \lambda(B)=l\}|=|\{A \in \mathcal{A}: \mu(A)=m, \lambda(A)=l\}|$, i.e., the index and period statistics of \mathcal{A}, \mathcal{B} are the same.

[^1]Let \mathcal{P} denote a set of permutation matrices, and let $\mathcal{A} \subset \mathcal{M}_{n}$. Let $\mathcal{P} \otimes \mathcal{A}$ denote a set $\left\{B=P A P^{T} ; P \in \mathcal{P}, A \in \mathcal{A}\right\}$. Let $\mathcal{P}_{\mathcal{A}}$ denote a special set of permutation matrices such that sets $P \mathcal{A} P^{T}$ are all pairwise disjoint. Using Corollary 1, we can see that in this special case $\nu_{\mathcal{P}_{\mathcal{A}} \otimes \mathcal{A}}=\left|\mathcal{P}_{\mathcal{A}}\right| \cdot \nu_{\mathcal{A}}$. That is, we can compute the index and period statistics of the set $\mathcal{P}_{\mathcal{A}} \otimes \mathcal{A}$ (which is at least as large as \mathcal{A}, but usually much larger) just by computing the index and period statistics of the set \mathcal{A}.

In our algorithm, we partition the set \mathcal{M}_{n} into disjoint sets $\mathcal{P}_{\mathcal{A}_{i}} \otimes \mathcal{A}_{i}$. Each set \mathcal{A}_{i} is formed in such a way that it is easy to enumerate its elements, and to compute $\left|\mathcal{P}_{\mathcal{A}_{i}}\right|$, respectively. Instead of computing ν_{n} by computing the index and period of each matrix in \mathcal{M}_{n}, we only compute indexes and periods of matrices in $\cup \mathcal{A}$, and then compute

$$
\nu_{n}=\sum_{i}\left|\mathcal{P}_{\mathcal{A}_{i}}\right| \cdot \nu_{\mathcal{A}_{i}} .
$$

The partition in our algorithm is based on the signatures of matrices.
Definition 2. Let $A \in \mathcal{M}_{n}$ be an $n \times n$ Boolean matrix that can be written in a block form as

$$
\left(\begin{array}{cc}
A_{1} & R \\
L & A_{2}
\end{array}\right)
$$

where A_{1} is $(n-k) \times(n-k)$ matrix, A_{2} is $k \times k$ matrix, and L^{T}, R are $(n-k) \times k$ matrices. We will call $(n-k) \times 2 k$ matrix

$$
S_{k}=\left(\begin{array}{ll}
L^{T} & R
\end{array}\right)
$$

a k-signature of A.
Definition 3. We will call a k-signature S_{k} of A an ordered k-signature, if the rows of S_{k} are lexicographically ordered.

Example 1. Let

$$
A=\left(\begin{array}{lll|l}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
\hline 0 & 0 & 1 & 0
\end{array}\right)
$$

Its 1-signature is the matrix:

$$
\left(\begin{array}{l|l}
0 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right)
$$

which is an ordered signature. Its 2-signature is the matrix

$$
\left(\begin{array}{ll|ll}
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

which is not ordered (in lexicographic order).

Lemma 3. Let \mathcal{A} be a set of $n \times n$ Boolean matrices with the same k-signature S_{k}. Let O_{k} be a matrix obtained from S_{k} by ordering its rows lexicographically. Let P_{1} be a $(n-k) \times(n-k)$ permutation matrix such that $O_{k}=P_{1} S_{k}$, and let P be a $n \times n$ permutation matrix

$$
P=\left(\begin{array}{cc}
P_{1} & 0 \\
0 & I
\end{array}\right)
$$

Then $\mathcal{B}=P \mathcal{A} P^{T}$ is a set of $n \times n$ Boolean matrices with the same k-signature O_{k}.
Proof. Let $A \in \mathcal{M}_{n}$ have signature $S_{k}=\left(\begin{array}{ll}L^{T} & R\end{array}\right)$. We can see that

$$
P A P^{T}=\left(\begin{array}{cc}
P_{1} & 0 \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
A_{1} & R \\
L & A_{2}
\end{array}\right)\left(\begin{array}{cc}
P_{1}^{T} & 0 \\
0 & I
\end{array}\right)=\left(\begin{array}{cc}
P_{1} A_{1} P_{1}^{T} & P_{1} R \\
L P_{1}^{T} & A_{2}
\end{array}\right) .
$$

Signature of $P A P^{T}$ is then

$$
\left(\begin{array}{ll}
P_{1} L^{T} & P_{1} R
\end{array}\right)=P_{1}\left(\begin{array}{ll}
L^{T} & R
\end{array}\right)=P_{1} S_{k}=O_{k}
$$

A signature splits a matrix in two parts in a special way. If we apply operation $P A P^{T}$, we are in fact swapping rows and columns in the same way. For example, if $P A$ has exchanged rows 1 and 3 (compared to A), then $A P^{T}$ has exchanged columns 1 and 3 . If we change only rows (and columns) from the upper-left part of the matrix (first $n-k$ rows/columns), we do not "destroy" the k-signature of A, we only exchange its rows. For each matrix A we can always find a permutation matrix operating on first $n-k$ rows/columns only, such that the signature of $P A P^{T}$ is ordered. The set of all matrices can be split into distinct sets according to a common signature up to the order of rows. These subsets can be further split into distinct classes corresponding to different permutations of the signature rows. Each of these classes can be obtained from the set of matrices with an ordered signature and a corresponding permutation matrix. This is exactly the division of the space \mathcal{M}_{n} required for our algorithm.

Our algorithm works as follows:

1. Initialize counters $C[m, l] \leftarrow 0$;
2. For each ordered signature

$$
S_{k}=\left(\begin{array}{ll}
L^{T} & R
\end{array}\right):
$$

(a) For $m=0, \ldots, M, l=0, \ldots, \lambda_{\max }$: initialize counters $C_{s}[m, l] \leftarrow 0$;
(b) For each matrix

$$
A=\left(\begin{array}{cc}
A_{1} & R \\
L & A_{2}
\end{array}\right)
$$

where $A_{1} \in \mathcal{M}_{n-k}, A_{2} \in \mathcal{M}_{k}$:
compute $\mu(A), \lambda(A)$, and increment $C_{s}[\mu(A), \lambda(A)]$;
(c) Compute N, the number of distinct row permutations of S_{k}.
(d) For each $m, l: C[m, l] \rightarrow C[m, l]+N \cdot C_{s}[m, l]$.
3. Output $\nu_{n}(m, l)=C[m, l]$.
N.B. For given n, k an optimal choice is detailed in the following section.

3.1 Complexity of the Enumeration

The number of possible ordered k-signatures (for a given n) is a number of $(n-k)$ combinations of possible $2^{2 k}$ elements with repetitions, that is

$$
\binom{2^{2 k}+(n-k)-1}{n-k}
$$

For each ordered k-signature we must check all possible values of the bits of A_{1}, A_{2}, that is $(n-k)^{2}+k^{2}$ bits. Thus we must compute the indexes and periods of

$$
N=2^{(n-k)^{2}+k^{2}}\binom{2^{2 k}+(n-k)-1}{n-k}
$$

matrices. Numeric values for the cases $n=7,8$ are presented in Table 2. The case $k=0$ corresponds to a basic enumeration of all matrices directly. The optimal choice of k depends on n, but for both $n=7,8$ the optimal value is $k=2$.

$n=7$	$N / 2^{25}$	$\log _{2} N$
$k=0$	16777216	49.0
$k=1$	344064	43.4
$k=2$	248064	42.9
$k=3$	766480	44.5

$n=8$	$N / 2^{32}$	$\log _{2} N$
$k=0$	4294967296	64.0
$k=1$	31457280	56.9
$k=2$	13891584	55.7
$k=3$	41696512	57.3
$k=4$	183181376	59.4

Table 2. The number of matrices that must be enumerated for $n=7,8$

4 IMPLEMENTATION DETAILS

The problem of computing the indexes and periods for the whole set of matrices can be distributed in a straightforward way. In our research we used two parallelization types, namely, internal and external.

In the case of external parallelization, we partition the set of matrices into (suitable) disjunct sets. We then compute statistics for each set separately in parallel computing nodes. Incidentally, during the statistics computation step, no communication is required between nodes. Finally, we need a short post-processing phase to add the results from each node. If the subsets are sufficiently large, the communication and post-processing cost is negligible.

The problem of computing μ, λ for the whole set can also be transformed into a SIMD-type (Single Instruction Multiple Data) of computation. We store the whole set (or a suitable subset) of matrices into a SIMD storage. We execute steps of the matrix multiplication algorithm in parallel. In each step, if we detect a collision between the actually computed and stored matrices, we mark the detected μ and λ in the k-th computing node (further collisions should be ignored). At the end of the computation we collect statistics from the nodes. The algorithm executes $\max \left\{\mu_{k}\right\}+$ $\max \left\{\lambda_{k}\right\}$ matrix multiplications (and the corresponding number of comparisons), even if some of the nodes have finished earlier. However, if the size of the subsets is correctly chosen, the reduction in performance can be acceptable in some scenarios (e.g., when computing on GPUs or when using internal bit parallelization).

4.1 Internal Parallelization

For the core of the computation, we have used a slightly modified version of the program from [4]. For the sake of completeness, we summarize the description of the algorithm also in this section. Our implementation uses so called SWAR (SIMD Within A Register) principle, also known as a bit-slicing technique. To implement the operation \odot, we need bit operations AND and OR to work with individual bits of the matrix. However, a typical instruction AND, OR (in contemporary processors) works with the whole vector of 32 -bits or 64 -bits at once (depending on the architecture of the processor). Moreover, it is possible to utilize SSE2 (Streaming SIMD Extension 2) registers and operations, so we can even work with operations processing 128 -bit vectors in one tact of the processor.

A bit-sliced implementation stores b Boolean $n \times n$ matrices in $n \times n b$-bit words. Bits of the first matrix are stored in the LSB (Least Significant Bit) of each word. The second matrix is stored in the second bits, and so on. We say that we pack b $n \times n$ matrices into $n \times n b$-bit words. The opposite operation is called unpacking.

The implementation of the operation \odot, which processes b packed matrices is then straightforward. We use a classical algorithm with the matrix multiplication replaced by the vector AND operation, and the addition replaced by the vector OR operation. A more complicated situation arises when we want to compare individual matrices. We cannot use vector comparison as each of n^{2} vectors contains bits from b different matrices. We could unpack matrices after each multiplication, but this is quite costly, both computationally and memory-wise.

Next, let us introduce some notation to clearly illustrate the implementation. Let $\bar{x}[i, j]=\left(A_{1}^{r}[i, j], \ldots, A_{b}^{r}[i, j]\right)$ and $\bar{y}[i, j]=\left(A_{1}^{s}[i, j], \ldots, A_{b}^{s}[i, j]\right)$. We can compare individual bits of matrices $A_{1}^{r}, \ldots, A_{b}^{r}$ and $A_{1}^{s}, \ldots, A_{b}^{s}$ by the vector operation
$\bar{x}[i, j]$ XOR $\bar{y}[i, j]$. In the resulting vector only bits where $A_{k}^{r}[i, j] \neq A_{k}^{s}[i, j]$ are set. Finally, to compare whole matrices we must compute

$$
\bar{z}=\bigvee_{\forall i, j}(\bar{x}[i, j] \text { XOR } \bar{y}[i, j])
$$

where \bigvee denotes the sum using the vector $O R$ operation. Bits in vector \bar{z} are set to 0 if and only if the corresponding matrices are equal. We thus need only $2 n^{2}$ operations to compare b matrices instead of just one.

To finalize the bit-sliced implementation, we store a bit mask, with 0's corresponding to matrices with already computed index and period (it is initialized to all 1's). After each comparison, we compute the number of new hits (repeated matrices, indicating the cycle) with $c=w_{H}(\bar{m}$ AND NOT $\bar{z})$ (we add c to global statistics). Here w_{H} is a Hamming weight which can be computed in $\log _{2} b$ steps (some processors even have dedicated instructions for this task). Finally, we update the mask with operation $\bar{m}:=\bar{m}$ AND \bar{z}. The algorithm is finished (over the set of packed matrices) when $\bar{m}=(0,0, \ldots, 0)$.

4.2 External Parallelization

The computation was split into three phases. The initial phase involves pre-computation: A set of ordered matrix signatures is generated (for the specified parameters $n, k)$. Signatures are stored in the task file. Each signature denotes a unique identifier for a discrete computational task (TASKID). The signatures are stored in human readable format as hexadecimal numbers.

The main phase of the computation is run in parallel on the cluster. Each of the parallel tasks is assigned its TASKID (by the scheduler). Each node then computes the statistics of the set of matrices corresponding to this TASKID. In summary when $n=8, k=2$ (the chosen parameters of the computation) the single task computes all matrices of the form:

C0	C1	C2	C3	C4	C5	T2	T3
C6	x	x	x	x	x	T 6	T 7
x	x	x	x	x	x	T 10	T 11
x	x	x	x	x	x	T 14	T 15
x	x	x	x	x	x	T 18	T 19
x	x	x	x	x	x	T 22	T 23
T 1	T 5	T 9	T 13	T 17	T 21	x	x
T 0	T 4	T	T 12	T 16	T 20	x	x

Here, the individual symbols denote:
C0 - C6: 7 bits used by the internal parallelization (bit-slicing). The total of 128 matrices is packed for a single SIMD-type computation of indexes of periods.

T0 - T19: 24 bits of the (ordered) signature (TASKID, LSB is T0), x: 33 bits, the elements of matrix enumerated in the cycle. Each task processes 2^{33} bitsliced operations (computations of indexes and periods).

Each task computes the statistics of the assigned set of matrices and encodes it into a prescribed output file. A common storage space was used for the results. MPI was used to manage the tasks and the repository of the results. Partial results were processed in the final phase of the computation and the final statistics were computed. More technical details are available in [2].

5 COMPUTATIONAL RESULTS

In the previous research [4], the computing time for $n=7$ was reduced from the originally estimated 125 years to the 3.33 years using bit-sliced implementation (64-bit) or to 600 days using SSE2-enabled implementation (128-bit). An implementation of the brute-force search was executed on the parallel cluster at the GRID laboratory at FIIT STU in Bratislava using 50 computing nodes. The whole task for $n=7$ took 125 hours (real time). The estimate for the brute-force search for the case $n=8$ in the same configuration was 460 years 3 [3].

The new algorithm was run with parameters $n=8, k=7$ on NorGrid at the University of Bergen. The grid consists of 5500 AMD Opteron 285 (E6) 2.6 GHz cores. The tasks were merged into blocks for 32 -tuples of processors. The whole computation thus consisted of 1696 blocks, with 32 tasks in each block. The average time to compute one block of tasks was approximately 12 hours. The total cost of the computation was 661642.41 CPU-hours, 65 days in the real time (with average allocated load of 10 blocks or 320 processors). If it were possible to utilize the whole grid at 100% just for our computation it would take less than 5 days. On one processor, the task would require approximately 75 years.

In comparison with the brute-force algorithm: one task for $n=8$ takes 19 hours on the processors used in [3]. The whole effort with the new algorithm would take approx. 2.25 years, instead of 460 years predicted for the brute-force algorithm. That is, we were able to compute the statistics 200 -times faster than with the brute force approach ${ }^{4}$. The final statistics are summarized in Appendix A.

6 CONCLUSIONS

Using our new algorithm we were able to compute the index and period statistics for the whole set of square Boolean matrices with the dimension up to $n=8$. The whole effort took approximately 75 CPU years. To scale the computation to $n=9$

[^2](again with the optimal choice of $k=2$), it is necessary to compute statistics of the set of $2^{70.4}$ Boolean 9×9 matrices. This is 26616 -times more matrices than for $n=8$. If we take into account the $O\left(n^{3}\right)$ complexity of the algorithmic step (computing index and period, respectively), we estimate the required processing power to $9^{3} / 8^{3} \cdot 26616 \cdot 75 \mathrm{CPU}$ years, i.e., 2.8 million CPU years. This effort is clearly too costly, so without new algorithms it seems infeasible to compute statistics for larger n 's. It is an open question, whether the values of c_{n} can be computed analytically for any given n, λ, μ. We hope that the provided datasets can help further research in this area.

Acknowledgement

This material is based upon work supported under the grant NIL-I-004 from Iceland, Liechtenstein and Norway through the EEA Financial Mechanism and the Norwegian Financial Mechanism, and under the grant VEGA 1/0244/09.

We would like to thank the anonymous reviewer for his useful comments.

A STATISTICS OF THE SET OF MATRICES

This appendix summarizes computed statistics for the dimensions $n=6,7,8$. Statistics for the smaller dimensions are taken from [1].

$\mu \backslash \lambda$	1	2
1	11	1
2	4	0

Table 3. Index and period statistics of the set of 2×2 Boolean matrices

$\mu \backslash \lambda$	1	2	3
1	123	33	2
2	252	12	0
3	66	0	0
4	18	0	0
5	6	0	0

Table 4. Index and period statistics of the set of 3×3 Boolean matrices

$\mu \backslash \lambda$	1	2	3	4
1	2360	1042	156	6
2	25096	2616	48	0
3	24036	480	48	0
4	7164	72	0	0
5	2004	0	0	0
6	360	0	0	0
7	0	0	0	0
8	0	0	0	0
9	24	0	0	0
10	24	0	0	0

Table 5. Index and period statistics of the set of 4×4 Boolean matrices

$\mu \backslash \lambda$	1	2	3	4	5	6
1	73023	43125	9230	1080	24	60
2	6471160	604780	26780	360	0	680
3	16980510	305580	18720	240	0	840
4	7190310	72180	2760	240	0	480
5	1384530	12060	240	0	0	240
6	297960	960	0	0	0	240
7	28320	0	0	0	0	0
8	8160	0	0	0	0	0
9	9120	0	0	0	0	0
10	9000	0	0	0	0	0
11	720	0	0	0	0	0
12	240	0	0	0	0	0
13	120	0	0	0	0	0
14	120	0	0	0	0	0
15	0	0	0	0	0	0
16	120	0	0	0	0	0
17	120	0	0	0	0	0

Table 6. Index and period statistics of the set of 5×5 Boolean matrices

$\mu \backslash \lambda$	1	2	3	4	5	6
1	3494057	2505841	585120	130350	9864	20940
2	6899015014	276634710	12953700	443160	2880	683640
3	38728955040	357346620	15374280	284040	2880	1131720
4	18226493280	111682620	3581640	225360	1440	513360
5	3483235920	24613020	675360	22320	1440	226800
6	475306200	4104360	52560	1440	0	190800
7	62632080	115200	5760	0	0	12960
8	12044160	14400	1440	0	0	0
9	6897360	184680	0	0	0	0
10	5527920	184680	0	0	0	0
11	680400	0	0	0	0	0
12	224640	0	0	0	0	0
13	145080	0	0	0	0	0
14	102600	0	0	0	0	0
15	3600	0	0	0	0	0
16	93240	0	0	0	0	0
17	99720	0	0	0	0	0
18	3600	0	0	0	0	0
19	0	0	0	0	0	0
29	0	0	0	0	0	0
21	0	0	0	0	0	0
22	0	0	0	0	0	0
23	0	0	0	0	0	0
24	0	0	0	0	0	0
25	720	0	0	0	0	0
26	720	0	0	0	0	
	0	0	0	0	0	0

Table 7. Index and period statistics of the set of 6×6 Boolean matrices

	0	0	0	0	0	0	0	0	0	0	0ャ0 ¢	$\stackrel{1}{ }$
0	0	0	0	0	0	0	0	0	0	0	0ャ0 ¢	98
0	0	0	0	0	0	0	0	0	0	${ }_{0}^{0}$	0	${ }_{\text {¢ }} 98$
0	0	0	0	0	0	0	0	0	0	0	0	${ }^{\text {๒¢ }}$
0	0	0	0	0	0	0	0	0	0	0	0	${ }^{\text {¢ }}$
0	0	0	0	0	0	0	0	0	0	0	O¢0 9	${ }^{\text {z }}$ ¢
0	0	0	0	0	0	0	0	0	0	0	0709	${ }^{18}$
0	0	0	0	0	0	0	0	0	0	0	0800 ¢	${ }_{0} 8$
0	0	0	0	0	0	0	0	0	0	0	0	${ }^{6 z}$
0	0	0	0	0	0	0	0	0	0	0	0	${ }^{8 z}$
0	0	0	0	0	0	0	0	0	0	0	0 0zos	$\stackrel{2 z}{ }$
0	0	0	0	0	0	0	0	0	0	0	00^{2098} I	${ }^{9 z}$
0	0	0	0	0	0	0	0	0	0	0	0000te I	$\stackrel{9}{9}$
0	0	0	0	0	0	0	0	0	0	0	09t 0z	$\stackrel{\text { セz }}{ }$
0	0	0	0	0	0	0	0	0	0	0		$\stackrel{\text { ¢ }}{ }$
0	${ }^{0}$	0	0	0	0	0	0	0	0	0	0 ¢0¢	${ }^{\text {zz }}$
0	0	0	0	0	${ }^{0}$	${ }^{0}$	0	0	0	0	${ }^{0009}$	${ }_{\text {Lz }}^{\text {Lz }}$
${ }_{0}^{0}$	0 0	${ }_{0}^{0}$	0	0 0	0 0	0 0	0 0	${ }_{0}^{0}$	0 0	0 0	08001 08598 t 0	02 $6{ }_{\text {I }}$
${ }_{0}$	0	0	0	0	0	0	0	0	0	0	$088 \mathrm{Z6z} 2$	8 s
0	0	0	0	0	0	0	0	0	0	$0 t ¢ 8 \mathrm{Stg}$	$00 \dagger$ ¢88 88 L	2I
0	0	0	0	0	0	0	0	0	0	0 0tr 8 Sts	008 zot LZI	9 I
0	0	0	0	0	0	0	0	0	0	0	0809902	9 st
0	0	0	0	0	0	0	0	0	0	Ott 89is	096 LIt dot	${ }^{\text {tI }}$
${ }^{0}$	${ }_{0}$	${ }^{0}$	0	0	${ }^{0}$	0	0	0	${ }^{0}$	${ }^{0} 748959$	080 ze\％$\downarrow z z$	${ }_{8}^{\text {¢ }}$
08001	0 0 0	${ }_{0}^{0}$	0 0	${ }_{0}^{0}$	${ }_{0}^{0}$	0 0	0 0	0 0	O®Z OOt OS			${ }_{\text {II }}^{\text {II }}$
0910z	0	080 or	0	0	0	080 о	0	0	008092 \＆	0ヶて 888 て89	0070996162	01
0z\＆ $0 \pm$	0	08000	0	0	0	OャZ 0 ¢	0	0	0zs โt8 \＆	Oちを 800 0ヶ¢	00809 O 088 IL	6
0¢9 08	0	${ }^{091} 0$ Oz	0	0	0	092 gzL	0	00ヶ 0 S	080889 \＆	0z¢ 98．968	0ャ0 878でけ 28	8
087191	0	0zE0才	0	0	0	0ャ0 ¢zを \ddagger 亿	${ }^{080} 01$	008 Z98	08761699	092416989 I	0762889 9¢9 8ヶて	$\stackrel{1}{2}$
0zs 218	0	Of908	0	0	0	0ヶ9 82889z	08898%	091069 s	0z9 2189 9t8	00ヶ $80 \downarrow$ ¢00 8t	0ヶ89ャて¢T6で08	9
089689	0	0๒て9st	0	0	0	00ヶ808 Zs	009 LzLz	008690 ¢9	09ヶ $\ddagger 2008 て$ を	06ヶ62I ¢¢9 06		$\stackrel{9}{ }$
088096	0	0zt L9Z	0	0	0	0ヶ¢ 019696	009 โ¢8	$0 \downarrow 210 \downarrow 688$	0zz9299266	$02990928 L$ 19t		t
089886	0	099 zz\％	0	0	0	00080968% Z	$009 \varepsilon ¢ L 9$	0¢T 2669 ¢09	0ャて ¢f9 Lsi		$9 \mathrm{It} 829018296 \angle$ LE	${ }_{\sim}^{\varepsilon}$
Oャ9 697	0	926 zzI	0	0	0	008629626	89866 \％8	08868 Cl 19＊	09ヶ098 LILてI	9 9¢ ¢¢9 ヤ0¢ ع¢\％	ขZZ $08062 \angle$ g8z Ov	z
097 I	0	ztst	0	0	$0{ }^{0} 2$	$098016 \pm$	969 zog 乙	089 ¢t6 tI	z8696t 9t	$99990680 z$	zLI 860 tgz	I
zı	II	0r	6	8	2	9	s	t	ε	z	I	$Y \backslash r$

$\mu \backslash \lambda$	1	2	3	4	5	6	7	8	10	12	15
1	26521267153	23091886805	4950978172	1963546746	538270992	1073649920	1506240	5040	2453472	1963920	8064
2	1198095124984760272	1503794564156696	35611739327640	988443291360	17937001824	2581161254560	322560	0	624839040	1474512480	7327488
3	12637036278543119548	11110326740783256	199241564211200	2954839134240	29787188928	8932930196400	483840	0	2089672704	6705972000	42809088
4	4014337642292351724	5443924215164232	84388004615040	1744551317040	14433121920	4014267416880	322560	0	1576572480	6626544960	51152640
5	513861340785759204	1031311648106880	16832189401440	331172051280	9191098560	1329712325760	161280	0	1052735040	3126164160	34863360
6	58419080106440760	151802996214240	3167660163360	45002815200	1095272640	861920488800	80640	0	383806080	1519197120	19514880
7	4962814075850400	18067580516160	276970639680	2242437120	86123520	77715005760	80640	0	185310720	750798720	10160640
8	302779678834080	3595175781120	72782055360	307238400	3870720	3453690240	0	0	88784640	359009280	5160960
9	59690379390264	2627407792800	94774881600	1328695200	403200	184383360	0	0	44392320	178859520	2580480
10	30879255836184	2291789656800	93327151680	1321356960	80640	44795520	0	0	41731200	88139520	1290240
11	3342356488800	212070337920	5497914240	2177280	0	1290240	0	0	1693440	43263360	645120
12	1136144671200	70024187520	1891451520	483840	0	80640	0	0	0	41731200	322560
13	702730077840	42514486560	883935360	241920	0	0	0	0	0	1209600	161280
14	448652650320	32771783520	881112960	80640	0	0	0	0	0	0	80640
15	22442968800	825652800	564480	0	0	0	0	0	0	0	80640
16	371084510160	30625086240	880790400	0	0	0	0	0	0	0	0
17	405763943760	32111261280	880790400	0	0	0	0	0	0	0	0
18	22570642080	825733440	0	0	0	0	0	0	0	0	0
19	861295680	40320	0	0	0	0	0	0	0	0	0
20	51488640	40320	0	0	0	0	0	0	0	0	0
21	33163200	0	0	0	0	0	0	0	0	0	0
22	23970240	0	0	0	0	0	0	0	0	0	0
23	1290240	0	0	0	0	0	0	0	0	0	0
24	84309120	0	0	0	0	0	0	0	0	0	0
25	3887362080	165130560	0	0	0	0	0	0	0	0	0
26	4051887840	165130560	0	0	0	0	0	0	0	0	0
27	128136960	0	0	0	0	0	0	0	0	0	0
28	927360	0	0	0	0	0	0	0	0	0	0
29	0	0	0	0	0	0	0	0	0	0	0
30	41650560	0	0	0	0	0	0	0	0	0	0
31	21712320	0	0	0	0	0	0	0	0	0	0
32	20865600	0	0	0	0	0	0	0	0	0	0
33	201600	0	0	0	0	0	0	0	0	0	0
34	0	0	0	0	0	0	0	0	0	0	0
35	161280	0	0	0	0	0	0	0	0	0	0
36	20825280	0	0	0	0	0	0	0	0	0	0
37	21147840	0	0	0	0	0	0	0	0	0	0
38	241920	0	0	0	0	0	0	0	0	0	0
39	0	0	0	0	0	0	0	0	0	0	0
40	0	0	0	0	0	0	0	0	0	0	0
41	0	0	0	0	0	0	0	0	0	0	0
42	0	0	0	0	0	0	0	0	0	0	0
43	0	0	0	0	0	0	0	0	0	0	0
44	0	0	0	0	0	0	0	0	0	0	0
45	0	0	0	0	0	0	0	0	0	0	0
46	0	0	0	0	0	0	0	0	0	0	0
47	0	0	0	0	0	0	0	0	0	0	0
48	0	0	0	0	0	0	0	0	0	0	0
49	40320	0	0	0	0	0	0	0	0	0	0
50	40320	0	0	0	0	0	0	0	0	0	0

Table 9. Index and period statistics of the set of 8×8 Boolean matrices (all zero columns skipped)

REFERENCES

[1] Grošek, O.-Vojvoda, M.-Krchnavý, R.: A New Matrix Test for Randomness. Computing, Vol. 85, 2009, No. 1-2, pp. 21-36.
[2] Jóкау, M.: Remarks on the Grid Computation of the Characteristics of Boolean Matrices. In GCCP 2010 Proceedings: $6^{\text {th }}$ International Workshop on Grid Computing for Complex Problems. Bratislava, Slovakia, November 8-10, 2010, pp. 57-63.
[3] Jókay, M.-Zajac, P.: Advances in the Matrix Test Precomputation. In Proceedings. $1^{\text {st }}$ Plenary Conference of the NIL-I-004. Development of Norwegian-Slovak Cooperation in Cryptology, Bergen, Norway, August 24-27, 2009, pp. 1-6.
[4] Jókay, M.-Zajac, P.: Parallelization Techniques for the Matrix Test Precomputation. In $5^{\text {th }}$ International Workshop on Grid Computing for Complex Problems. GCCP 2009, Bratislava, Slovak Republic, October 26-28, 2009, pp. 103-109.
[5] Schwarz, Š.: On the Semigroup of Binary Relations on a Finite Set. Czech. Math. J., Vol. 95, 1970, No. 20, pp. 632-679.
[6] Schwarz, Š.: Sums of Powers of Binary Relations. Mat. Cas., Vol. 24, 1974, No. 2, pp. 161-171 (in Russian).

Pavol Zajac is an Associate Professor at UIM FEI STU. He got his Ph. D. in applied mathematics in 2008. He is currently working on problems of algebraic cryptanalysis and general cryptology research.

Matúš Jókay is a lecturer and researcher at UIM FEI STU. He got his Ph. D. in applied informatics in 2011. His research interests are in steganography and in large distributed computing with applications in cryptology.

[^0]: 1 For readers with interest in cryptography, we remark that this effort is similar to breaking DES by the brute force attack.

[^1]: 2 A permutation matrix has exactly one 1 in each row and column.

[^2]: ${ }^{3}$ Equivalently, to compute the statistics in one month, 275000 nodes was needed.
 ${ }^{4}$ The estimate from [3] does not take into account scaling of the matrix multiplication complexity, when changing dimension from $n=7$ to $n=8$. If we take this into account, the speedup is closer to the theoretical value of $2^{8.3}$ (see Table 2).

